Silicon Institute of Technology

An Autonomous Institute

Curriculum Structure and Detailed Syllabus

Bachelor of Technology in Computer Science & Technology

Department of Computer Science & Engineering Silicon Institute of Technology Silicon Hills, Patia, Bhubaneswar - 751024

Effective From Academic Year 2021-22

Version: 2.10 (Build: 14-04-2023)

Approval History

ACM#	Date	Resolutions
AC-6	09/10/2021	The curriculum structure and detailed syllabus of 1st Year as proposed by the Boards of Studies is approved by the Academic Council.
AC-8	13/08/2022	The curriculum structure and detailed syllabus of 2nd, 3rd, and 4th years as proposed by the Boards of Studies is approved by the Academic Council.

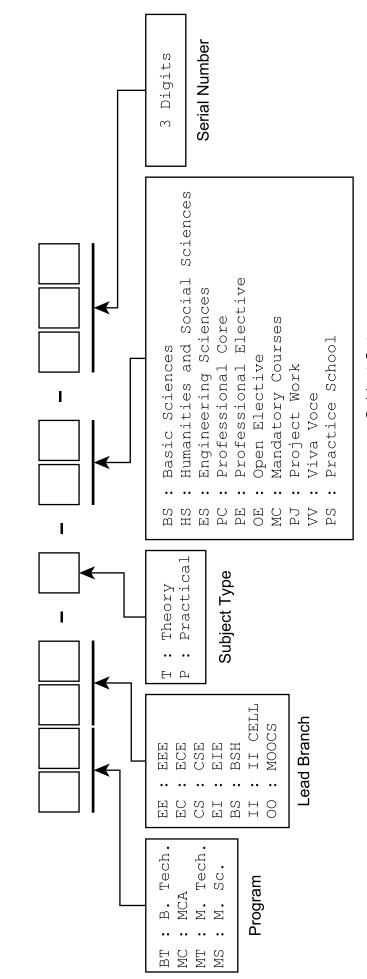
Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
- PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. **Conduct Investigations of Complex Problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long Learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

- PSO1. Understand, analyze, and develop efficient software solutions to problems of varying complexity related to algorithms, system software, multimedia, web applications, data processing, and networking by applying fundamental concepts of computer science.
- PSO2. Develop the skills in different computer languages, environments, tools & platforms to become a successful software professional or entrepreneur, develop a zest for innovation & higher studies, and contribute as a responsible citizen with effective communication, strong moral values and professional ethics.
- PSO3. Adapt to the evolutionary changes in computing and embrace modern practices of software development to deliver user-friendly expert systems with for business success in the real world to meet the challenges of the future.


Program Educational Objectives (PEOs)

- PEO1. Fundamental Knowledge & Core Competence: To apply fundamental knowledge of mathematics, science and engineering required for a successful computer professional and inculcate competent problem solving ability using efficient algorithms.
- PEO2. *Proficiency for the Real World*: To foster the skills and creative ability to analyze, design, test and implement cost effective software applications and digital support systems for the changing needs of the real world.
- PEO3. *Leadership & Social Responsibility*: To exhibit leadership capability with professional, ethical, interpersonal skills, social & economic commitment with a sense of responsibility towards public policies, community services, humanity and environment.
- PEO4. *Life-long Learning*: To grow professionally through continued education & training of technical and management skills, pursue higher studies, and engage in life-long learning.

Course Types & Definitions

L	Lecture
T	Tutorial
P	Laboratory / Practical / Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
PC	Professional Core
PE	Professional Elective
OE	Open Elective
MC	Mandatory Course
OO	Massive Open Online Course (MOOC) - Self Study
PJ	Summer Internship / Project Work / Seminar
PS	Practice School / Industry Internship
VV	Viva Voce

Subject Code Format

Subject Category

Contents

I	1st Year B. Tech. (Common to All Branches)	1
	Induction Program	2
	Curriculum Structure	3
	Semester I	3
	Semester II	4
	Detailed Syllabus (Semesters I & II)	5
	Theory	5
	Engineering Mathematics - I	5
	Engineering Chemistry	7
	Engineering Physics	10
	Basic Electronics Engineering	13
	Basic Electrical Engineering	15
		17
	Computer Programming	
	Constitution of India	20
	Environmental Science & Engineering	22
	Engineering Mathematics - II	24
	Data Structures & Algorithms	26
	Communicative & Technical English	29
	Practical	30
	Engineering Chemistry Lab	31
	Engineering Physics Lab	34
	Manufacturing Practices	36
	Engineering Graphics	39
	Basic Electronics Engineering Lab	42
	Basic Electrical Engineering Lab	44
	Computer Programming Lab	46
	Data Structures & Algorithms Lab	48
	Communicative & Technical English Lab	50
	Communicative & rectifical English Lab	50
II	2nd Year B. Tech. (CST)	52
	Curriculum Structure	53
	Semester III	
	Semester IV	53
	List of Electives	54
	Detailed Syllabus (Semester III)	55
	Theory	55
	Mathematics-III for Computer Sciences	55
		57
	Biology for Engineers	
	OOP Using Java	60
	Digital Electronics	62
	Basics of Mechanical Engineering	64
	Computer Organization & Architecture	67
	Practical	68
	OOP Using Java Lab	69
	Digital Electronics Lab	71
	Computer Organization & Architecture Lab	73
	Corporate Communication Lab	75

Detailed Sy	rllabus (Semester IV)	76
Theory	,	76
-	Math-IV for Computer Sciences	77
	Engineering Economics	79
		32
		35
	Operating Systems	38
	1 0 7	91
		94
		96
Practi		97
		98
	Database Management Systems Lab	
	Operating Systems Lab	
	e peranting e perente zate e e e e e e e e e e e e e e e e e e	_
III 3rd Year	B. Tech. (CST))4
Curriculum	Structure)5
Semes	ter V)5
Semes	ter VI)5
List of Elec	tives)6
	rllabus (Semester V))7
	,)7
	Computer Networks	
	Formal Languages & Automata Theory	
	Machine Learning	
	Statistical Inference	
	Mobile Computing	
	Realtime Systems	
	Advanced Computer Architecture	
	Data Mining & Data Warehousing	
	Wireless Sensor Networks	
	Distributed Databases	
	Universal Human Values & Professional Ethics	
Practi		
Tructi		
	1	
Datailed St	,	
1 neory	Company to a graph of a National Constitution 14	
	Cryptography & Network Security	
	Microcontrollers & Embedded Systems	
	Software Engineering	
	Natural Language Processing	
	Cloud Computing	
	Parallel & Distributed Systems	
	Compiler Design	
	Advanced Machine Learning	
	Computer Graphics	
	Server Side Scripting	
	Big Data Analytics	71

	Soft Computing	75
	Practical	
	Cryptography & Network Security Lab	
	Software Engineering Lab	
	Emerging Technologies Lab	.82
IV	4th Year B. Tech. (CST)	.85
Cı	urriculum Structure (Regular)	.86
Cı	urriculum Structure (PS-7)	.87
Cı	urriculum Structure (PS-8)	.88
Li	st of Electives	89
D	etailed Syllabus (Semesters VII & VIII)	90
	Theory	
	Fundamentals of Management	
		92
	Electrical Circuits & Safety	94
	Applied Linear Algebra	
	Project Management	
		200
	Signals & Systems	202
	Sensors & Circuit Analysis	
	Energy Conversion Devices	
	07	211
		213
	Communication Systems Engineering	
	Biomedical Instrumentation & Signal Processing	
	Practical	
	Internet of Things Lab	

Part I

1st Year B. Tech. (Common to All Branches)

Induction Program

It is necessary for a newly admitted student to acclimatize to the environment of a college, create a bonding between the teacher and students, equip the students with communication skills, and get them acquainted with the academic & disciplined culture of institution & human values.

All students admitted to B.Tech. programs shall undergo a mandatory induction program after joining the institute and before the commencement of classes. Regular classes of the engineering programs shall begin only after the students have completed the induction program.

The induction program shall comprise of familiarization to the rules & regulations of the institute, examinations & evaluation system, departments/branches, campus facilities, official processes & important officials, curricular/ co-curricular/ extra-curricular activity clubs, innovation & research activities, etc. The program shall also comprise of lectures by eminent persons on adopting a disciplined & healthy life-style, career planning & emerging technologies, social awareness, human values & ethics to sensitize & motivate the students to become not only a successful engineer, but also a socially responsible citizen and contribute their part for social development and nation building.

Interaction with faculty advisors, mentors, senior students, individual/group physical activities, learning or exhibiting an art form/literature, social service initiatives, and visits to important places of the city, and any other events/activities deemed to be necessary, may also be included in the induction program.

Every new student must diligently attend & participate in all the activities of the induction program. Attendance in the activities shall be recorded. Students have to submit a daily report in prescribed format to the concerned faculty advisor on the next day. There will be a computer-based test with multiple-choice questions on a suitable date about a week after completion of the induction program.

Evaluation of Induction Program shall be done out of 100 marks, comprising of 3 components, namely: (i) 25 marks for attendance, (ii) 25 marks for the daily reports, and (iii) 50 marks for the computer-based multiple-choice test. A student has to score at least 50 marks in total to pass the induction program.

In case of failure, the student has to attend the induction program in the next academic year along with the newly admitted students, submit daily reports, and appear the computer-based test to score a pass mark.

Curriculum Structure

	Semester I							
Type	Type Code Course Title					Credits L-T-P		
	,	THEORY	•					
BS	BTBS-T-BS-005	Engineering Mathematics-I	3	0	0	3	0	0
BS	BTBS-T-BS-002/ BTBS-T-BS-006	Engineering Chemistry/ Engineering Physics	3	0	0	3	0	0
ES	BTEC-T-ES-001/ Basic Electronics Engineering/ 2 0 BTEE-T-ES-001 Basic Electrical Engineering				0	2	0	0
ES	BTCS-T-ES-001	Computer Programming	3	0	0	3	0	0
MC	C BTBS-T-MC-001/ Constitution of India/ BTBS-T-MC-008 Environmental Science & Engineering				0	0	0	0
		PRACTICAL						
BS	BTBS-P-BS-003/ BTBS-P-BS-007	Engineering Chemistry Lab/ Engineering Physics Lab	0	0	2	0	0	1
ES	BTBS-P-ES-009/ Manufacturing Practices/ 0 0 2 BTBS-P-ES-004 Engineering Graphics		2	0	0	1		
ES	BTEC-P-ES-002/ Basic Electronics Engineering Lab/ BTEE-P-ES-002 Basic Electrical Engineering Lab 0				2	0	0	1
ES	BTCS-P-ES-002	Computer Programming Lab	0	0	4	0	0	2
	SUB-TOTAL 13 0			10	11	0	5	
		TOTAL		23			16	

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated Engineering Chemistry in Semester-I, then he/she will be allocated Engineering Physics in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

	Semester II								
Type	Code	Course Title		WCH L-T-P			Credits L-T-P		
	,	THEORY							
BS	BTBS-T-BS-013	Engineering Mathematics-II	3	0	0	3	0	0	
BS	BTBS-T-BS-006/ BTBS-T-BS-002	Engineering Physics/ Engineering Chemistry	3	0	0	3	0	0	
ES	BTEE-T-ES-001/ BTEC-T-ES-001	Basic Electrical Engineering/ Basic Electronics Engineering	2	0	0	2	0	0	
ES	BTCS-T-ES-003	Data Structures & Algorithms	3	0	0	3	0	0	
MC	BTBS-T-MC-008/ BTBS-T-MC-001	,			0	0	0	0	
HS	HS BTBS-T-HS-099 Communicative & Technical English				0	2	0	0	
		PRACTICAL							
BS	BTBS-P-BS-007/ BTBS-P-BS-003	Engineering Physics Lab/ Engineering Chemistry Lab	0	0	2	0	0	1	
ES	BTBS-P-ES-004/ BTBS-P-ES-009	Engineering Graphics/ Manufacturing Practices	0	0	2	0	0	1	
ES	BTEE-P-ES-002/ Basic Electrical Engineering Lab/ BTEC-P-ES-002 Basic Electronics Engineering Lab 0 0 2		2	0	0	1			
ES	BTCS-P-ES-004	Data Structures & Algorithms Lab 0 0 4		4	0	0	2		
HS	BTBS-P-HS-011	Communicative & Technical English Lab 0 0 2		2	0	0	1		
	SUB-TOTAL 15 0		12	13	0	6			
		TOTAL		27			19		

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated Engineering Chemistry in Semester-I, then he/she will be allocated Engineering Physics in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

Ty	oe Code	Engineering Mathematics - I	L-T-P	Credits	Marks
BS	BTBS-T-BS-005	Engineering Wattematics - 1	3-0-0	3	100

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of curve tracing, ordinary differential equations and applications, solution of system of linear equations using matrix methods, and Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Functions and their Graphs, Asymptotes & Curvature (concepts only), Geometric meaning of $y' = f(x, y)$ & direction fields, Separable ordinary differential equations (ODE) and Modeling.	8 Hours
Module-2	Exact ODE & Integrating Factor, Linear ODE, Bernoulli's Equation and Population models, Modeling electrical circuits, Homogeneous linear ODE of second order, Second order Linear ODE with constant coefficients, Modeling free oscillation.	8 Hours
Module-3	Euler-Cauchy ODE, Non-homogeneous linear ODE and applications to electrical circuits.	7 Hours
Module-4	Matrix algebra, system of linear equations, rank and inverse of matrices, vector space.	8 Hours
Module-5	Eigen values and Eigen vectors, Complex matrices, Diagonalization of matrices. Positive Definite Matrix, Singular Value Decomposition (SVD) and Pseudo Inverse.	11 Hours
	Total	42 Hours

Text Books:

- T1. S. Narayan and P. K. Mittal, *Differential Calculus*, Revised Edition, S. Chand & Company, 2014.
 T2. E. Kreyszig, *Advanced Engineering Mathematics*, 8th Edition, Wiley India, 2015.
 T3. G. Strang, *Linear Algebra and Its Applications*, 4th Edition, Cengage Learning, 2015.

Reference Books:

- R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Edition, Oxford University Press, 2015.
- R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Edition, McGraw Hill, 2017.

Online Resources:

- 1. http://www.nptel.ac.in/courses/111105035
- 2. http://www.nptel.ac.in/courses/122104017
- 3. http://nptel.ac.in/courses/122102009

- 4. http://nptel.ac.in/courses/111107063
- 5. https://www.coursera.org/learn/linearalgebra2
- 6. https://www.coursera.org/learn/differentiation-calculus
- 7. https://www.coursera.org/learn/single-variable-calculus
- 8. https://alison.com/courses/Algebra-Functions-Expressions-and-Equations

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe graphs of functions (curves) and their characteristics like asymptotes and curvature.
CO2	Solve first order ordinary differential equations using various methods and apply them to find solutions of physical problems.
CO3	Explain the methodology to solve second order ordinary differential equations and apply them to solve applied problems of electrical circuits.
CO4	Explore the concepts and methods of system of linear equations to solve a system.
CO5	Use the eigen values and eigen vectors of matrices, its properties and applications of SVD.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								3	2	1
CO2	3	3	2	1	2								2	2	1
CO3	3	3	3	3	1								3	2	1
CO4	3	3	3	2	3								3	2	1
CO5	3	3	2	2	2								3	3	1

Type	Code	Engineering Chemistry	L-T-P	Credits	Marks
BS	BTBS-T-BS-002	Engineering Chemistry	3-0-0	3	100

Objectives	The purpose of this course is to emphasize the relevance of fundamentals and applications of chemical sciences in the field of engineering. The course attempts to address the principles of general chemistry and specific topics relevant to various engineering disciplines, so that the students can apply the knowledge in their respective areas of expertise.
Pre-Requisites	Basic knowledge on Normality, Molarity, mole concept, types of chemical reactions, and elementary idea on electrochemistry.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term End-Term		10141	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
	Introduction & Pre-requisites	2 Hours
Module-1	Water Treatments : Types of hardness-Units, Alkalinity of water and its significance, Softening methods and Numerical problems based on these methods; Membrane-based processes; Dissolved Oxygen, Problems with Boiler feed water and its treatments.	8 Hours
Module-2	Corrosion Science: Definition and scope of corrosion, Dry and wet corrosion; Direct chemical corrosion, Electrochemical corrosion and its mechanisms; Types of electrochemical corrosion, (differential aeration, galvanic, concentration cell); Typical Electrochemical corrosion like Pitting, Inter-granular, Soil, Waterline; Factors affecting corrosion, Protection of corrosion.	7 Hours
Module-3	Instrumental Techniques : Fundamentals of Spectroscopy; Principles and applications of molecular spectroscopy (such as UV-visible, IR and microwave).	8 Hours
Module-4	Energy Sciences: Types of fuels, Calorific value, Determination of Calorific value, Combustion and its calculations, Solid fuel: Coal analysis (Proximate and ultimate analysis), Elementary ideas on some gaseous fuels (Natural gas, Water gas, Producer gas, LPG) (Synthesis is excluded), Liquid fuels: IC engine fuel, concept of knocking, antiknocking, octane No and cetane No, Fractional Distillation of petroleum, Cracking of heavy oils; Battery technology – Fundamentals of primary & Secondary cells, Rechargeable batteries: Lead acid storage battery, Lithium ion battery, Fuel cells: principles, applications. Elementary idea on Photovoltaics.	10 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Nanochemistry : Nanomaterials, Classification of nanomaterials, Synthesis of noble metal nanoparticles (e.g., Gold /silver) and oxide based nanoparticles (e.g., cuprous oxide/zinc oxide) using green synthetic route, Stabilization of nanoparticles using capping agents, Elementary ideas on characterization of nanoparticles (X-ray Diffraction (XRD) and electronic spectroscopy), applications of nanomaterials.	7 Hours
	Total	42 Hours

Text Books:

- T1. Jain & Jain, *Engineering Chemistry*, 16th Edition, Dhanpat Rai Publishing Company, 2015.
- T2. Wiley-India Editorial Team, *Engineering Chemistry*, 2nd Edition, Wiley India, 2011. T3. C. N. Banwell, *Fundamentals of Molecular Spectroscopy*, 4th Edition, McGraw Hill Education, 2017.

Reference Books:

- R1. S. S. Dara, *Engineering Chemistry*, 12th Edition, S. Chand Publisher, 2014.
- R2. G. A. Ozin & A. C Arsenault, Nanochemistry A Chemical Approach to Nanomaterials, 2nd Edition, RSC Publishing, 2008.
- R3. J. M. Lehn, L. Cademartiri, Concepts of Nanochemistry, 1st Edition, Wiley-VCH, 2009.
- R4. Y. R. Sharma, Elementary Organic Spectroscopy, S Chand & Co Ltd., 2013.

Online Resources:

- 1. https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Exemplars/ Corrosion/Corrosion_Basics
- 2. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm
- 3. http://nptel.ac.in/courses/103105110/ Fuel & Combustion
- 4. http://nptel.ac.in/courses/105104102/hardness.htm
- 5. http://nptel.ac.in/courses/105106112/1_introduction/5_corrosion.pdf
- 6. https://alison.com Spectroscopic Technique, Colorimetry

Course Outcomes: At the end of this course, the students will be able to:

CO1	Exploit the concept of hardness in softening hard water and determining the hardness of water.
CO2	Utilize the knowledge of electrochemistry and corrosion science in preventing engineering equipments from corrosion.
CO3	Apply the concept of molecular spectroscopy to analyze organic compounds using spectrophotometer.
CO4	Classify various fuels based on combustion parameters and understand the working principle of various batteries.
CO5	Acquire knowledge on synthesis & characterization of oxide based & noble metal nanoparticles through green synthetic route.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Cont'd...

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1	2	1	1					1	1	2
CO2	3	2	1	1	1	2	1						1	2	1
CO3	2	2	1	1	2	2	1	1					1	1	2
CO4	2	2	1	1	1	1	1						2	2	1
CO5	2	2	1	1	2	2	1	1					2	1	2

Type	Code	Engineering Physics	L-T-P	Credits	Marks
BS	BTBS-T-BS-006	Engineering 1 hysics	3-0-0	3	100

Objectives	The objective of this course is to obtain basic idea about various laws and understand different phenomena using principles of physics. This knowledge will be useful for the engineering students to understand the basic operating principle of instruments and techniques. The knowledge obtained can also be used to prepare various models and projects.
Pre-Requisites	Adequate knowledge and clear concepts in higher secondary physics like waves, oscillations, optics, electricity, magnetism, modern physics, etc.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Surprise Test(s) Assignment(s) Mid-Term End-Term			
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
	Introduction & Pre-requisites	2 Hours
Module-1	Wave Optics: Concept of wave and wave equation, Superposition of waves (two beam and multiple beam) and interference, Huygen's principle, Interference by division of amplitude and division of wavefront, Theory of Newton's rings and its applications, Diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer's diffraction from a single slit, Theory of plane diffraction grating, Determination of wavelength of light with a plane diffraction grating.	10 Hours
Module-2	Vector Calculus: Gradient of scalar field, Divergence and curl of vector field, Gauss divergence theorem and Stokes theorem (statement only). Maxwell's Equations: Gauss's law in electromagnetism, Faraday's law of electromagnetic induction, Ampere's circuital law, Displacement current, Maxwell's electromagnetic equations (integral and differential form). Electromagnetic Waves: Electromagnetic Wave (EM) equations - Free space, Dielectric and conducting medium, Transverse nature of EM wave, Electromagnetic wave in ionized medium, Electromagnetic energy density, Poynting's theorem and Poynting's vector.	11 Hours
Module-3	Introduction to Quantum Mechanics: Need of quantum mechanics, Particle nature of radiation - Black body radiation (no derivation), Photoelectric effect, Compton effect and pair production, Concept of de-Broglie's matter waves, Phase and group velocity, Heisenberg's Uncertainty principle with applications.	6 Hours
Module-4	Schrödinger's wave equation with applications : Concept of wave function ψ and interpretation of $ \psi ^2$, Schrödinger's time-dependent and time-independent equations, Probability current, Expectation values, Operators in quantum mechanics, Eigen functions and Eigen values, Applications of Schrödinger's equation- Particle in one dimensional rigid box, Potential barrier (emphasis on tunneling effect).	6 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Laser: Radiation-matter interaction, Absorption of light, Spontaneous and stimulated emission of light, Population inversion, Types of Laser-Solid State Laser (Ruby), Gas Laser (He-Ne), Properties and applications of Laser. Optical Fiber: Structure and Principle, Types of optical fiber, Numerical aperture, Applications of optical fiber.	7 Hours
	Total	42 Hours

Text Books:

- T1. D. R. Joshi, *Engineering Physics*, 1st Edition, Tata McGraw-Hill Publication, 2017.
- T2. Md. M. Khan and S. Panigrahi, *Principle of Physics*, Vol. I & II, Cambridge Univ. Press.

Reference Books:

- R1. A. Ghatak, *Optics*, Tata McGraw Hill.
- R2. B. S. Agarwal, Optics, Kedar Nath Rama Nath & Co.
- R3. S. Prakash, *Electromagnetic Theory and Electrodynamics*, Kedar Nath Ram Nath & Co.
- R4. D. J. Griffith, *Introduction to Electrodynamics*, Pearson Education.
- R5. R. Eisberg and R. Resnick, *Quantum Physics of Atoms, Molecules, Solids, Nuclei & Particles*, John Wiley Publications.
- R6. A. Beiser, Concept of Modern Physics, McGraw Hill.
- R7. R. K. Gour and S. L. Gupta, *Engineering Physics*, Dhanpat Rai Publications.

Online Resources:

- 1. https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/
- 2. http://www.ilectureonline.com/lectures/subject/PHYSICS
- 3. https://ocw.mit.edu/courses/physics
- 4. https://nptel.ac.in/courses/115102026/
- 5. https://nptel.ac.in/courses/113104012/

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Analyze wave properties of light like interference and diffraction and apply them in communications
CO2	Develop Maxwell's equations from basic laws of electromagnetism and apply them to understand the properties of electromagnetic waves.
CO3	Analyze wave-particle duality to understand radiation-matter interaction
CO4	Develop and apply Schrödinger's equations to diverse fields like bound particle, potential barrier etc.
CO5	Investigate the basic principle, properties, operations and applications of laser & optical fibre in different fields like communication, industry, medicine, research etc.

Program Outcomes Relevant to the Course:

-	1001	
	PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
	PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Cont'd...

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1								1	3	1	1
CO2	3	2	1	2	1							1	3	2	1
CO3	3	2		1								1	3	2	1
CO4	3	2		1								1	3	2	1
CO5	3	3	1	2	1							1	3	2	1

Type	Code	Basic Electronics Engineering	L-T-P	Credits	Marks
ES	BTEC-T-ES-001	basic electronics Engineering	2-0-0	2	100

Objectives	Know broadly the concepts and functionalities of the electronic devices, tools and instruments. Understand general specifications and deployability of the electronic devices, and assemblies. Develop confidence in handling and usage of electronic devices, tools and instruments in engineering applications.
Pre-Requisites	Knowledge on intrinsic and extrinsic Semiconductors, Physics and Chemistry of Higher Secondary Science level.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, and planned lectures to make the sessions interactive with problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	iotai	
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Electronics: Signals, Frequency spectrum of signals, Analog and digital signals; Diodes and Applications: Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers, Breakdown Mechanisms, Zener Diode – Operation and Applications; Clipper and Clamper Circuits, Diode applications.	7 Hours
Module-2	Bipolar Junction Transistor (BJT) : Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Fixed and Voltage divider Biasing Configurations.	6 Hours
Module-3	Field Effect Transistor (FET) : Construction, Characteristics of Junction FET (JFET), Depletion and Enhancement type Metal Oxide Semiconductor FETs (MOSFET), Introduction to Complementary MOS (CMOS) circuits.	5 Hours
Module-4	Operational Amplifiers and Applications : Introduction to Op-Amp, Differential Amplifier Configurations, Basics of Op-Amp, Characteristics of Ideal Op-Amp, CMRR, PSRR, Slew Rate; Block Diagram and Pin Configuration of IC 741 Op-Amp, Applications of Op-Amp as: Summing Amplifier, Difference Amplifier, Differentiator, Integrator.	5 Hours
Module-5	Feedback Amplifiers : Principle, Advantages of Negative Feedback, Different Feedback Topologies. Oscillators : Classification, RC Phase Shift Oscillator.	5 Hours
	Total	28 Hours

Text Books:

- T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Edition, Pearson Education, 2015.
- T2. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th Edition, Oxford University Press, 2009.

Reference Books:

- R1. A. Agarwal and J. Lang, *Foundations of Analog and Digital Electronic Circuits*, 1st Edition, Morgan Kaufmann, 2005.
- R2. V. K. Mehta and R. Mehta, *Principles of Electronics*, 10th Rev. Edition, S. Chand Publishing, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/117/103/117103063/: by Prof. G. Barua, IIT Guwahati
- 2. https://nptel.ac.in/courses/108/101/108101091/: By Prof. M. B. Patil, IIT Bombay
- 3. https://nptel.ac.in/courses/122/106/122106025/: By Prof. T. S. Natarajan, IIT Madras
- 4. https://nptel.ac.in/courses/117/107/117107095/: Web Content by IIT Roorkee
- 5. https://nptel.ac.in/courses/122/104/122104013/: Web Content by IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Become familiar with basic signals, diodes and their applications.
CO2	Investigate on the operation of different configurations of bipolar junction transistor. Analyze and design different biasing configurations with their applications.
CO3	Understand the construction, operation and characteristics of JFET and MOSFET. Analyze and design different biasing configurations with their applications.
CO4	Learn the construction and characteristics of Op-Amp and design circuits for various applications using Op-Amp.
CO5	Understand different types of feedback topologies and design various kinds of oscillators.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										1	1	1
CO2	3	2	3	1									2	2	2
CO3	2	2	2	1									2	2	2
CO4	3		3										1	1	2
CO5	2	1	2										1	1	1

Тур	Code	Basic Electrical Engineering	L-T-P	Credits	Marks
ES	BTEE-T-ES-001	basic Licetical Engineering	2-0-0	2	100

Objectives	The objective of this course is to introduce the students to basic concepts of electricity and magnetism. The course will cover the basics of DC & AC networks, principle of operation of different electrical machines and measuring instruments. The course will train the students about the basic protection system and safety requirements and will give an overview of the electrical power systems.
Pre-Requisites	Basic knowledge of intermediate Physics, knowledge of basic Mathematics such as Calculus, Ordinary Differential Equations, Matrices etc.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Fundamentals of Electric Circuits: Charge & current, Voltage & current sources, Electrical circuit elements (R, L and C) and their characteristics, Kirchoff's current and voltage laws; Resistive Network Analysis: Node voltage & Mesh current analysis, Node voltage and mesh current analysis with controlled sources, Thevenin Theorem, Norton's Theorem, Principle of superposition, Maximum power transfer theorem; Formation of differential equation for RL & RC circuits; Concept of measurement and use of shunt and multipliers in ammeters and voltmeter.	8 Hours
Module-2	Representation of sinusoidal waveforms, Peak and rms values, Phasor representation, Real power, Reactive power, Apparent power, Power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel).	6 Hours
Module-3	Three phase balanced circuits, Voltage and current relations in star and delta connections. Brief introduction to generation, Transmission and Distribution of electrical power, Earthing & electrical safety.	3 Hours
Module-4	Electricity and magnetism, magnetic circuit and magnetic reluctance, Magnetic materials, BH characteristics, Ideal and practical transformer, e.m.f. equation of transformer, Equivalent circuit.	4 Hours
Module-5	Construction of D.C. machines, generator, Types of excitation system, working of D.C. motor, Classification of D.C. motor, Characteristics and speed control of dc motor; Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Torque-slip characteristic; Single-phase induction motor.	7 Hours
	Total	28 Hours

Text Books:

- T1. E. Hughes, *Electrical & Electronic Technology*, 9th Edition, Pearson, 2004.
 T2. G. Rizzoni, *Principles and Applications of Electrical Engineering*, 5th Edition, McGraw Hill, 2006.

Reference Books:

- R1. A. E. Fitzgerald, D. E. Higginbotham, and A. Grabel, *Basic Electrical Engineering*, 5th Edition, Tata McGraw Hill.
- R2. B. L. Theraja and A. K. Theraja, *Textbook of Electrical Technology (Vol-I)*, 23rd Edition, S. Chand & Co.Ltd., 2002.
- R3. L. S. Bobrow, Foundations of Electrical Engineering, Asian Edition, Oxford Univ. Press, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105053/: by Prof. G. D. Roy, Prof. N. K. De, and Prof. T. K. Bhattacharya, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/108/108108076/: By Prof. L. Umanand, IISc Bangalore
- 3. https://www.electrical4u.com/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand and analyze basic electrical network with D.C. source.
CO2	Measure current, voltage and power of series RLC circuit excited by single-phase ac circuit.
CO3	Analyze three phase electrical systems and develop an understanding of the real power system.
CO4	Explain different concepts of magnetic fields and apply it to single phase transformer.
CO5	Describe the working principles of rotating electrical machines.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2									1	1	1
CO2	3	3	2	3										1	1
CO3	3	2	1	1			2						1	1	1
CO4	3	2	2				1						1		1
CO5	3	3	2	1											

7	Гуре	Code	Computer Programming	L-T-P	Credits	Marks
	ES	BTCS-T-ES-001	Computer Frogramming	3-0-0	3	100

Objectives	The objective of this course is to introduce fundamentals of computer programming using the C programming language to the students. Starting with simple programs, the course will cover advanced topics like structures, pointers, file processing and pre-processor directives etc. and enable the students to write programs using C language for solving various engineering problems.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to computers and programming, operating system, compilers, interpreters, algorithm, flowchart, pseudocode etc., structure of C program, character set, identifier, keywords, constants, variables, data types, operators, expressions, statements, operator precedence and associativity, type conversion, input/output statements.	8 Hours
Module-2	Decision making and branching: if, if-else, nested if-else, else-if ladder and switch constructs, iterative execution of code using loops: while, for, dowhile, nested loops, controlling loop behavior using jump statements (break, continue, goto) and exit statements.	8 Hours
Module-3	Arrays (1-D & 2-D), declaration and initialization of arrays, accessing array elements, operations on arrays - insertion, deletion, searching, sorting (selection sort), merging etc., character arrays and strings, initialization, input & output of strings, operations on strings, array of strings, string handling functions.	9 Hours
Module-4	User-defined functions, declaration and definition, parameter passing by value, functions returning values, idea on call by reference, passing arrays to functions, recursion, storage classes - auto, register, static, extern, Structures and Unions - definition, initialization, accessing members, array of structures, arrays within structures, structures and functions, self-referential structures.	9 Hours
Module-5	Understanding pointers, declaration, initialization, accessing variables using pointers, pointer expressions, scale factor, chain of pointers, using pointers with arrays, strings, functions and structures, dynamic memory management, pre-processor directives, command line arguments, basics of file handling.	8 Hours
	Total	42 Hours

Text Books:

- T1. E. Balagurusamy, *Programming in ANSI C*, 7th Edition, McGraw-Hill Education, 2017.
- T2. Y. Kanetker, Let Us C, 16th Edition, BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Edition, Pearson Education,
- R2. H. Schildt, *C: The Complete Reference*, 4th Edition, McGraw-Hill, 2017. R3. A. Kelley and I. Pohl, *A Book on C*, 4th Edition, Pearson Education, 2008.
- R4. B. Gottfried, Schaum's Outline of Programming with C, 3rd Edition, McGraw-Hill, 2017.

Online Resources:

- 1. http://www.stat.cmu.edu/~hseltman/c/CTips.html
- 2. http://www.c-faq.com/
- 3. https://www.learn-c.org/
- 4. https://www.javatpoint.com/c-programming-language-tutorial
- 5. http://www2.its.strath.ac.uk/courses/c/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Formulate logic of a problem and write C programs using variables, expressions and input/output statements.
CO2	Develop structured C programs involving decision making using different control constructs.
CO3	Solve problems involving similar set of data items and convert them into C programs using arrays.
CO4	Design modular C programs and handle heterogeneous data items using structures & unions.
CO5	Write C applications using pointers, pre-processor directives, command line arguments and files.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1								1	3	2	3
CO2	3	3	2	2								1	3	2	3
CO3	3	3	2	2								1	3	2	3
CO4	3	2	2	2								1	3	2	3
CO5	3	3	2	3								1	3	2	2

Type	Code	Constitution of India	L-T-P	Credits	Marks
MC	BTBS-T-MC-001	Constitution of mula	2-0-0	0	100

Objectives	The objective of this subject is to provide understanding of the basic concepts of Indian Constitution and various organs created by the constitution including their functions. The course acquaints students with the constitutional design of state structures and institutions, and their actual working over time.
Pre-Requisites	Basic knowledge of Indian history, overall idea on India's political system.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient features of Indian constitution, Fundamental rights, Fundamental Duties and its legal status, Directive principles of state policy-its importance and Implementation.	8 Hours
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice-President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours
Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	4 Hours
	Total	28 Hours

Text Books:

- T1. D. D. Basu, *Introduction of Constitution of India*, 22nd Edition, LexisNexis, 2015. T2. K. Subas, *An Introduction to India's Constitution and Constitutional Law*, 5th Edition, National Book Trust India, 2011.

P.T.O

Reference Books:

- R1. M. Laxmikanth, *Indian Polity*, 5th Edition, McGraw Hill, 2011. R2. P. M. Bakshi, *The Constitution of India*, 14th Edition, Universal Law Publishing Co, 2006.

Online Resources:

- 1. https://www.india.gov.in/sites/upload_files/npi/files/coi_part_full.pdf
- 2. https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text
- 3. https://www.tutorialspoint.com/indian_polity/indian_polity_tutorial.pdf
- 4. https://www.careerpower.in/wp-content/uploads/2016/03/SSC-POLITY-CIVICS-CAPSULE-2016.pdf

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Provide basic information about Indian constitution and to analyze the legalities and related issues of drafting, adoption and enforcement of the Indian Constitution as a fundamental law of the nation and the provisions and privileges of Indian Citizenship.
CO2	Understand and judiciously use the fundamental rights and privileges envisaged in the constitution propagating social harmony and equality and respecting the rights and liberties of other people.
CO3	Analyze the major dimensions of Indian Political System and to contribute in protecting and preserving the sovereignty and integrity of India.
CO4	Know the successful functioning of democracy in India and to respect the Constitutional Institutions like Judiciary, Executive and Legislature.
CO5	Understand their obligations, responsibilities, privileges & rights, duties and the role that they have to play in deciding the Administrative Machinery of the country.

Program Outcomes Relevant to the Course:

PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

F F	r														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				1		2	1	1	1				1	2	2
CO2						2	1	1	1				1	1	1
CO3						3	1	1	1				1	2	1
CO4						2	1	1	1				2	2	1
CO5						2	1	2	1				1	2	1

Type	Code	Environmental Science & Engineering	L-T-P	Credits	Marks
MC	BTBS-T-MC-008	Environmental Science & Engineering	2-0-0	0	100

Objectives	This course serves as a general introduction to environmental science. From ecology and ecosystems, it acquaints the students to air & water quality and the impact of pollution on the environment due to industries and urbanization. Some remediation methods of minimizing the impact of pollutants through technology and legal systems are also addressed.
Pre-Requisites	Basic knowledge of physics, chemistry and biology is required for this course.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required and some sessions are planned for expert talk, seminar presentation by students.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Quiz Surprise Test(s) Assignment(s)		Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Ecology & Biogeochemical Cycles: Introduction to environmental science, ecological perspective and value of environment, biodiversity of species, biotic components, energy, food chain, biogeochemical cycles like water, oxygen, nitrogen and carbon cycle.	6 Hours
Module-2	Water & Wastewater Treatment: Water quality standards and parameters, pre-treatment and conventional treatment processes of water, DO, BOD, COD, wastewater treatment.	6 Hours
Module-3	Atmospheric chemistry, soil chemistry, ground water recharge, noise source & abatement: atmospheric chemistry, air pollution, climate change, soil chemistry, water table and aquifer, ground water recharge, noise standards, noise measurement, noise control and activities including expert talk.	5 Hours
Module-4	Waste Management: Municipal Solid Waste (MSW), Hazardous waste and e-waste handling & management, Introduction to Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Environmental Impact Statement (EIS).	6 Hours
Module-5	Environmental gradients & Laws: Environmental gradients, tolerance levels of environment factors, Indian environmental laws, Human population & the environment, Activities including seminar presentations by students.	5 Hours
	Total	28 Hours

Text Books:

- T1. G. M. Masters and W. P. Ela, *An Introduction to Environmental Engineering and Science*, 3rd Edition, PHI Learning, 2015.
- T2. G. Kiely, Environmental Engineering, Spl. Indian Edition, McGraw Hill, 2007.

Reference Books:

- R1. M. L. Davis and S. J. Masten, *Principles of Environmental Engineering and Science*, 2nd Edition, McGraw-Hill, 2017.
- R2. H. D. Kumar and U. N. Dash, *Environmental Studies*, 2nd Edition, IndiaTech Publishers, 2017.

Online Resources:

- 1. http://nptel.ac.in/courses/120108002/: Aquatic Biodiversity and Environmental Pollution.
- 2. http://nptel.ac.in/courses/120108004/: Environment Management.
- 3. http://nptel.ac.in/courses/120108005/: Municipal Solid Waste Management.
- 4. https://www.epa.gov/environmental-topics/: All Current Environmental Issues.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply concepts of ecology, eco systems, food chain and biogeochemical cycles for better understanding of functions of the environment.
CO2	Enhance knowledge of water and wastewater treatment for prevention of water pollution.
CO3	Understand the chemistry of pollutants in the atmosphere, soil and groundwater and understand principles of noise abatement.
CO4	Enhance knowledge of waste minimization technique to minimize and manage solid, hazardous wastes generated in different areas.
CO5	Understand environmental gradients, tolerance levels and environmental laws for prevention of environmental pollution.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1					2	3	1	2		1			1	1
CO2	1					2	2	2	2		1			1	1
CO3	1					1	2	1	1		1			1	1
CO4	1					2	3	1	2		1			1	2
CO5	1					3	3	3	2		1			1	2

Type	Code	Engineering Mathematics - II	L-T-P	Credits	Marks
BS	BTBS-T-BS-013	Engineering Wattematics - II	3-0-0	3	100

Objectives	The objective of this course is to familiarize the perspective engineers with the knowledge and concepts of probability and statistics which are essential to study non-deterministic systems.
Pre-Requisites	Basics of sets, counting techniques, differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Measures of central tendencies, Elementary probability, Conditional probability, Bayes' Rule (related problems only), Random variable, Binomial & Hypergeometric distribution, Mean and variance, Chebyshev's Theorem.	9 Hours
Module-2	The Poisson approximation to Binomial Distribution, Poisson Process, Geometric Distribution & Multinomial Distribution, Continuous random variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Uniform Distribution, Exponential Distribution, Joint Discrete Distribution.	9 Hours
Module-3	Populations and Samples, Sampling Distribution of Mean (σ known), Sampling Distribution of Mean (σ unknown) & Sampling Distribution of Variance; Point Estimation of mean, Interval Estimation of mean, Tests of hypotheses and errors involved, Hypotheses concerning one mean, Inference concerning two mean, Estimation of variance, Hypotheses concerning one variance, Hypotheses concerning two variances.	8 Hours
Module-4	Estimation of Proportions, Hypotheses Concerning proportion (one & several), Analysis of $r \times c$ table (Contingency table), Goodness of fit, Application of goodness of fit, Kolmogorov-Smirnov test.	7 Hours
Module-5	The method of least squares, Inferences based on the least square estimation, Curvilinear Regression, Multiple Regression, Checking the adequacy of the model, Correlation, Multiple linear regression (matrix notation); Analysis of Variance, General principle, Completely Randomized Design, Randomized Block Design.	9 Hours
	Total	42 Hours

Text Books:

T1. R. A. Johnson, *Miller & Freund's - Probability and Statistics for Engineers*, 8th Edition, PHI Learning, 2011.

P.T.O

Reference Books:

- R1. W. Mendenhall, R. J. Beaver, and B. M. Beaver, *Probability and Statistics*, 14th Edition, Cengage Learning, 2014.
- R2. R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, *Probability & Statistics for Engineers & Scientists*, 9th Edition, PHI Learning, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/111/105/111105041/: by Prof. S. Kumar, IIT Kharagpur
- 2. https://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-spring-2014/lecture-notes/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply the concepts of probability and random variables to evaluate probabilities of events.
CO2	Apply different discrete and continuous probability models to solve real life problems.
CO3	Apply the concepts of sampling to estimate population parameters and test hypothesis.
CO4	Test the goodness of a model and apply it to real life problems.
CO5	Apply regression model and ANOVA to study the characteristics data sets.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2								2	1	1
CO2	3	3	3	3	3								2	1	1
CO3	3	2	3	2	2								2	1	1
CO4	3	3	3	3	3								3	2	1
CO5	3	3	3	3	3								3	2	1

Type	Code	Data Structures & Algorithms	L-T-P	Credits	Marks
ES	BTCS-T-ES-003	Data Structures & Aigorithms	3-0-0	3	100

Objectives	To understand the abstract data types and to solve problems using data structures such as stacks, queues, linked lists, hash tables, binary trees, heaps, binary search trees, graphs and writing programs for these solutions.
Pre-Requisites	Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to data structures, classification of data structures, algorithmic notation, complexity of algorithms, asymptotic notations, abstract data types. Arrays - introduction, representation of arrays (row and column major representation), basic operations on array (traverse, insert, delete, search), sparse matrix, representation of sparse matrix using triplet form, operations on sparse matrix (addition, transpose)	8 Hours
Module-2	ADT Stack - stack model, representation of stack using array, basic operations with analysis, applications- recursion, and conversion of infix to post fix expression, evaluation of postfix expression. ADT Queue - queue model, representation using array, basic operations with analysis, circular queue, introduction to priority queue and double ended queue.	8 Hours
Module-3	Linked list - introduction, types of linked list (single, double, circular), representation in memory, operations on linked list (traverse, search, insert, delete, sort, merge) in each type with analysis. Representation of polynomial and its operations (addition, multiplication), implementation of stack and queue using linked list.	9 Hours
Module-4	Tree - terminology, representation, binary tree - tree traversal algorithms with and without recursion. Binary search tree, Operations on Binary Search Tree with analysis, threaded binary tree, general tree, Height balanced tree (AVL tree), m-way search trees, B-trees. Graph - terminology, representation (adjacency matrix, incidence matrix, path matrix, linked representation), graph traversal (BFS, DFS), Dijkstra's single source shortest path algorithm, Warshall's all pair shortest path algorithm, topological sort.	9 Hours
Module-5	Sorting algorithms - bubble sort, selection sort, insertion sort, quick sort, merge sort, radix sort, heap sort. Hashing- hash functions and hashing techniques. collision resolution techniques- linear probing, quadratic probing, chaining.	8 Hours
	Total	42 Hours

Text Books:

- T1. E. Horowitz, S. Sahni, S. Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, Universities Press, 2008.
- T2. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Edition, Pearson Education, 2002.

Reference Books:

- R1. A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, *Data Structures Using C*, 3rd Edition, Pearson Education, 2007.
- R2. J. P. Tremblay and P. G. Sorenson, *An Introduction to Data Structures with Applications*, 2nd Edition, McGraw Education, 2017.
- R3. S. Lipschutz, *Data Structures*, 1st Revised Edition, McGraw Education, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106127/: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
- 2. https://nptel.ac.in/courses/106/102/106102064/: By Prof. N. Garg, IIT Delhi
- 3. https://nptel.ac.in/courses/106/106/106106130/: By Dr. N. S. Narayanaswamy, IIT Madras
- 4. https://www.geeksforgeeks.org/data-structures/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze performance of algorithms and implement various operations on array and sparse matrix.
CO2	Apply the basic operations of stacks and queues to solve real world problems.
CO3	Implement different types of linked list operations and their applications.
CO4	Represent data using trees & graphs to use them in various real life applications.
CO5	Analyze various sorting algorithms and explore different hashing techniques.

Program Outcomes Relevant to the Course:

110814111	dicones relevant to the course.
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2		1						1	3	2	3
CO2	3	3	3	2		1						1	3	2	3
CO3	3	3	3	2		1						1	3	2	3
CO4	3	2	3	3		2						1	3	2	3
CO5	3	3	3	3		1						1	3	2	3

Type	Code	Communicative & Technical English	L-T-P	Credits	Marks
HS	BTBS-T-HS-099	Communicative & Technical English	2-0-0	2	100

Objectives	The objectives of this course are to develop the students' communication skills with proficiency in Technical English, make them speak with a standard accent, develop analytical skills to read and comprehend texts, and help students compose basic business messages.
Pre-Requisites	Basic knowledge of English grammar and the ability to read and write using the English language.
Teaching Scheme	Regular classroom lectures with the use of PPTs as and when required; sessions are planned to be interactive with focus on improving spoken and written communication skills in English.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	prise Test(s) Assignment(s) Mid-Term		End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours		
Module-1	Elements of Communication : Process, factors and importance of communication; Principles of communication; Barriers to communication; General vs Business communication.	3 Hours		
Module-2	Sounds of English: Importance of neutral accent; vowels, diphthongs, consonants and consonant clusters; syllable and stress.			
Module-3	Critical Reading : Importance of reading; Intensive and extensive reading; reading strategies, Reading texts (short story, contemporary essay, editorial).			
Module-4	Effective Business Communication (Oral) : Purpose and importance of business communication; technology in communication; Structure of business organisation; Patterns of business communication; Models of communication in business settings.	7 Hours		
Module-5	Effective Business Communication (Written) : Constituents of effective business writing; Process writing; Paragraph writing; Common written forms in business writing: Importance, features, format and uses.	8 Hours		
	Total	28 Hours		

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, McGraw-Hill Education, 2017. T2. T. Balasubramaniam, *English Phonetics for Indian Students*, 3rd Edition, Trinity Press, 2017.
- T3. M. Raman and S. Sharma, Technical Communication: Principles & Practice, 2nd Edition, Oxford University Press, 2011.
- T4. D. K. Das, A. Kumari, and K. K. Padhi, Anthology of Modern English Prose, 1st Edition, Laxmi Publications, 2011.

Reference Books:

- R1. S. Kumar and P. Lata, *Communication Skills*, Oxford University Press, 2011.
- R2. K. R. Lakshminarayanan and T. Murugavel, Communication Skills for Engineers, Scitech Publications, 2009.

- R3. J. Seeley, *The Oxford Guide to Effective Writing and Speaking*, 3rd Edition, Oxford University Press, 2013.
- R4. B. K. Das, K. Samantray, R. Nayak, S. Pani, and S. Mohanty, *An Introduction to Professional English and Soft Skills*, Cambridge University Press, 2009.
- R5. S. Samantray, Business Communication and Communicative English, S. Chand & Co, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/109/106/109106094/: By Prof. A. Iqbal, IIT Madras
- 2. https://nptel.ac.in/courses/109/104/109104031/: By Dr. T. Ravichandran, IIT Kanpur
- 3. https://www.coursera.org/specializations/business-english
- 4. https://ocw.mit.edu/courses/comparative-media-studies-writing/21w-732-5-introduction-to-technical-communication-explorations-in-scientific-and-technical-writing-fall-2006/download-course-materials/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the elements of and technical communication and possible barriers to it.
CO2	Explain the basic aspects of English pronunciation and speak using a neutral accent.
CO3	Enhance their reading skills and be able to critically analyse texts of various kinds.
CO4	Effectively use the channels of business communication and hierarchies to communicate in a business set-up.
CO5	Compose basic business correspondences effectively.

Program Outcomes Relevant to the Course:

PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								1	1	2	2	3	1	3	1
CO2									1	1	1	3	1	2	1
CO3								1	1	1	2	3	1	3	1
CO4									3	2	3	3		3	1
CO5								3		3		3		3	2

Type	Code	Engineering Chemistry Lab	L-T-P	Credits	Marks
BS	BTBS-P-BS-003	Engineering Chemistry Lab	0-0-2	1	100

Objectives	Objectives of the subject is to educate the students with modern instrumental techniques & role of chemical analysis in various fields of engineering and science to examine and understand the effect of chemicals, compositions, impurities etc., on the properties of materials & the detrimental effects of polluting materials, and other unwanted impurities.
Pre-Requisites	Student should have the knowledge of balancing equations, principle of titrations, titrant, titrand, preparation of standard solutions, concentration of a solution, indicators used in a titration, principle of reduction-oxidation reactions, handling of instruments like pH meter & accurate measurement of sample by using electronic balance.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

	Detailed Syllabus
Experiment-#	Assignment/Experiment
	At least 10 Experiments
1	Determination of Total hardness of water sample by EDTA method.
2	Determination of alkalinity of water.
3	Determination of available chlorine of bleaching powder/residual chlorine in tap water.
4	Determination of dissolved oxygen in supplied water.
5	Determination of saponification value of oil.
6	Determination of Acid value of oil.
7	Determination of Flash-point/fire point of a lubricant by Pensky-Martein's apparatus.
8	Determination of kinematic viscosity and Viscosity Index of a lubricant by Redwood viscometer.
9	Determination of concentration of a colour substance by Spectrophotometer.
10	Green synthesis of noble metal/oxide based nanoparticles.
11	Estimation of calcium in limestone powder.
12	Determination of chloride content of water.
13	Determination of the partition coefficient of a substance between two immiscible liquids.
14	Adsorption of acetic acid by charcoal.
15	Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin solutions and/or coagulation of the white part of egg.

Cont'd...

Experiment-# Assignment/Experiment	
16 Proximate analysis of coal sample.	
17 Determination of iodine value of oil/fat.	

Text Books:

- T1. Jain & Jain, *Engineering Chemistry*, 16th Edition, Dhanpat Rai Publishing Company, 2015. T2. S. S. Dara, *Engineering Chemistry*, 12th Edition, S. Chand Publisher, 2014.

Reference Books:

- R1. S. Chawla, *Essentials of Experimental Engineering Chemistry*, Dhanpat Rai & Co.
- R2. S. K. Bhasin and S. Rani, Laboratory Manual on Engineering Chemistry, 3rd Edition, Dhanpat Rai & Co, 2012.

Online Resources:

- 1. https://www.metrohm.com/en/industries/petro-lubricants/: Lubricant analysis according to international standards
- 2. http://www.eco-web.com/edi/01759.html: Efficient Wastewater Treatment: The field for analytical and monitoring

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyse various water quality parameters such as alkalinity, hardness, dissolved oxygen & chloride content before it is put into use in various general, research, or industrial purposes.
CO2	Test the quality of an oil/fat by measuring its iodine or acid value by means of amount of unsaturation for various industrial use.
CO3	Verify quality of a lubricant by means of its viscocity or flash point which gives their nature & flammability for various industrial applications.
CO4	Analyse various fractions present in coal by proximate analysis for better use of carbon based compounds in industrial applications.
CO5	Study the importance of green synthesis by way of synthesising metal/ metal oxide based nano-particles for various material applications.

Program Outcomes Relevant to the Course:

- 8	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Cont'd...

PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		1	2		1		2	1			1	1	2
CO2	2	2		1	2		2		2	2			1	2	1
CO3	3	2		1	2		1		2	2			1	1	2
CO4	3	3		1	1		2		2	2			1	2	2
CO5	3	2		1	1		1		1	1			1	1	2

Type	Code	Engineering Physics Lab	L-T-P	Credits	Marks
BS	BTBS-P-BS-007	Lingineering 1 mysics Lab	0-0-2	1	100

Objectives	The objective of this course is to develop the basic practical skill to design and measure different parameters of a physical quantity with proper error analysis which can help them in different field of engineering sciences. This practical knowledge will be useful for the engineering students to understand the basic operating principle of instruments. The knowledge obtained can also be used to prepare various models and projects.
Pre-Requisites	Adequate practical knowledge in Higher Secondary Physics including measuring instruments like screw gauge, slide caliper, spherometer etc. Knowledge of error analysis, graphical analysis etc. is also required.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Determination of bandgap of semiconductor.
2	Determination of rigidity modulus by static method.
3	Determination of surface tension by capillary rise method.
4	Determination of acceleration due to gravity by bar / Kater's pendulum.
5	Determination of Plank's constant, verification of inverse square law by photocell.
6	Determination of wavelength of light by Newton's ring apparatus.
7	Determination of grating element of a diffraction grating.
8	Plotting of characteristic curve of a PN junction diode.
9	Plotting of characteristic curves of BJT.
10	Verification of laws of vibration of stretched string using sonometer.
11	Determination of wavelength of laser source by diffraction grating method.
12	Study of Hall effect.
13	Study of RC circuit.
14	Determination of Young's modulus by bending of beams.
15	Michelson Interferometer.
16	Determine of reduction factor of the given tangent galvanometer and horizontal component of Earth's magnetic field using tangent galvanometer.

Text Books:

- T1. C. L. Arora, *B.Sc. Practical Physics*, 20th Edition, S.Chand & Co.Ltd, 2009. T2. S. Srivastava, *Practical Physics*, 3rd Edition, New Age International, 2017.

Reference Books:

- R1. H. Singh, B.Sc. Practical Physics, S. Chand & Co.Ltd, 2002.
- R2. B.Mallick, S. Panigrahi, *Engineering Practical Physics*, Cengage Learning, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/122103010/
- 2. https://www.practicalphysics.org/
- 3. http://www.bsauniv.ac.in/: Search for PHYSICS-LAB-MANUAL2017-(new-regulation).pdf
- 4. https://arxiv.org/ftp/arxiv/papers/1510/1510.00032.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the wave aspect of light like interference and diffraction by conducting Newton's rings and Fraunhofer diffraction experiment.
CO2	Investigate some properties of matter like surface tension of water (capillary rise method) and coefficient of elasticity of steel, copper.
CO3	Verify and analyze the IV characteristics of junction diode and BJT, charging and discharging of capacitor in RC circuit.
CO4	Study and apply Hall effect to calculate the Hall coefficient, carrier concentrations; measure band gap of semiconductor and dielectric constant of dielectric material.
CO5	Understand and verify laws of transverse vibrations in a stretched string using sonometer.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		2								1	2	1	1
CO2	2	2		1	1							1	1		
CO3	2	1		2									3	1	1
CO4	2	2		3	1								2	1	1
CO5	3	1		1								1	1		

Type	Code	Manufacturing Practices	L-T-P	Credits	Marks
ES	BTBS-P-ES-009	Wandiacturing Fractices	0-0-2	1	100

Objectives	The objective of this practical course is to provide the basic concepts about tools used in manufacturing practices. Detailed concepts are proposed in all the major trades of engineering interest.
Pre-Requisites	None
Teaching Scheme	Regular manufacturing jobs using tools under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

—					
Experiment-#	Assignment/Experiment				
1	Introduction & familiarity with tools: measuring, marking, holding, and cutting tools, Fitting (limit, fit, tolerance), Fastening (different types of screws, rivets, nuts & bolts).				
2	Welding: Arc welding & Gas welding - theory & setup, Machining: Study of different parts & function of Lathe, Milling & Shaping.				
3	To make a hexagonal bolt & nut with facing, step turning, internal & external threading & grooving (V-groove, rectangular groove on a square block) using Lathe, milling & shaping machine.				
4	To make a flange coupling using Gas welding, arc welding & fitting.				
5	To make heat-sink by using a metal plate (sheet metal work).				
6	Introduction to electrical tools and safety measures. Demonstrate the precautionary steps adopted in case of electrical shocks.				
7	Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB with ratings.				
8	To design and develop a simple winding for inductorand 230/12V transformers used in electronics circuits.				
9	 Introduction to house wiring: Wiring of simple circuit for controlling light/fan point. Wiring of Two-way switches. Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter. 				
10	Familiarization of PCB assembling tools [such as Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screwdrivers, Tweezers, Crimping tool, Microsoldering station, Hot air soldering and de-soldering station etc.] and testing tools [such as Multimeter, DSO, clamp meter, function generator etc.]				
11	Familiarization of EDA tools (such as Eagle or XCircuit) with general purpose components for designing a Printed Circuit Board (PCB) and fabrication of a single sided PCB for a simple circuit with manual etching (Ferric chloride solution).				
12	Testing of a sample PCB (Types: Single sided, Double sided) for selected applications with general purpose instruments.				

Text Books:

- T1. S. K. H. Choudhury, *Elements of Workshop Technology, Vol-1 and Vol-2*, Media Promotors & Publishers, 2008.
- T2. B. H. Deshmukh, *Electrical Materials and Wiring Practices*, Nirali Prakashan, 2018.
- T3. R. S. Khandpur, *Printed Circuit Boards: Design, Fabrication, Assembly and Testing*, 1st Edition, McGraw Hill,2006.

Reference Books:

- R1. S. Monk, *Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards*, Mc Graw-Hills, 1st edition,2014.
- R2. H. Joshi, Residential, Commercial and Industrial Electrical Systems: Protection, Testing and Commissioning, Vol-3, McGraw-Hill Education, 2008.
- R3. J. Varterisian, *Fabricating Printed Circuit Boards*, 1st Edition, Newnes, 2002.

Online Resources:

- 1. http://www.technicaltrainingsolutions.co.uk/courses/bench-fitting-course.html
- 2. http://nptel.ac.in/courses/112101005/14: (Sheet Metal Forming Processes)
- 3. http://nptel.ac.in/downloads/112105127: (Machining Processes)
- 4. http://nptel.ac.in/courses/112107144/27: (Welding Processes)
- 5. https://bharatskills.gov.in/pdf/E_Books/Electrcian_SEM1_TP.pdf
- 6. https://bharatskills.gov.in/pdf/E_Books/Electrician_SEM2_TP.pdf
- 7. https://bharatskills.gov.in/Home/StudyMaterial?var=WSdYV6aWadK8jUuNKxoBWg==
- 8. https://onlinecourses.swayam2.ac.in/nou20_cs08/preview
- 9. https://www.lanl.gov/safety/electrical/docs/arc_flash_safety.pdf
- 10. https://www.ee.iitb.ac.in/~pcpandey/courses/ee616/pcblayout_c_aug07.pdf
- 11. https://nptel.ac.in/courses/108/108/108108157/
- 12. https://nptel.ac.in/courses/122/106/122106025/
- 13. https://nptel.ac.in/courses/108/101/108101091/

Course Outcomes: *At the end of this course, the students will be able to:*

	·
CO1	Brief idea about the workshop, different tools and their operation, limits, fits, tolerance while assembling different parts of a flange coupling by using fitting shop.
CO2	Design and fabricate the components of a flange coupling by using machine tools and welding operation.
CO3	Identify different safety equipment and apply those in various electrical systems.
CO4	Plan and Design wiring configuration of residential and office and calculate the energy consumption for various loads.
CO5	Familiarity with PCB designing and fabrication methodology for different applications.
CO6	Analysis and application of specific PCB using modern instruments.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Cont'd...

PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	DO1	DOO	DOA	DO4	DOF	DO(DO7	DOO	DOO	DO10	DO11	DO10	DCO1	DCOO	DCO2
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	POII	PO12	PSOI	PSO2	PSO3
CO1	2		1	1		2			3		3	2		1	1
CO2	2	1	2	1		2			3		3	2		1	1
CO3	2	1	2	1	2	1		1	1	1	1	1		1	1
CO4	2	3	3	1	1	1		1	2	2	2	1		1	1
CO5	3	3	3	1	2	1			3	1	2	2		1	1
CO6	3	3	1	1	2	1			2	1	1	2		1	1

Type	Code	Engineering Graphics	L-T-P	Credits	Marks
ES	BTBS-P-ES-004	Engineering Grapines	0-0-2	1	100

Objectives	The objective of this laboratory course is to learn engineering drawing standards, conventions & practices, develop drawing skills in 2D & 3D, and use computer-aided drawing software to create meaningful engineering drawings.
Pre-Requisites	Basic understanding of 2D and 3D geometry is required.
Teaching Scheme	Regular laboratory classes using drawing tools under supervision of the teacher. Demonstration will be given for each drawing assignment using both conventional and CAD software tools as per requirement.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
Ехреппиент-	
1	Principles of Engineering Graphics and their significance (lettering & scale) and usage
	of Drawing instruments.
2	Orthographic projections, Principles of orthographic projections, Projections of points
	and lines.
3	Projections of different planes.
4	Projection of solids, 3D to 2D views, Machine component diagrams, Sectional views
4	of simple and compound solid models.
-	Principles of Isometric projection, Isometric Scale & Views, Isometric views of planes
5	and solids.
6	Development of surface and intersection of surfaces.
7	Engineering curves and conics.
0	Introduction to AutoCAD, GUI of AutoCAD, Tool bars and commands, use of mouse
8	and short cut keys.
9	2D AutoCAD drawing using basic tools, Draw & Modify menu commands.
10	Orthographic projection drawings of various models using AutoCAD.
11	Isometric drawing & 3D modeling in AutoCAD, different solid editing options.
10	3D modeling of simple & compound models, and machine components using
12	AutoCAD.

Text Books:

- T1. N. D. Bhat, M. Panchal, *Engineering Drawing*, Charotar Publishing House, 2008.
- T2. M. B. Shah, B. C. Rana, Engineering Drawing and Computer Graphics, Pearson Education, 2008.
- T3. S. Tickoo, AutoCAD 2020 Work Book, BPB Publications, 2020.

Reference Books:

- R1. R. K. Dhawan, A Text Book of Engineering Drawing, S. Chand Publications, 2007.
- R2. K. Venugopal, *Engineering Drawing and Graphics*, 3rd Edition, New Age International, 1998.

Online Resources:

- 1. http://nptel.ac.in/courses/112103019
- 2. https://nptel.ac.in/courses/112/102/112102101/
- 3. https://freevideolectures.com/course/3420/engineering-drawing
- 4. https://www.autodesk.in/campaigns/autocad-tutorials
- 5. https://help.autodesk.com/view/ACD/2020/ENU/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and apply the concepts of lettering and dimensioning for drafting of machine drawings and building drawings and different conics and curves.
CO2	Recognize and be familiar with the orthographic projections of points, lines, planes and solids.
CO3	Visualize the real product from isometric projections, solid and sectional views.
CO4	Become familiar with AutoCAD, its different tools and commands.
CO5	Draw various 2D drawings using draw and modify tools of AutoCAD.
CO6	Design various machine components and building structure by using AutoCAD.

Program Outcomes Relevant to the Course:

	outcomes relevant to the course.
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1					2	1	1			1
CO2	3	2	1	1	1					2	1	1			1
CO3	3	2	1	1	1					2	1	1			1
CO4	3	1	1	1	1					2	1	1			1
CO5	3	2	2	2	3					2	2	1			1
CO6	3	2	1	1	2					2	2	1	2		2

Type	Code	Basic Electronics Engineering Lab	L-T-P	Credits	Marks
ES	BTEC-P-ES-002	Dasic Electionics Engineering Lab	0-0-2	1	100

Objectives	Know broadly the concepts and functionalities of the electronic devices, tools and instruments. Understand general specifications and deployability of the electronic devices, and assemblies. Develop confidence in handling and usage of electronic devices, tools and instruments in engineering applications.
Pre-Requisites	Knowledge on intrinsic and extrinsic Semiconductors, Physics and Chemistry of Higher Secondary Science level.
Teaching Scheme	Regular laboratory experiments to be conducted under the supervision of teachers and demonstrators with the help of ICT, as and when required along with pre-lab session and demonstration for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Familiarization of electronic components and devices (Testing of semiconductor diodes and transistors using digital multi-meter).
2	Study and use of Oscilloscope, signal generator to view waveforms and measure amplitude and frequency of a given waveform.
3	V-I characteristics of semiconductor diode and determining its DC and AC resistances.
4	Implementation of clipper circuits, both positive clipper and negative clipper. Observe its output waveforms and compare them with theoretical analyzed results.
5	Study of half-wave and full-wave rectifier circuits without and with capacitor filter; recording of the waveforms and measurement of average and rms values of the rectified output.
6	Study of static characteristics of BJT in CE configuration.
7	DC biasing (Fixed bias) of the transistor in CE configuration and determination of its operating point.
8	Studies on Op-Amp applications (Inverting, non-inverting, integrating differentiating configurations) recording of the input-output waveforms.
9	Studies on logic gates (truth table verification of various gates, implementation of EXNOR and Half Adder using basic gates).
10	Design of 2:1 MUX and simple SR Latch.

Text Books:

- T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Edition, Pearson Education.
- T2. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th Edition, Oxford University Press.

Reference Books:

R1. V. K. Mehta and R. Mehta, *Principles of Electronics*, 3rd Edition, S. Chand Publishing, 1980.

Online Resources:

- $1. \ http://vlab.co.in/ba_labs_all.php?id=1$
- 2. http://iitg.vlab.co.in/?sub=59&brch=165

Course Outcomes: At the end of this course, the students will be able to:

CO1	Familiarize with various electronic components, measuring instruments, semiconductor diodes and their applications.
CO2	Acquire knowledge of characteristics of transistors and design, testing & implementation of transistors in various applications
CO3	Gain understanding of operational amplifiers (Op-Amp) and design & testing of electronic circuits for various applications using Op-Amp.
CO4	Develop understanding of digital logic gates and design & test digital circuits for various applications using logic gates.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1										1	1	1
CO2	3	3	2	1									2	2	2
CO3	2	2	2	1									2	2	2
CO4	2	2	3										2	2	1

Type	Code	Basic Electrical Engineering Lab	L-T-P	Credits	Marks
ES	BTEE-P-ES-002	Dasic Electrical Engineering Lab	0-0-2	1	100

Objectives	Introduce the students to different electrical components and basic safety rules and regulations, give hands on practice about different measuring and protection equipment and their operations to understand and verify the basic concept of electrical & magnetic circuits and electric machines. The laboratory experiments shall go hand-in-hand with the topics taught in the theory class.				
Pre-Requisites	Basic knowledge of different electrical components and different analysis techniques of electrical and magnetic circuits. Topics taught in Basic Electrical Engineering theory class are essential to conduct the experiments.				
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.				

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Connection and measurement of power consumption of a fluorescent lamp.
2	Identification of different terminals of a DC compound machine.
3	Power and power factor measurement of 3-phase load by two wattmeter method.
4	Connection and testing of a single-phase energy meter.
5	Determination of open circuit characteristics (OCC) of DC shunt generator.
6	Calculation of power and power factor in series R-L-C circuit by AVW method.
7	Polarity test of a single-phase transformer.
8	Study of single-phase induction motors / fan motor.
9	Verify Thevenin's Theorem and Superposition Theorem.
10	Draw the B-H curve of a magnetic Specimen.
11	Starting of three-phase induction motor.
12	Regulation and efficiency of single phase transformer by direct loading.

Text Books:

- T1. A. Husain, *Fundamentals of Electrical Engineering*, 4th Edition, Dhanpat Rai & Co., 2016. T2. B. L. Thereja & A. K. Thereja, *A Textbook of Electrical Technology*, 23rd Edition, S. Chand & Co.

Reference Books:

- R1. J. B. Gupta, A Textbook of Electrical Science, S. K. Kataria & Sons, 2013.
- R2. B. R. Gupta and V. Singhal, *Electrical Science*, S. Chand & Co, 2005.

Online Resources:

- 1. www.nptel.iitm.ac.in/electricalengineering
- 2. www.electronics-tutorials.ws/dc-circuits

Course Outcomes: At the end of this course, the students will be able to:

CO1	Get an exposure to common electrical components and their ratings.
CO2	Develop electrical circuits using wires, measuring instruments, and protective devices of appropriate ratings.
CO3	Understand the usage of common electrical measuring instruments.
CO4	Understand the basic characteristics of transformers and electrical machines.
CO5	Verify different network theorems and magnetic properties.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			2		1		1	1	1	1	1	1	1	1
CO2	2			2		1		2	1	1	2	1	1	1	1
CO3	1			3		2		2	1	1	1	1	1	1	2
CO4	1			2		2		1	1	2	2	1		1	1
CO5	1			1		1	·	1	1	1	1	1	1	1	1

Type	Code	Computer Programming Lab	L-T-P	Credits	Marks
ES	BTCS-P-ES-002	Computer Frogramming Lab	0-0-4	2	100

Objectives	To enable the students to analyse problems, formulate and implement solutions using the C programming language. The students will develop logical understanding for converting solutions of problems into C programs to be executed on a computer.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Attendance	Attendance Daily Performance		Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to computers and Linux operating system.
2, 3	Get acquainted with the programming environment - Linux commands and VI-editor.
4	Editing, compiling, executing, and debugging of simple C programs.
5	Programs using operators and formatted input/output statements.
6	Decision making using if, if-else, else-if ladder, nested if.
7	Decision making using switch-case construct.
8, 9	Loop control structure (while, do-while, for) with jump statements.
10	Nested loops (printing various formats)
11, 12	1-D arrays including operation like searching, sorting, merging etc.
13	Handling 2-D arrays such as matrix operations.
14, 15	Programs on strings using various string handling functions (library functions)
16, 17	Designing user-defined functions.
18, 19	Programs on recursion.
20	Designing user defined functions for string manipulation.
21	Passing arrays (both 1D and 2D) to functions.
22, 23	Structure, array of structure, nested structure.
24	Dynamic memory management.
25	Self-referential structure (create and display operation of single linked list)
26, 27	File handling - reading from and writing to files.
28	Command-line argument, pre-processor directives.

Text Books:

- T1. E. Balagurusamy, *Programming in ANSI C*, 7th Edition, McGraw-Hill Education, 2017. T2. Y. Kanetker, *Let Us C*, 16th Edition, BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Edition, Pearson Education, 2015
- R2. H. Schildt, *C: The Complete Reference*, 4th Edition, McGraw-Hill, 2017.
- R3. A. Kelley and I. Pohl, A Book on C, 4th Edition, Pearson Education, 2008.
- R4. B. Gottfried, Schaum's Outline of Programming with C, 3rd Edition, McGraw-Hill, 2017.

Online Resources:

- 1. https://www.w3resource.com/c-programming-exercises/
- 2. https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx
- 3. https://www.onlinegdb.com/online_c_compiler
- 4. https://www.tutorialspoint.com/compile_c_online.php

Course Outcomes: At the end of this course, the students will be able to:

CO1	Construct C programs for mathematical operations using control statements.
CO2	Develop C programs for Array and String manipulation.
CO3	Construct modular programs for better maintenance and reusability.
CO4	Manipulate heterogeneous data using structure and union.
CO5	Create and manipulate files using C programs.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1								1	3	2	3
CO2	3	3	3	2								1	3	2	3
CO3	3	3	3	2								1	3	2	3
CO4	3	2	2	2								1	3	2	3
CO5	3	3	2	3								1	3	2	2

Type	Code	Data Structures & Algorithms Lab	L-T-P	Credits	Marks
ES	BTCS-P-ES-004	Data Structures & Algorithms Lab	0-0-4	2	100

Objectives	Develop skills to design and analyze simple linear and non linear data structures, strengthening the ability of students to identify and apply the suitable data structure for the given real world problem.
Pre-Requisites	Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Operations on arrays – insert, delete, merge.
2	Selection Sort, Bubble sort.
3	Linear Search and Binary search.
4	Representation of sparse matrix.
5, 6	Addition and transpose of sparse matrix.
7	Implementation of stack using array.
8	Conversion of infix to postfix expression.
9	Evaluation of postfix expression.
10	Operations of queue using array.
11	Operations of circular queue.
12, 13	Single linked list operations.
14, 15	Double linked list operations.
16	Circular linked list operations.
17	Stack using linked list.
18	Queue using linked list.
19	Polynomial addition using linked-list.
20, 21	Binary Search Tree operations.
22, 23	Graph traversal (BFS, DFS).
24	Warshall's shortest path algorithm.
25, 26	Implementation Insertion Sort and Quick Sort.
27, 28	Implementation of Merge Sort and Heap Sort.

Text Books:

- T1. E. Horowitz, S. Sahni, S. Anderson-Freed, *Fundamentals of Data Structures in C*, 2^{nd} Edition, Universities Press, 2008.
- T2. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Edition, Pearson Education, 2002.

Reference Books:

- R1. A. K. Rath and A. K. Jagadev, *Data Structures Using C*, 2nd Edition, Scitech Publication, 2011. R2. Y. Kanetkar, *Data Structures Through C*, 2nd Edition, BPB Publication, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106127/: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
- 2. https://nptel.ac.in/courses/106/102/106102064/: By Prof. N. Garg, IIT Delhi
- 3. https://nptel.ac.in/courses/106/106/106106130/: By Dr. N. S. Narayanaswamy, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Implement various operations on array and sparse matrix.
CO2	Design functions to implement basic operations on stack & queue and apply them to solve real world problems.
CO3	Implement single, double & circular linked list and apply them in various real life applications.
CO4	Construct binary search tree and perform traversal, insertion, deletion, and search operations on it.
CO5	Perform BFS and DFS traversal operations in a graph and implement various sorting and searching algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2								1	3	2	3
CO2	3	3	3	2								1	3	2	3
CO3	3	3	3	2								1	3	2	3
CO4	3	3	2	3								1	3	2	3
CO5	3	3	3	3								1	3	2	3

Type	Code	Communicative & Technical English Lab	L-T-P	Credits	Marks
HS	BTBS-P-HS-011	Communicative & Technical English Lab	0-0-2	1	100

Objectives	This laboratory course is designed to make students effective communicators and addressing issues like speaking inhibitions, accomplished by individual and team activities based on the four skills of language (LSRW).						
Pre-Requisites	Basic knowledge of English grammar and the ability to speak, read and write using the English language.						
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair work, group/team work, individual and group presentations, discussions, role plays, listening to audios, watching videos, business writing and vocabulary enhancement.						

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Module 1: Analyzing communication situations through role-plays.
2	Module 1: Barriers in communication: video analysis
3	Module 2: Developing pronunciation skills – speech sounds and stress
4	Module 2: Developing pronunciation skills: listening to native English speech
5	Module 3: Reading comprehension – extensive: short story
6	Module 3: Reading comprehension – intensive: editorial
7	Module 4: Models of oral business communication: role-plays
8	Module 4: Oral presentations
9	Module 4: Oral presentations
10	Module 4: Oral presentations
11	Module 5: Written Communication – paragraph development
12	Module 5: Business Writing – email
13	Module 5: Business Writing – letter

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, Tata McGraw Hill, 2017.
- T2. T. Balasubramaniam, English Phonetics for Indian Students, Trinity Press.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practices*, Oxford University Press.

Reference Books:

- R1. S. Samantray, Business Communication and Communicative English, S. Chand & Co.
- R2. J. Seeley, *The Oxford Guide to Writing and Speaking*, Oxford University Press.
- R3. B. K. Mitra, *Communication Skills for Engineers*, Oxford University Press, 2011.
- R4. B. K. Das, An Introduction to Professional English & Soft Skills, Cambridge Univ. Press, 2009.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Speak in public and overcome their inhibitions to speak.
CO2	Develop English pronunciation skills through practice.
CO3	Comprehend and critically appreciate technical texts.
CO4	Work effectively as a member of a team or as a leader through group presentation assignments.
CO5	Critically analyse texts of various kinds and compose effective business messages.

Program Outcomes Relevant to the Course:

PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								2	3	3	3	3	1	3	1
CO2									1	3	1	3		2	1
CO3									1	3	2	3	1	3	1
CO4								2	3	3	3	3	1	3	1
CO5								1	1			3	1	3	1

Part II 2nd Year B. Tech. (CST)

Curriculum Structure

	Semester III											
Type	Code	Course Title	WCH L-T-P				Credits L-T-P					
THEORY												
BS	BTBS-T-BS-017	Mathematics-III for Computer Sciences	3	1	0	3	1	0				
BS	BTBS-T-BS-014	Biology for Engineers	3	0	0	3	0	0				
ES	BTCS-T-ES-005	OOP Using Java	3	0	0	3	0	0				
ES	BTEC-T-ES-003	Digital Electronics	Digital Electronics 3 0 0									
ES	BTBS-T-ES-013	Basics of Mechanical Engineering	3	1	0							
PC	BTCS-T-PC-007	Computer Organization & Architecture	3	0	0							
		PRACTICAL										
ES	BTCS-P-ES-006	OOP Using Java Lab	0	0	2	0	0	1				
ES	BTEC-P-ES-004	Digital Electronics Lab	0	0	2	0	0	1				
PC	BTCS-P-PC-008	Computer Organization & Architecture Lab	0	0	2	0	0	1				
HS	BTBS-P-HS-012	Corporate Communication Lab	Corporate Communication Lab 0 0 2									
PJ	BTII-P-PJ-001	Summer Internship - I	0	0	0	0	0	1				
		18	2	8	18	2	5					
		TOTAL	28				25					

	Semester IV											
Type	Code	Code Course Title										
THEORY												
BS	BTBS-T-BS-018	Mathematics-IV for Computer Sciences	3	1	0	3	1	0				
HS	BTBS-T-HS-018	Engineering Economics	3	0	0	3	0	0				
PC	BTCS-T-PC-011	Design & Analysis of Algorithms	3	1	0	3	1	0				
PC	BTCS-T-PC-009	Database Management Systems	3	1	0	3	1	0				
PC	BTCS-T-PC-016	Operating Systems	3	0	0	3	0	0				
PE		Professional Elective - I	3	0	0	3	0	0				
		PRACTICAL										
PC	BTCS-P-PC-013	Design & Analysis of Algorithms Lab	0	0	2	0	0	1				
PC	BTCS-P-PC-010	Database Management Systems Lab	0	0	4	0	0	2				
PC	BTCS-P-PC-017	Operating Systems Lab	0	0	2	0	0	1				
		SUB-TOTAL	18	3	8	18	3	4				
		TOTAL	29				25					

Note: Courses offered under each elective are given in "List of Electives" on Page 54.

List of Electives

Code	Elective # and Subjects
Profe	essional Elective - I
BTCS-T-PE-999	Artificial Intelligence
BTCS-T-PE-018	Advanced Java Programming
BTCS-T-PE-046	System Programming

Type	Code	Mathematics-III for Computer Sciences	L-T-P	Credits	Marks
BS	BTBS-T-BS-017	Wathematics-111 for Computer Sciences	3-1-0	4	100

Objectives	The objectives of this course is to gain mathematical maturity to handle logical & abstract processes, discrete structures, graph theory, important counting techniques, and discrete Fourier transform which are essential for solving various problems in computer science.
Pre-Requisites	Knowledge of Sets, basics of number systems, and matrix algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Propositional Logic, Propositional Equivalences, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference, Proof Strategies.	10 Hours
Module-2	Mathematical induction, Basics of counting, Pigeonhole principle, Permutations & Combinations, Binomial coefficients, Generalized permutation & combinations; Recurrence relations, Linear recurrence relations, Generating functions, Inclusion & Exclusion with applications.	10 Hours
Module-3	Relations and their properties, N-ary Relations & their applications, Representing relations, Closure of relations, Equivalence relations, Partial ordering and Lattice.	8 Hours
Module-4	Introduction to Graphs, Graph terminology, Representation of graphs & graph isomorphism, Connectivity, Euler & Hamilton graphs, Planar graph & Graph coloring; Trees, Spanning trees and Cut-sets.	10 Hours
Module-5	Algebraic structure, Semigroup, Monoid, Groups, Subgroups, Cosets and Lagrange's theorem, Codes and group codes, Isomorphism & Automorphism, Homomorphism & Normal subgroups, Rings, Integral Domains & Fields.	10 Hours
Module-6	Sampling and sampling theorem for signals, Discrete Time Signals, Discrete Fourier Transform, Properties of DFT, Fast Fourier Transform (FFT).	8 Hours
	Total	56 Hours

Text Books:

- T1. K. H. Rosen, *Discrete Mathematics and Its Applications*, 6th Edition, Tata McGraw-Hill, 2008.
- T2. C. L. Liu, *Elements of Discrete Mathematics*, 2nd Edition, Tata McGraw-Hill, 2008.
- T3. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing*, 4th Edition, Pearson Education, 2007.

Reference Books:

- R1. J. P. Tremblay and R. Manohar, *Discrete Mathematical Structures with Applications to Computer Science*, 1st Edition, McGraw-Hill Education, 2017.
- R2. J. R. Mott, A. Kandel, and T. P. Baker, *Discrete Mathematics for Computer Scientists and Mathematicians*, 2nd Edition, Pearson Education, 2015.

Online Resources:

- 1. http://www.nptel.ac.in/courses/111105035
- 2. http://www.nptel.ac.in/courses/122104017
- 3. http://nptel.ac.in/courses/122102009
- 4. http://nptel.ac.in/courses/111107063
- 5. https://swayam.gov.in/course/1396-discrete-mathematics
- 6. https://www.coursera.org/learn/linearalgebra2
- 7. https://www.coursera.org/learn/differentiation-calculus
- 8. https://www.coursera.org/learn/single-variable-calculus
- 9. https://alison.com/courses/Algebra-Functions-Expressions-and-Equations

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply logic for logical inferences.
CO2	Apply principle of inclusion & exclusion, generating function and recurrence relations to solve counting problems.
CO3	Understand and apply the concepts of relation and lattice.
CO4	Apply graph theory to real-life problems of computer science & engineering.
CO5	Differentiate the discrete algebraic structures and apply them to study group codes.
CO6	Apply discrete Fourier Transform and FFT to process digital signals.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

F F	7. 20 11 20 11 11 11 11 11 11 11 11 11 11 11 11 11														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								2	1	1
CO2	3	3	2	1	2								2	1	1
CO3	3	3	3	3	1								2	1	1
CO4	3	3	3	2	3								2	1	1
CO5	3	3	2	2	2				·		·		2	1	1
CO6	3	3	2	2	2								2	1	1

Type	Code	Biology for Engineers	L-T-P	Credits	Marks
BS	BTBS-T-BS-014	biology for Engineers	3-0-0	3	100

Objectives	The objective of this course is to integrate the knowledge of traditional engineering and modern biology to solve problems encountered in living systems, allow engineers to analyze a problem from both an engineering and biological perspective, anticipate specific issues in working with living systems, and evaluate possible solutions.
Pre-Requisites	Basic knowledge of biology, chemistry, and physics is adequate.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Importance of Biology for Engineers, Chemical foundations and basic chemistry of cell – Carbon compounds and cell as a unit of life; Physical and chemical principles involved in maintenance of life processes; Cell Structure & Functions (Prokaryotic and Eukaryotic cells), structure and functions of cellular components cell wall, plasma membrane, endoplasmic reticulum. Transport across the cell membrane, Cell signaling, nerve impulse conduction.	8 Hours
Module-2	Metabolisms & Cell Division: Exothermic and endothermic versus endergonic and exergoinc reactions; Concept of Keq and its relation to standard free energy, Spontaneity, ATP as an energy currency, break down of glucose (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis), Energy yielding and energy consuming reactions, Concept of Energy charge. Morphology of Chromosome, Cell theory, Cell cycle and phases; Mitosis and meiosis.	8 Hours
Module-3	Genetics: Laws of heredity (Mendelian and Non-Mendelian), Molecular Genetics: Structures of DNA and RNA, Mutations – Cause, types and effects on species, Bioinformatics - brief idea. Origin of Life: Haldane and Oparins concepts; Evolution: Modern concept of natural selection and speciation – Lamarkism, Darwinism/Neo-Darwinism.	8 Hours
Module-4	Microbiology: Concept of single celled organisms, Ecological aspects of single celled organisms, Concept of species and strains, Identification and classification of microorganisms, Microscopy, Sterilization and media compositions, Growth kinetics. Microbial diseases, epidemiology and public health. Immunology: Human immune mechanism – Types of immunities; Antigen/Antibody reactions – Applications in human health; Immunological disorders: Autoimmune diseases.	9 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Biochemistry : Carbohydrates, Lipids, Nucleic acids, Amino acids & Proteins – Classification based on function and structure; Protein synthesis – Components and regulatory mechanisms; Enzymes – An overview. Biotechnology : Basic concepts on Totipotency and Cell manipulation; Plant & Animal tissue culture – Methods and uses in agriculture, medicine and health. Biological indicators, bio-sensors, bio-chips, nanobiomolecules, biofuel.	9 Hours
	Total	42 Hours

Text Books:

- T1. Wiley Editorial, *Biology for Engineers*, John Wiley & Sons, 2018.
- T2. McGraw-Hill Editorial, *Biology for Engineers*, McGraw-Hill Education, 2013.

Reference Books:

- R1. A. T. Johnson, *Biology for Engineers*, 1st Edition, CRC Press, 2010.
- R2. S. Singh, T. Allen, *Biology for Engineers*, 1st Edition, Vayu Education of India, 2014.
- R3. C. D. Tamparo and M. A. Lewis, *Diseases of the Human Body*, 6th Edition, F. A. Davis Co., 2016.
- R4. N. A. Campbell, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and J. B. Reece, *Biology: A Global Approach*, 10th Edition, Pearson Education, 2014.

Online Resources:

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743984/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239820/
- 2. http://www.euro.who.int/data/assets/pdffile/0013/102316/e79822.pdf
- 3. https://www.tsijournals.com/articles/world-history-of-modern-biotechnology-and-its-applications.html
- 4. https://www.tandfonline.com/doi/full/10.1080/21553769.2016.1162753
- 5. https://www.genome.gov/genetics-glossary/Bioinformatics

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the structure, function & interaction of different types of cells and their components.
CO2	Describe the concepts of metabolism, energy cycle and cell theory.
CO3	Comprehend genetics, origin of life and organic evolution.
CO4	Apply the concepts of microbiology & immunology for diagnosis and treatment of diseases.
CO5	Recognize the biological processes like protein synthesis, action of enzymes and tissue culture.

Program Outcomes Relevant to the Course:

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Cont'd...

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

"Tupp	1114pping 01 000 to 1 00 und 1 000 (1. now, 2. wediting 0. 111gm)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			1			1	1						1		
CO2			1	1		1	1						1		
CO3			1	2	1	2	2		1	1		1	2	1	1
CO4			1	1	1	2	2		1	1		1	2	1	1
CO5			2	2	1	1	2		1	1		1	2	1	1

Туре	Code	OOP Using Java	L-T-P	Credits	Marks
ES	BTCS-T-ES-005	OOI Comg java	3-0-0	3	100

Objectives	The objective of this course is to introduce the key concepts of object-oriented programming (OOP) using Java as the programming language.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with a programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	10141	
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Object oriented concepts: Object oriented systems development life cycle; Java Overview: Java Virtual Machine, Java buzz words, Data types, Operators, Control statements, Class fundamentals, Objects, Methods, Constructors, Overloading, Access modifiers.	8 Hours
Module-2	Inheritance: Basics of Inheritance, using super and final keyword, method overriding, Abstract classes, defining and importing packages, access protection, interfaces;	8 Hours
Module-3	Exception handling: Exception fundamentals, types, understanding different keywords (try, catch, finally, throw, throws), User defined exception handling; Threads: thread model, use of Thread class and Runnable interface, thread synchronization, multithreading, inter thread communication.	9 Hours
Module-4	Input/Output: Files, stream classes, reading console input; String manipulation: Basics of String handling, String class, StringBuilder, StringBuffer, StringTokenizer; Collection overview, Collection interfaces, Collection classes - ArrayList, LinkList, Set, Tree; Accessing a collection using iterator & for-each statement.	8 Hours
Module-5	Introduction to GUI Programming: working with windows, frames, graphics, color, and font. AWT Control fundamentals; Event handling: Delegation event model, event classes, sources, listeners, Adapter class, Swing overview.	9 Hours
	Total	42 Hours

- T1. H. Schildt, *Java: The Complete Reference*, 10th Edition, McGraw-Hill, 2017.
 T2. Y. D. Liang, *Introduction to Java Programming*, 9th Edition, Pearson Education, 2012.

Reference Books:

- R1. B. Bates, K. Sierra, *Head First Java*, 2nd Edition, O'Reilly Media, 2005.
 R2. E. Balaguruswamy, *Programming with Java A Primer*, 4th Edition, McGraw-Hill, 2009.
 R3. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd Edition, Pearson Education, 2009.

R4. I. Horton, *Beginning Java*, 7th Edition, Wrox Publications, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/106105191/
- 2. https://docs.oracle.com/javase/tutorial/
- 3. http://www.javatpoint.com/java-tutorial
- 4. http://www.w3schools.in/java/
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply object oriented principles to develop Java programs for real life applications.			
CO2 Employ inheritance techniques for developing reusable software.				
CO3	Develop robust & concurrent programs using exception handling and multi-threading.			
CO4	Design programs using I/O operations, string classes, and collection framework.			
CO5	Design GUI applications using AWT and Swing.			

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1		1						2	3		3
CO2	3	2	2	1		1						2	3		3
CO3	3	2	2	2		1						2	3		3
CO4	3	2	3	2		1						2	3		3
CO5	3	2	3	1		1						2	3		3

Type	Code	Digital Electronics		Credits	Marks
ES	BTEC-T-ES-003	Digital Licetionics	3-0-0	3	100

Objectives	The objective of this course is to introduce the concepts & techniques associated with digital electronic systems and their design & implementations using VLSI technology.
Pre-Requisites	Knowledge of Basic Electronics and fundamentals of Number Systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Number System and their Conversion, Arithmetic Operation using 1's and 2's compliments, Logic Gates, Universal Logic Gates, Realization using logic gates, Boolean Function Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem.	9 Hours
Module-2	SOP & POS forms, Canonical forms, Karnaugh maps up to 5 variables, Binary codes and Their application, Code Conversion; MSI devices like Half and Full Adders, Subtractors, Comparators, Multiplexers, De-Multiplexors, Encoder, Decoder.	9 Hours
Module-3	Sequential Logic Design: Flip flops - S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Mod-N Counters.	9 Hours
Module-4	Shift registers, Finite state machines, Mealy and Moore models; Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, Fan-in, Fan-out, Tristate TTL, ECL, CMOS families and their interfacing.	8 Hours
Module-5	VLSI Design flow: Design entry - Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Data flow, Behavioral and Structural Modeling, Synthesis and Simulation, VHDL constructs and codes for combinational and sequential circuits.	7 Hours
	Total	42 Hours

Text Books:

- T1. M. M. Mano and M. D. Ciletti, Digital Design: With an Introduction to Verilog HDL, 5th Edition, Pearson Education, 2013.
- T2. L. K. John and C. H. Roth Jr., Digital System Design using VHDL, 2nd Edition, Cengage Learning, 2012.

Reference Books:

- R1. D. V. Hall, Digital Circuits and Systems, International Student Edition, McGraw-Hill Education,
- R2. A. A. Kumar, *Fundamentals of Digital Circuits*, 3rd Edition, PHI Learning, 2014. R3. R. P. Jain, *Modern Digital Electronics*, 4th Edition, McGraw-Hill Education, 2009.

R4. W. H. Gothmann, *Digital Electronics - An Introduction to Theory and Practice*, 2nd Edition, PHI Learning, 1982.

Online Resources:

- 1. https://nptel.ac.in/courses/117106086/
- 2. https://swayam.gov.in/course/1392-digital-circuits-and-systems
- 3. https://nptel.ac.in/courses/117103064/
- 4. https://nptel.ac.in/courses/117105080/3
- 5. http://www.allaboutcircuits.com

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Become familiar with various number systems, codes and Boolean algebra.				
CO2	Design and analyze combinational logic circuits.				
CO3	O3 Design & analyze various sequential logic circuits and be familiar with counter design.				
CO4	Design, analyze and implement memory array and investigate performance of CMOS based logic circuits applicable to modern VLSI technology.				
CO5	Simulate and synthesize various digital circuits using VHDL in industry standard tool such as Xilinx, Mentor Graphics etc.				

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1							2	1	
CO2	2	3	2	3	3	1							3	1	
CO3	2	3	2	3	3	1							3	1	
CO4	2	3	2	3	2	1							2	1	
CO5	2	3	2	3	2	1							2	1	

Ty	pe Code	Basics of Mechanical Engineering	L-T-P	Credits	Marks
E	BTBS-T-ES-013	Dasies of Weethanical Engineering	3-1-0	4	100

Objectives	The objectives of this course is to introduce basics of mechanical engineering, such as, statics, force equilibrium, free body diagrams, analysis of beams and associated stresses, laws of Thermodynamics and their applications in Power Plants and IC engines, and elements of fluid statics, which are essential and useful in every branch of engineering.
Pre-Requisites	Basic analytical and logical skills, a working knowledge of Physics and Mathematics including introductory calculus are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Teacher's Assessment			Written Assessment		Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Engineering Mechanics: Basic concepts, System of Forces, Coplanar Concurrent Forces, Resultant-Moment of Forces and its application; Couples, Moment (about point and about axis), Varignon's theorem, Resultant of concurrent and non-concurrent coplanar forces, Static equilibrium, Free body diagram, Reactions; Friction, Laws of Coulomb friction; Problems involving large and small contact surfaces (Ladder and Wedges); Square threaded screws (self-locking, screw jack); Belt friction; Rolling resistance.	12 Hours
Module-2	Mechanical Properties of Materials: Stress-Strain behaviour, Brittle and Ductile materials, selection of materials, Impact Test; Analysis of Beams: Centre of Gravity and Moment of Inertia of a plane and composite sections; Types of Beams, Loads and Reactions, Shear Forces, Bending Moments; Bending of Beams, Bending Stresses and Shear Stresses in beams, Failure of Beams (in brief).	12 Hours
Module-3	Basics of Thermodynamics: System, Control Volume, Surrounding, Boundaries, Macroscopic and Microscopic approaches, Thermodynamic Equilibrium, State, Property, Process, Point and Path functions, Cycle, Reversibility and Irreversibility; Properties of pure substances and phase change, Property diagrams, Use of Steam Tables; Brief discussion on Zeroth Law, First law and Second Law of Thermodynamics.	12 Hours
Module-4	Applications of Thermodynamics : Brief description and working principles of Air Compressors, Steam Power Plant, Refrigerators and Heat Pump, I.C. Engines (two-stroke and four-stroke, petrol and diesel engines).	10 Hours
Module-5	Fluid Properties and Fluid Statics: Properties of a Fluid; Pascal's Law, Simple and Differential manometers, Hydrostatic forces on submerged surfaces, Buoyancy, Bernoulli's theorem.	10 Hours
	Total	56 Hours

Text Books:

- T1. S. Timoshenko, D. H. Young, S. Pati, and J. V. Rao, *Engineering Mechanics*, 5th Edition, McGraw-Hill, 2013.
- T2. G. H. Ryder, *Strength of Materials*, 3rd Edition, Macmillan Press, 1969.
- T3. R. E. Sonntag, C. Borgnakke, and G. J. Van Wylen, *Fundamentals of Thermodynamics*, 9th Edition. John Wiley & Sons, 2017.
- T4. S. K. Som, G. Biswas, and S. Chakraborty, *An Introduction to Fluid Mechanics and Fluid Machines*, 3rd Edition, McGraw-Hill Education, 2012.

Reference Books:

- R1. P. K. Nag, Engineering Thermodynamics, 4th Edition, McGraw-Hill, 2008.
- R2. R. K. Rajput, *Strength of Materials: Mechanics of Solids*, 7th Edition, S. Chand Publications, 2018.
- R3. R. K. Bansal, *A Textbook of Fluid Mechanics and Hydraulic Machines*, 9th Edition, Laxmi Publications, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/122104015/: Engineering Mechanics by Prof. M. Harbola, IIT Kanpur.
- 2. https://nptel.ac.in/courses/112/105/112105123/: Basic Thermodynamics by Prof. S. K. Som, IIT Kharagpur
- 3. https://nptel.ac.in/courses/112/105/112105171/: Basics of Fluid Mechanics by Prof. S. K. Som, IIT Kharagpur
- 4. https://nptel.ac.in/courses/105/105/105105108/: Strength of Materials by Prof. S. Bhatacharya, IIT Kharagpur)

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain and analyze the principles of mechanics to solve problems in statics.
CO2	Articulate mechanics of deformable bodies and mechanical properties of materials.
CO3	Understand and solve problems in theormodynamics of pure substances.
CO4	Explain the design and operation of various devices based on theormodynamic principles.
CO5	Analyze the behavior of fluids and apply the concepts to solve problems in hydrostatics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1									1	
CO2	2	2	2	2	1									1	
CO3	3	3	3	2	1									1	1
CO4	1	2	3	1	1									2	1
CO5	3	1	2	2	1									1	1

Type	Code	Computer Organization & Architecture	L-T-P	Credits	Marks
PC	BTCS-T-PC-007	computer Organization & Architecture	3-0-0	3	100

Objectives	The objective of this course is to familiarize students about hardware design including logic design, basic structure and behaviour of the various functional modules of a modern digital computer and how they interact to provide the processing power to fulfil the needs of the user.
Pre-Requisites	Knowledge of basic digital electronics and computer fundamentals is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basic structures of Computers: Computer Architecture vs. Computer Organization, Functional units, Operational concepts, Registers, Bus Structure, Performance Consideration, SPEC rating.	9 Hours
Module-2	Memory location and addresses, Big-endian and Little-endian representation, Instruction format, Instruction set Architecture, RISC vs. CISC, Addressing modes, Instruction Sequencing, Subroutines.	8 Hours
Module-3	Binary Arithmetic: Addition and subtraction of signed numbers, Design of fast adders, Multiplication of positive numbers, Signed operand multiplication, Fast multiplication, Integer division, Representation of floating point numbers.	8 Hours
Module-4	Memory System: Basic Concepts, Speed, Size and cost, Cache memory concepts, Cache memory mapping techniques, Performance consideration; Virtual memory concepts, Translation look-aside buffer, Replacement techniques, Secondary Storage.	9 Hours
Module-5	Basic Processing Units: Fundamental concepts, Execution cycle, Single-Bus and Multi-Bus Organization, Execution of complete instruction, Hardwired control, Micro programmed control, Accessing I/O devices.	8 Hours
	Total	42 Hours

Text Books:

- T1. C. Hamacher, Z. Vranesic, and S. Zaky, *Computer Organization*, 5th Edition, McGraw-Hill, 2017.
- T2. W. Stallings, *Computer Organization and Architecture*, 9th Edition, Prentice Hall India, 2012.

Reference Books:

- R1. M. M. Mano, Computer System Architecture, 3rd Edition, Pearson Education, 2007.
- R2. B. Govindarajalu, *Computer Architecture and Organization*, 5th Edition, Tata McGraw-Hill, 2004.
- R3. N. P. Carter, Schaum's Outline of Computer Architecture, McGraw-Hill Education, 2002.

Online Resources:

- 1. https://nptel.ac.in/courses/106103068/
- 2. https://nptel.ac.in/courses/106103180/

- 3. https://nptel.ac.in/courses/117105078/
- 4. https://www.cse.iitk.ac.in/users/karkare/courses/2011/cs220/html/notes.html
- 5. https://homepage.cs.uiowa.edu/~ghosh/6012.html

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Explain the architectural concepts of a digital computer, identify various functional units and describe their functionality.
CO2	Represent instructions in various formats and solve problems based on addressing modes.
CO3	Perform various binary arithmetic operations using different techniques and represent floating point numbers and perform various operations on them.
CO4	Explain the working principle of Main memory, Cache memory and Virtual memory organization and solve numerical problems based on memory management.
CO5	Describe the working mechanism of the components of processing unit and discuss the techniques to enhance the performance.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

									<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	3	2							1	2		3
CO2	3	3	2	3	1							1	2	1	2
CO3	3	3	3	2	2							1	2	1	2
CO4	2	3	3	2	1							1	3	2	3
CO5	2	3	3	2	1							1	1		1

Type	Code	OOP Using Java Lab		Credits	Marks
ES	BTCS-P-ES-006	OOI OSING Java Lab	0-0-2	1	100

Objectives	The objective of the course is to apply object oriented programming principles and implement object oriented programming using JAVA language.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other object oriented programming language will be beneficial.
Teaching Scheme	Regular laboratory classes with the use of ICT whenever required, demonstration through practical simulation of code using IDE.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Understanding Java platform, compilation, and execution of a java program.
2	Overview of Eclipse IDE.
3	Use of class, use of control statements, data types, operators.
4	Implement class, object, constructor, methods, and other OOP features.
5	Inheritance Basics, more uses of constructor, method overriding, use of final.
6	Object class, practical use of abstract class.
7	Using Interface for achieving multiple inheritance, implementation of package.
8	Exception handing fundamentals, java built-in exceptions, Use of Scanner class for console input, use of own Exception subclass.
9	Java thread life cycle model and implementation approach, thread priority, implementation of synchronization.
10	I/O Basics, byte stream and character streams, reading and writing files, text processing using Java pre-defined stringBuilder and stringBuffer classes.
11	Basics of Java collection framework, implementation of collections in Java with different programs.
12	GUI basics and Window fundamentals, working with different Component, Container and Layout Managers.
13	Event handling for interactive GUI application.
14	Final lab test and viva voce.

Text Books:

- T1. H. Schildt, *Java: The Complete Reference*, 9th Edition, McGraw-Hill, 2011.
 T2. Y. D. Liang, *Introduction to Java Programming*, 9th Edition, Pearson Education, 2012.

Reference Books:

- R1. B. Bates, K. Sierra, *Head First Java*, 2nd Edition, O'Reilly Media, 2005.
- R2. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd Edition, Pearson Education, 2009. R3. I. Horton, *Beginning Java*, 7th Edition, Wrox Publications, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/106105191/
- 2. https://docs.oracle.com/javase/tutorial/
- 3. http://www.javatpoint.com/java-tutorial
- 4. http://www.w3schools.in/java/
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply object oriented programming to develop Java programs for real-life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robus and concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, String classes and collection framework.
CO5	Design GUI applications using AWT and Swing.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

						-		-	<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1		1						2	3		3
CO2	3	2	2	1		1						2	3		3
CO3	3	2	2	2		1						2	3		3
CO4	3	2	3	2		1						2	3		3
CO5	3	2	3	1		1						2	3		3

Type	Code	Digital Electronics Lab	L-T-P	Credits	Marks	
ES	BTEC-P-ES-004	Digital Electionics Lab	0-0-2	1	100	

Objectives	The objective of the course is to understand the internal structure of logic gates, its implementation using Boolean algebra, designing digital circuits like counters, registers and formulating digital systems using HDL.
Pre-Requisites	Knowledge of Basic Electronics is required.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the faculty with use of ICT as and when required, with focus on implementation using hardware & software tools.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Digital Logic Gates: Investigate logic behavior of AND, OR, NAND, NOR, EX-OR, EX-NOR, Invert and Buffer gates, use of Universal NAND Gate.
2	Gate-level minimization: Two level and multilevel implementation of Boolean functions.
3	Combinational Circuits: design, assemble and test: adders and subtractors, Code Converters, gray code to binary and 7-segment display.
4	Design, implement and test a given design example with: (a) NAND Gates only, (b) NOR Gates only, and (c) Using minimum number of Gates.
5	Design with multiplexers and de-multiplexers.
6	Flip-Flop: assemble, test and investigate operation of SR, D & J-K flip-flops.
7	Shift Registers: Design and investigate the operation of all types of shift registers with parallel load.
8	Counters: Design, assemble and test various ripple and synchronous counters - decimal counter, Binary counter with parallel load.
9	Memory Unit: Investigate behaviour of RAM and its storage capacity – 16×4 RAM: testing, simulating and memory expansion.
10	Clock-pulse generator: design, implement and test.
11	Parallel adder and accumulator: design, implement and test.
12	Binary Multiplier: design and implement a circuit that multiplies 4-bit unsigned numbers to produce a 8-bit product.
13	Verilog/VHDL simulation and implementation of Experiments listed at #3 to #12.

Text Books:

T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL*, 5th Edition, Pearson Education, 2013.

Reference Books:

R1. A. M. Michelén, *Digital Electronics Laboratory Manual*, Prentice Hall, 2000.

R2. J. W. Stewart, C. -Y. Wang, *Digital Electronics Laboratory Experiments* (Using the Xilinx XC95108 CPLD with Xilinx Foundation: Design and Simulation Software), Prentice Hall, 2001.

Online Resources:

- 1. https:
 - //www2.mvcc.edu/users/faculty/jfiore/Resources/DigitalElectronics1LaboratoryManual.pdf
- 2. https://www.elprocus.com/top-digital-electronic-projects-for-electronics-engineering-students/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyse the function of logic gates and implementation of Boolean functions.
CO2	Realize Universal gates and Implementation of minimized Boolean Expressions.
CO3	Design and analyze different combinational circuits.
CO4	Design various asynchronous and Synchronous Sequential Circuits.
CO5	Acquire knowledge about internal circuitry and logic behind any digital system.
CO6	Simulate various digital circuits using VHDL in industry standard tool such as Xilinx.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	-				` `				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1							2	1	
CO2	2	3	3	3	3	1							3	1	
CO3	2	3	3	3	3	1							3	1	
CO4	2	3	2	3	2	1							2	1	
CO5	2	3	2	3	2	1							2	1	
CO6	2	3	2	3	2	1							2	1	

Type	Code	Computer Organization & Architecture	L-T-P	Credits	Marks
PC	BTCS-P-PC-008	Lab	0-0-2	1	100

Objectives	The objective of this course is to study the parts of computer and realize computer arithmetic & memory management operations through simulations.
Pre-Requisites	Knowledge of computer basics and programming logic is required.
Teaching Scheme	Regular Laboratory classes with the use of ICT whenever required through demonstration of various computer system components and simulation of some of the concepts using Assembly Language and SciLab.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study of Computer Components
2	Study of Motherboard
3	Assembling and dissembling of a system
4	BIOS setting and installation
5	Introduction to 8085 Simulator and basic Assembly language programming
6	Assembly language programming in 8085 simulator using conditional statements
7	Assembly language programming in 8085 simulator using loop
8	Introduction to SciLab
9	SciLab Functions and Control Structures
10	Script files and Functions in SciLab
11	Implementation of basic logic gates and design of Adders
12	Simulation of Booth Algorithm and Integer division
13	Simulation of Pipelining
14	Simulation of Page Replacement Algorithms

Text Books:

- T1. T. Sheth, *SciLab : A Practical Introduction to Programming and Problem Solving*, 1st Edition, Create Space Independent Publishing Platform, 2016.
- T2. S. Nagar, *Introduction to Scilab For Engineers and Scientists*, 1st Edition, Apress, 2017.

Reference Books:

- R1. S. L. Campbell, J. -P. Chancelier, and R. Nikoukhah, *Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4*, 1st Edition, Springer-Verlag, New York, 2006.
- R2. H. Ramachandran and A. S. Nair, *Scilab* (*A Free Software to MATLAB*), 1st Edition, S. Chand & Co., 2011.

Online Resources:

- 1. https://www.scilab.org/tutorials
- 2. https://www.scilab.org/sites/default/files/Scilab_beginners_0.pdf
- 3. https://www.cse.iitb.ac.in/~cs626-449/scilab.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify and analyze the components of digital computer and disassemble & assemble a modern digital computer.
CO2	Construct assembly programs using 8085 Simulator.
CO3	Analyze and Develop codes in SciLab using different control structures and functions.
CO4	Implement different logic gates for various binary arithmetic operations.
CO5	Implement different memory management techniques using SciLab.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	3							2	1		3
CO2	3	2	3	2	3							2	1	1	1
CO3	3	3	3	3	3							2	1	1	1
CO4	3	1	2	2	3							1	1	1	1
CO5	3	2	2	2	2							1	2	2	2

Type	Code	Corporate Communication Lab	L-T-P	Credits	Marks
HS	BTBS-P-HS-012	Corporate Communication Lab	0-0-2	1	100

Objectives	This laboratory course is designed to learn & practice spoken & written corporate communication such as negotiation, persuasion, making presentations, attending meetings, writing reports, proposals etc., and reaching out to clients.					
Pre-Requisites	Basic knowledge of English grammar and the ability to speak, read and write using the English language.					
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair work, group/team work, individual and group presentations, discussions, role plays, listening to audios, watching videos, business writing and vocabulary enhancement.					

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Communication practices in global business settings: coping with organizational barriers – critical analysis.
2	Persuasive Communication strategies: product launch presentation in teams I.
3	Persuasive Communication strategies: product launch presentation in teams II.
4	Negotiation skills: role-plays.
5	Corporate diction: practice sessions on usage of business jargons and expressions.
6	Listening practice: business and telephone etiquette.
7	Meetings and discussions: role-play on business etiquette.
8	Awareness of Social media etiquette and Writing a Blog: critical analysis of structure, content and style of popular blogs and writing practice.
9	Report Writing I: recognizing types of business report, assignment on report.
10	Report Writing II: writing an executive summary and abstract.
11	Writing a short business proposal.
12	Understanding e-mail etiquette and writing a professional e-mail.
13	Reading Comprehension I: note-making and summarizing.
14	Reading Comprehension II: evaluative comprehension.

Text Books:

- T1. P. Rath, K. Shalini, and D. Ray, *Corporate Communication*, 1st Edition, Cengage Learning, 2018. T2. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, Tata McGraw-Hill, 2017.
- T3. M. Raman and S. Sharma, Technical Communication: Principles and Practice, 3rd Edition, Oxford University Press, 2015.

Reference Books:

R1. P. A. Argenti and J. Forman, The Power of Corporate Communication: Crafting the Voice and Image of Your Business, 1st Edition, Tata McGraw-Hill, 2003.

- R2. S. John, *The Oxford Guide to Writing and Speaking*, 3rd Edition, Oxford University Press, 2013.
- R3. B. K. Mitra, *Effective Technical Communication A Guide for Scientists and Engineers*, 1st Edition, Oxford University Press, 2006.

Online Resources:

- 1. https://archive.nptel.ac.in/courses/109/105/109105144/: by Prof. S. Singh, IIT Kharagpur
- 2. https://archive.nptel.ac.in/courses/109/106/109106129/: by Dr. Ay. I. Viswamohan, IIT Madras
- 3. https://archive.nptel.ac.in/courses/109/104/109104030/: by Dr. T. Ravichandran, IIT Kanpur
- 4. https://www.ef.com/wwen/english-resources/
- 5. https://owl.purdue.edu/owl/purdue_owl.html
- 6. https://www.usingenglish.com/
- 7. http://www.english-test.net

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand the global work atmosphere and communication barriers in it to be aware of ways to overcome them.
CO2	Develop spoken and written language skills used for business communication.
CO3	Build vocabulary which are commonly used in corporates and be habituated to them.
CO4	Use social media mindfully to maintain business relations.
CO5	Comprehend vital points from business texts skilfully.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						3		1	2	3	2	3	1	1	2
CO2								2	2	3	2	3	1	2	1
CO3						1			1	3		3	1	1	2
CO4						2		3	1	3		3	2	2	1
CO5									2	3	3	3	2	1	2

Type	Code	Math-IV for Computer Sciences	L-T-P	Credits	Marks
BS	BTBS-T-BS-018	Width-IV for Computer Sciences	3-1-0	4	100

Objectives	The objective of this course is to provide a good exposure to linear and non-linear programming with several standard numerical methods, and the right kind of tools to solve large scale optimization problems in engineering.
Pre-Requisites	Knowledge of calculus of several variables, coordinate geometry of two and three dimensions and matrix algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10tai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Linear Programming: Graphical Method, Simplex Method, Big-M Method, Alternate optima, redundancy & degeneracy.	9 Hours
Module-2	Simplex Method Algorithm, Revised Simplex Method, Dual Problem, Construction of Dual, Duality Theorem (without proof), Dual Simplex method, Post Optimal analysis.	12 Hours
Module-3	Integer Linear Programming: Gomory's cutting Plane Method for different IPP, Branch & Bound Method, Gradient of a function, Matrix differentiation, multi variable unconstraint optimization and its relationship to Taylor's series, Convex Function, Convex Programming Problem.	12 Hours
Module-4	Quadratic Programming, Wolfe's method for QPP, Optimality Conditions, Lagrangian & Lagrange Multipliers, KKT Necessary/sufficient optimality conditions, duality in non-linear programming; Unconstrained optimization: Line search methods for uni-modal functions, the Steepest Descent method, Newton's method, Conjugate direction method, The conjugate gradient method.	14 Hours
Module-5	Constrained Optimization: Frank Wolfe's Method, Rosen's Gradient Projection Method, Penalty function method, Barrier function method.	9 Hours
	Total	56 Hours

Text Books:

- T1. S. Chandra, Jayadeva, and A. Mehera, Numerical Optimization with Applications, 1st Edition, Narosa Publishing House, 2013.
- T2. A. Ravindran, D. Phillips, and J. J. Solberg, Operations Research: Principle and Practice, 2nd Edition, Wiley India,2010.

Reference Books:

- R1. D. G. Luenberger and Y. Ye, *Linear & Nonlinear Programming*, 3rd Edition, Springer, 2008.
 R2. S. S. Rao, *Engineering Optimization*, 4th Edition, New Age Publishers, 2009.
 R3. K. Dev, *Optimization for Engineering Design*, 2nd Edition, Prentice Hall India, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/106108056/
- 2. https://nptel.ac.in/courses/111105100/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Solve linear programming problems using graphical and simplex methods.
CO2	Understand the concept of duality in linear programming and apply the same to solve problems and to perform post optimal analysis.
CO3	Solve integer programming and quadratic programming problems.
CO4	Understand the concepts and conditions to solve a non-linear programming problem and able to solve unconstrained optimization problems.
CO5	Solve constrained optimization problems and understand the Karmakar's Algorithm.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								2	1	1
CO2	3	3	2	1	2								2	1	1
CO3	3	3	3	3	1								2	1	1
CO4	3	3	3	2	3								2	1	1
CO5	3	3	2	2	2								2	1	1

Type	Code	Engineering Economics	L-T-P	Credits	Marks
HS	BTBS-T-HS-018	Engineering Economics	3-0-0	3	100

Objectives	The objective of this course is to familiarize the students with elementary principles of economics, provide the tools needed for analyzing time value of money in engineering decision making, profit/revenue data, and make economic analysis for projects and alternatives.
Pre-Requisites	Basic knowledge on interest formula and derivatives is required.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with focus on real-world problem solving.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Engineering Economics-its meaning and importance, Basic problems of an economy. The concept of time value of money; Concept of Interest. Time value of equivalence, Compound interest factors; Cash flow diagrams, Calculation of time value of equivalence, Present worth comparison, Future worth comparison, Pay-back period comparison.	9 Hours
Module-2	Equivalent annual worth comparison method, Situations for equivalent annual worth comparison, Rate of return, Internal rate of return, Incremental IRR analysis, Depreciation analysis, Methods of depreciation, Straight line method, Declining balance method, SOYD Method and MACRS method of depreciation; After tax comparison, Analysis of public Project, Cost-benefit analysis.	9 Hours
Module-3	Introduction to Micro Economics and Macro Economics, Theory of demand, Elasticity of demand, Price elasticity of demand, Measurement of elasticity of demand; Income elasticity and cross elasticity of demand, Demand forecasting; Law of supply, Elasticity of supply.	8 Hours
Module-4	Theory of production, Law of variable proportion, Laws of returns to scale, Cost Concepts, Total Costs, Fixed cost, Variable cost, Revenue concepts, Total revenue, Average revenue and marginal revenue, Market (Forms of market), Perfect Competition, Determination of price under perfect competition, Linear Break-even Analysis.	8 Hours
Module-5	Inflation, Meaning of inflation, Types, Causes, Measures to control inflation, Commercial Banks, Functions of Commercial Bank, Central bank, Functions of central Bank; National income, Definitions, Concepts of national Income, Methods of measuring National Income.	8 Hours
	Total	42 Hours

Text Books:

T1. J. L. Riggs, D. D. Bedworth, and S. U. Randhawa, *Engineering Economics*, 4th Edition, Tata McGraw-Hill, 2004.

- T2. H. L. Ahuja, *Principles of Micro Economics*, 16th Edition, S. Chand & Co, 2008.
- T3. R. R. Paul, *Monetary Economics*, 11th Edition, Kalyani Publishers, 2015.

Reference Books:

- R1. C. S. Park, *Contemporary Engineering Economics*, 6th Edition, Pearson Education, 2015.
- R2. D. G. Newnan, T. G. Eschenbach, J. P. Lavelle, and N. A. Lewis, *Engineering Economic Analysis*, 13th Edition, Oxford University Press, 2017.
- R3. A. Koutsoyiannis, *Modern Micro Economics*, 2nd Edition, Palgrave Macmillan UK, 2003.
- R4. H. C. Petersen, W. C. Lewis, and S. K. Jain, *Managerial Economics*, 4th Edition, Pearson, 2005.
- R5. N. G. Mankiw, *Macroeconomics*, 7th Edition, Worth Publishers, 2010.
- R6. M. P. Agasty, *Engineering Economics and Costing*, 2nd Edition, Scitech Publication, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/112107209/: Engineering Economic Analysis
- 2. https://www.icai.org/post.html?post_id=10058: Study Materials by ICAI
- 3. http://www.icaiknowledgegateway.org/littledms/folder1/chapter-5-part-2.pdf: National Income Accounting
- 4. http://www.m5zn.com/newuploads/2013/05/28/pdf/ed6f3d1f87b9cd2.pdf: eBook

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Understand the concepts of economics, engineering economics and its application in engineering.
CO2	Solve problems related to engineering economics and analyze decision alternatives in engineering projects.
CO3	Evaluate how changes in demand and supply affect market and production.
CO4	Assess the effects of changes in costs, selling price and units sold on the break-even point and target profit.
CO5	Analyze the macroeconomic environment of the business and its impact on society and enterprise.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1			1		3	1		1	2
CO2						1			1		3	1		1	3
CO3						2	2				3	1		1	2
CO4						2	2		1		3	1		1	3
CO5						2	2		1		3			2	2

Type	Code	Design & Analysis of Algorithms	L-T-P	Credits	Marks
PC	BTCS-T-PC-011	Design & Analysis of Algorithms	3-1-0	4	100

Objectives	The objectives of this course is to introduce the techniques for designing efficient algorithms, apply them to solve problems, and analyze the complexities in different domains.
Pre-Requisites	Knowledge of Discrete Mathematics and Data Structures is essential.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Definition, Characteristics of algorithm, Growth of Functions, Asymptotic analysis, Standard notations and common functions, Recurrences, Solution of recurrences by iterative, recursion tree, substitution and Master method; Algorithm design techniques, Divide and conquer strategy for designing algorithms, Obtaining best, average, worst-case running time of Merge sort, Quick sort and Randomized Quick sort.	12 Hours
Module-2	Heaps, Building a Heap, The heap sort algorithm, Priority Queue with their analysis; Lower bounds of sorting; Dynamic Programming, Elements of dynamic programming, Matrix chain multiplication, Longest Common Subsequence, String matching algorithms (Naive, Rabin-Karp, Knuth-Morris-Pratt algorithm).	10 Hours
Module-3	Greedy algorithms, Elements of Greedy strategy, Activity selection problem, Fractional Knapsack problem along with correctness proofs, Huffman codes; Backtracking and Branch & Bound techniques (n-Queen, Knapsack, and Travelling Salesman problem); Data structure for disjoint sets, Disjoint set operations, Linked list representation, Path compression, Disjoint set forest.	12 Hours
Module-4	Graph algorithms and their characteristics, Breadth-first and depth-first search, Minimum spanning trees, Kruskal and Prim's algorithms, Single-source shortest path algorithms (Bellman-Ford, Dijkstra), All-pair shortest path algorithm (Floyd-Warshall) with their analysis.	10 Hours
Module-5	Maximum flow problem, Ford-Fulkerson algorithm and its analysis; NP completeness (Polynomial time, Polynomial time verification, NP completeness and reducibility), Cook's Theorem (without proof), Examples of NP complete problems (without proof) - Circuit satisfiability, 3-CNF satisfiability, Clique, Vertex cover, Ham-cycle, TSP (without proof); Approximation algorithm characteristics, Travelling Salesman Problem, Randomized algorithms (Max3-CNF satisfiability.	12 Hours
	Total	56 Hours

P.T.O

Text Books:

- T1. T. H.Cormen, C.E.Leiserson, R. L.Rivest, and C. Stein, *Introduction to Algorithms*, 3rd Edition, PHI Learning, 2014.
- T2. E. Horowitz, S.Sahni, and S.Rajasekaran, *Fundamentals of Computer Algorithms*, 2nd Edition, University Press, 2015.
- T3. J. Kleinberg and E. Tardos, *Algorithm Design*, 1st Edition, Pearson Education, 2013.

Reference Books:

- R1. M. T. Goodrich and R. Tamassia, *Algorithm Design: Foundations, Analysis, and Internet Examples,* 1st Edition, John Wiley & Sons, 2001.
- R2. U. Manber, Introduction to Algorithms: A Creative Approach, 1st Edition, Addison-Wesley, 1989.
- R3. S. Sridhar, *Design and Analysis of Algorithms*, 1st Edition, Oxford University Press, 2014.
- R4. G. Sharma, Design & Analysis of Algorithms, 4th Edition, Khanna Publishers, 2019.

Online Resources:

- 1. http://www.nptelvideos.in/2012/11/design-analysis-of-algorithms.html
- 2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms
- 3. https://www.geeksforgeeks.org/fundamentals-of-algorithms/
- 4. https://www.tutorialspoint.com/design_and_analysis_of_algorithms/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Design algorithms, analyze their running time for best, worst, and average-cases, and understand divide & conquer strategy considering quick sort and merge sort as examples.
CO2	Compare Heapsort with other comparison based sorting algorithms and develop dynamic programming algorithms.
CO3	Apply disjoint-set data structure and various algorithm design techniques such as greedy, backtracking, and branch-and-bound in real life problems.
CO4	Model a given engineering problem using graphs and design the corresponding algorithms to solve the problem.
CO5	Compare various pattern matching algorithms, understand NP-Completeness and the need of approximation & randomized algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Cont'd...

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2							2	3		3
CO2	3	2	3	3	2	1						1	3		3
CO3	3	3	3	3	2	1						1	3		3
CO4	3	2	3	3	2	1						1	3		1
CO5	2	2	2	3	2	1						2	2		2

Type	Code	Database Management Systems	L-T-P	Credits	Marks
PC	BTCS-T-PC-009	Database Management Systems	3-1-0	4	100

Objectives	The objective of the course is to understand the aspects of design, implementation, and operation of relational database systems, transaction processing, concurrency control, recovery, and some advanced database concepts.
Pre-Requisites	Basic knowledge of data structures and algorithms is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz Surprise Test(s) Assignme			Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to database systems: Basic concepts and definitions, three-schema architecture, data independence, Concept of data models, types of data models, database languages, integrity, database users, Entity-Relationship model, Constraints & Keys, Extended Entity Relationship model, Relational model, Mapping of E-R model to relational schema, System structure of DBMS, Codd's 12 Rules.	12 Hours
Module-2	Query languages: Relational Algebra, basic operations, join operations, grouping & aggregation, Relational Calculus; Query processing and optimization: Evaluation of relational algebra expressions, Heuristic-based Query optimization.	11 Hours
Module-3	Database design: Functional dependencies, Armstrong axioms, Attribute closure, Equivalence sets of FD, Minimal cover; Normalization: Dependency & attribute preservation, lossless join; Normal Forms: 1NF, 2NF, 3NF, BCNF, Testing for lossless design, Multi-Valued Dependency (MVD), 4NF and 5NF.	11 Hours
Module-4	Transaction processing: Basic concepts, ACID Properties, Serializability, Concurrency Control Schemes – lock-based & timestamp-based protocols, Deadlock handling, deadlock prevention, detection and recovery; Database Recovery: types of database failures, Recovery techniques - log-based recovery, checkpoints, shadow paging.	12 Hours
Module-5	Storage strategies: Storage Architecture, File and Record Organization, Types of Indexes, B-Tree, B+ Tree, Index Files, Hashing, Data Dictionary; Distributed databases: Homogeneous vs. heterogeneous, Fragmentation & replication, Data transparency; Introduction to NoSQL: Properties, Columnar families, different NoSQL systems.	10 Hours
	Total	56 Hours

Text Books:

- T1. A. Silberschatz, H. F. Korth, and S. Sudarshan, *Database System Concepts*, 6th Edition, McGraw-Hill, 2013
- T2. R. Elmasri and S. B. Navathe, *Fundamentals of Database Systems*, 7th Edition, Pearson Education, 2016.

T3. P. J. Sadalage and M. Fowler, NoSQL Distilled, 1st Edition, Pearson Education, 2012.

Reference Books:

- R1. R. Ramakrishnan and J. Gekhre, *Database Management Systems*, 3rd Edition, McGraw-Hill, 2003.
- R2. R. P. Mahapatra and G. Verma, *Database Management Systems*, 1st Edition, Khanna Publishing, 2013.
- R3. C. J. Date, *Introduction to Database Systems*, 8th Edition, Pearson Education, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106104135/
- 2. https://nptel.ac.in/courses/106105175/
- 3. https://cs145-fa18.github.io/
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-830-database-systems-fall-2010/lecture-notes/
- 5. https://docs.oracle.com/database/121/SQLRF/toc.htm

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the significance & components of DBMS and create E-R model for real world applications.
CO2	Construct queries using relational algebra and understand query processing & optimization strategies.
CO3	Design relational databases and normalize the designs using different normalization techniques.
CO4	Resolve concurrency control issues and recover from database failures.
CO5	Visualize storage structures, indexing techniques and explore distributed & NoSQL databases.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	1		2						1	2		1
CO2	3	3	3	2	1	1						1	2		1
CO3	3	3	3	2	1	2						2	2		2
CO4	2	3	3	2	1	1						1	1		1
CO5	2	2	2	2	2	1						2	2		2

Type	Code	Operating Systems	L-T-P	Credits	Marks
PC	BTCS-T-PC-016	operating bystems	3-0-0	3	100

Objectives	The objective of this course is to understand the fundamental concepts, techniques & algorithms, and internal working principles of a computer operating system to
	become a system designer or an efficient application developer.
Pre-Requisites	Knowledge of computer programming and data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Overview, Evolution of operating system, Types of systems - Batch Processing, Multiprogramming, Time Sharing systems; Personal Computers, Parallel, Distributed, and Real-time Systems; Operating System Services, System components, System calls.	6 Hours
Module-2	Process Management : Process concepts, states, PCB, Process scheduling queues, queuing diagram, Types of schedulers, Operations on process; Interprocess communication - shared memory, message passing, Concept of buffering, Thread overview, Benefits of multi-threaded program, User and kernel threads, Multi-threading models, Issues with multi-threading - thread cancellation, thread pools, thread specific data; CPU Scheduling : Dispatcher, Scheduling - Criteria, Algorithms - FCFS, SJF, SRTF, RR, Priority, Multi-level Queue (MLQ), MLQ with Feedback.	10 Hours
Module-3	Process Synchronization: Background, Bounded-buffer – Shared-memory solution to Producer-consumer problem, Race condition, Critical section problem - Peterson's solution, Synchronization hardware: TestAndSet(), swap() instructions, Semaphores - Counting and binary semaphore, spinlocks, Classical problems of synchronization - Bounded-buffer problem, Readers-writers problem, Dining-philosophers problem, Monitors; Deadlock: System model, characterization, Resource-allocation graph, Methods for handling deadlocks, Deadlock prevention & avoidance, Banker's algorithm, Deadlock detection & recovery.	10 Hours
Module-4	Memory Management: Background, Logical & physical address space, Dynamic loading & dynamic linking, Swapping, Contiguous memory allocation, Dynamic storage allocation problem, Overlays, Paging, Segmentation; Virtual Memory: Background, Demand paging, Page fault, Basic page replacement policy, Page replacement algorithms - FIFO, OPT, LRU, LRU-Approximation, LFU, MFU, Thrashing, Working-set model.	9 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Secondary Storage Structure : Overview of mass storage structure, Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK, Swap-space management, RAID structure; File System: Concept, Access methods, Directory structure, Directory implementation, Allocation methods, Free space management, Access control list; I/O System: Polling, Interrupts, DMA; Case Studies: The LINUX System.	7 Hours
	Total	42 Hours

Text Books:

- T1. A. Silberschatz, P. B. Galvin, and G. Gagne, *Operating System Concepts*, 8th Edition, Wiley, 2009.
- T2. M. Milenković, *Operating Systems: Concepts and Design*, 2nd Edition, Tata McGraw-Hill, 2001.

Reference Books:

- R1. A. S. Tanenbaum, *Modern Operating Systems*, 3rd Edition, PHI, 2009.
- R2. P. B. Prasad, *Operating Systems and System Programming*, 2nd Edition, Scitech Publications, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/106/102/106102132/: by Prof. S. Bansal, IIT Delhi
- 2. https://nptel.ac.in/courses/106/108/106108101/: by Prof. P. C. P. Bhatt, IISc Bangalore
- 3. https://nptel.ac.in/courses/106/106/106106144/: by Prof. C. Rebeiro, IIT Madras
- 4. https://nptel.ac.in/courses/106/105/106105214/: by Prof. S. Chattopadhyay, IIT Kharagpur
- 5. https://www.cse.iitb.ac.in/~mythili/os/: Notes & slides by Prof. M. Vutukuru, IIT Bombay
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/

Course Outcomes: At the end of this course, the students will be able to:

	· ·
CO1	Explore principles behind various types of operating systems, system components, system calls, protection mechanisms and services.
CO2	Explain different schedulers, scheduling policies, and design new scheduling algorithms for real life problems.
CO3	Describe the significance of process synchronization through classical synchronization problems and deadlock handling mechanisms.
CO4	Describe the working principle of main memory, cache memory and virtual memory organization and solve memory related problems.
CO5	Articulate secondary storage management, and analyze the performance of various disk scheduling algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
РО3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Cont'd...

PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2									2	2	2	
CO2	3	3	3	2								2	3	3	1
CO3	3	3	3	2	1	1						2	3	3	1
CO4	3	3	3	2	1	1						1	3	3	1
CO5	2	2	3	2	1	1						1	3	3	1

Type	Code	Artificial Intelligence	L-T-P	Credits	Marks
PE	BTCS-T-PE-999	Artificial Intelligence	3-0-0	3	100

Objectives	The objective of the course is to provide a strong foundation of fundamental concepts and goals, methods & techniques of Artificial Intelligence (AI) to build intelligent systems with perception, reasoning, and learning abilities.
Pre-Requisites	Knowledge of basic mathematics, algorithms & data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Artificial Intelligence: Introduction; Intelligent Agents: Agents and Environment, Good Behavior, Nature of Environments, Structure of Agents; Problem Solving: Solving Problems by Searching - Problem-Solving Agents, Example Problems, Searching for Solutions, Uninformed search strategies, Searching with Partial Information.	8 Hours
Module-2	Informed Search & Exploration: Informed (Heuristic) search strategies, Heuristic functions, Local Search Algorithms & Optimization Problems; Constraint Satisfaction Problems: Introduction, Backtracking search for CSPs, Local Search for CSPs; Adversarial Search: Games, Optimal Decisions in Games, Alpha-Beta Pruning; Knowledge & Reasoning: Knowledge-Based Agents, The Wumpus World.	10 Hours
Module-3	Knowledge and Reasoning: Logic, Propositional Logic, Reasoning Patterns in Propositional Logic; First-Order Logic: Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic; Inference in First-Order Logic: Propositional vs. First-Order Logic, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution; Knowledge Representation: Ontological Engineering, Categories and Objects, Semantic Nets, Frames.	8 Hours
Module-4	Planning: The Planning Problem, Planning with State-Space Search, Partial-Order Planning, Planning Graphs; Uncertain Knowledge & Reasoning: Acting under Uncertainty, Bayes Rule and its use; Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, Semantics of Bayesian Networks.	8 Hours
Module-5	Learning: Learning from Observations, Forms of Learning, Inductive Learning, Learning Decision Trees; Statistical Learning, Instance Based Learning, Neural Networks; Reinforcement Learning: Passive and Active Reinforcement Learning; Expert Systems: Introduction, Architecture, Representations.	8 Hours
	Total	42 Hours

Text Books:

- T1. S. Russell and P. Norvig, *Artificial Intelligence A Modern Approach*, 3rd Edition, Pearson Education, 2016.
- T2. D. W. Patterson, *Introduction to Artificial Intelligence & Expert Systems*, 1st Edition, Pearson Education, 2015.

Reference Books:

- R1. E. Rich, K. Knight, and S. B. Nair, Artificial Intelligence, 3rd Edition, McGraw Hill Education, 2009.
- R2. G. F. Luger, *Artificial Intelligence: Structures and Strategies for Complex Problem Solving*, 6th Edition, Pearson Education, 2008.
- R3. M. Negnevitsky, *Artificial Intelligence: A Guide to Intelligent Systems*, 3rd Edition, Addison Wesley, 2.
- R4. N. J. Nilson, *Principles of Artificial Intelligence*, Narosa, 2002.
- R5. E. Charniak and D. McDermott, *Introduction to Artificial Intelligence*, 1st Edition, Addison-Wesley, 1985.

Online Resources:

- 1. https://nptel.ac.in/courses/106/102/106102220/: by Prof. Mausam, IIT Delhi
- 2. https://nptel.ac.in/courses/112/103/112103280/: by Prof. S. M. Hazarika, IIT Guwahati
- 3. https://nptel.ac.in/courses/106/106/106106140/: by Prof. D. Khemani, IIT Madras
- 4. https://nptel.ac.in/courses/106/106/106106126/: by Prof. D. Khemani, IIT Madras
- 5. https://nptel.ac.in/courses/106/105/106105079/: by Prof. P. Dasgupta, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Explore agents, environments, and search goal state using uninformed techniques in a state space.
CO2	Apply search techniques for game playing and solving constraint satisfaction problems.
CO3	Interpret logic, inference rules for decision making, and represent knowledge using semantic nets & frames.
CO4	Apply planning and reasoning to handle uncertainty in real life problems.
CO5	Use learning to solve complex real-life problems and design expert systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Cont'd...

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3								1	2	1	1
CO2	2	3	2	3								1	3	1	2
CO3	3	2	2	3								1	3	1	1
CO4	3	2	2	2		1						1	3	1	1
CO5	2	2	2	2		2					·	1	3	1	2

Type	Code	Advanced Java Programming	L-T-P	Credits	Marks
PE	BTCS-T-PE-018	Advanced Java I Togramming	3-0-0	3	100

Objectives	The objective of the course is to learn advanced features of the Java programming language, various frameworks in J2EE for rapid development, and apply these to develop enterprise applications.
Pre-Requisites	Knowledge of object oriented programming using Java is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on programming activities.

T	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to J2EE Environment: Overview of J2EE and J2SE. J2EE Architecture JDBC: The Concept of JDBC, JDBC Driver Types, JDBC Packages, Database Connection, CRUD Operations using JDBC, Transaction Processing, Metadata; Web Applications and Programming: Web application architecture, Client, Server (Apache Tomcat/WebLogic), HTML5, CSS3; Client Side Programming: JavaScript, JQuery; Introduction to XML/JSON.	9 Hours
Module-2	Servlets: Introduction, Servlet Architecture, Environment Setup, Life Cycle, Form Data processing, Client HTTP Request, Server HTTP Response, HTTP Status Codes, Exception Handling; Advanced Features of Servlets: Handling Cookies, Session Tracking, URL rewriting, Database access, File uploading, Date handling, Page redirection, Sending email, Packaging, Debugging, Internationalization.	8 Hours
Module-3	Java Server Pages (JSP) : Advantages of JSP over Servlet, Lifecycle of a JSP page, JSP API, Scriptlet tag, Implicit objects, Directives, Exception handling, Action tags, Expression Language (EL); Advanced Features of JSP : Session Tracking, MVC, JSTL, Custom Tags, CRUD operations; JSP Sample Code : Pagination, Registration Form, File Uploading.	8 Hours
Module-4	Enterprise JavaBeans (EJB): Introduction, Session Bean, JMS (Java Message Service), Message Driven Bean (MDB), Entity Bean; Struts Framework: Introduction, Features, Model 1 and Model 2 (MVC) Architecture, Interceptors, Struts 2 Architecture & Flow, Action, Configuration File, Validation, Ajax Validation, JSON Validation, Interceptor, Zero Configuration.	8 Hours
Module-5	Java Mail API: JavaMail Architecture, Sending emails, Sending email through Gmail Server, Receiving emails, Emails with HTML content, Forwarding, Deleting; Hibernate Framework: Introduction, Architecture, Web Application with Hibernate (using XML), Generator classes; Spring Framework: Introduction, Modules, Examples, Dependency Injection, AOP, JDBC Template.	9 Hours
	Total	42 Hours

Text Books:

- T1. J. Keogh, *J2EE: The Complete Reference*, 11th Edition, McGraw Hill, 2017.
- T2. Kogent Learning Solutions, *Java Server Programming: Java EE 7 (J2EE 1.7) Black Book*, 1st Edition, DreamTech, 2014.

Reference Books:

- R1. DT Editorial Services, *J2EE 1.7 Projects Black Book*, 1st Edition, DreamTech, 2015.
- R2. Kogent Learning Solutions, *Web Technologies: HTML, Javascript, PHP, Java, JSP, XML and Ajax, Black Book*, 2nd Edition, DreamTech, 2009.

Online Resources:

- 1. https://www.tutorialspoint.com/ejb/index.htm
- 2. https://www.javatpoint.com/hibernate-tutorial
- 3. https://www.javatpoint.com/spring-tutorial
- 4. https://www.javatpoint.com/struts-2-tutorial

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain concepts of J2EE and fundamentals of web application development.
CO2	Design web applications using JSP and Servlet technologies.
CO3	Design and develop complex enterprise applications using EJB frameworks.
CO4	Integrate email support in web applications using J2EE mail API.
CO5	Create enterprise J2EE application using Hibernate and Spring frameworks.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2									1	1		2
CO2	3	2	2		2							1	2	1	2
CO3	2	3	2		2							1	2	1	2
CO4	3	2	2	1	2							1	2	1	2
CO5	2	2	2	1	1							1	2	1	2

Type	Code	System Programming	L-T-P	Credits	Marks
PE	BTCS-T-PE-046	System 1 Togramming	3-0-0	3	100

Objectives	The objective of the course is to study the concepts & principles of system level programming and the methods & techniques for designing various system
	programs.
Pre-Requisites	Knowledge of computer programming and architecture is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on programming activities.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : System software and Application software; Operating System: Origin, Evolution, Types, OS as Resource Manager & Service Provider; Machine Structure : Stored program concept, Micro flowchart of ADD instruction, Machine structure – 360 and 370; Machine Language : Long way, No looping, Address modification, Looping with example, Introduction to assembly language program, Example using literals.	9 Hours
Module-2	Assemblers: Design of two pass assembler – Statement of problem, Data structure, Format of data bases, Algorithm and flowchart of Pass-I and II. Equivalent machine code generation of a sample assembly program; Table Processing : Linear and Binary search, Bubble sort – 360 assembly code and illustration, Radix sort, Shell sort, Address calculation sort, Radix exchange sort and Random entry searching.	9 Hours
Module-3	Macro Processor: Macro instruction arguments, Conditional macro expansion, Macro calls within macro, Macro instruction defining macro, Two pass algorithm for macro processor, Creation of MDT and MNT for Macro calls within macro and Macro instruction defining macro; Programming Languages: Importance of High Level Languages, Features, Data Types, Data Structures, Storage Allocation & Scope Names, Accessing Flexibility, Functional Modularity, Asynchronous Operations.	8 Hours
Module-4	Loaders : Function of a loader, Compile–and–go, General loader scheme, Absolute loader, Subroutine linkages, Relocating loaders, Other loader schemes – Dynamic loading & linking, Overlays, Bootstrap loader; Design of Absolute loader & Direct linking loader.	8 Hours
Module-5	Compilers: Phases – Lexical analysis, Syntax analysis, Semantic analysis, Intermediate code generation, Machine dependent & independent optimization, Storage assignment, Code generation, Assembly & Output; Formal Systems: Uses, Formal specification, Formal grammars, Backus–Naur form, Canonic systems.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. J. Donovan, *Systems Programming*, 1st Edition, McGraw Hill Education, 2017.
- T2. S. Pal, *Systems Programming*, 1st Edition, Oxford University Press, 2012.

Reference Books:

- R1. D. M. Dhamdhere, *Systems Programming and Operating Systems*, 2nd Revised Edition, Tata McGraw-Hill, 1999.
- R2. A. R. John, Systems Programming, 1st Edition, Morgan Kaufmann, 2015.

Online Resources:

1. http://infolab.stanford.edu/pub/cstr/reports/cs/tr/66/52/CS-TR-66-52.pdf: Notes by Prof. A. C. Shaw

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the working principle of Von Neumann's stored program concept and operations of a General Machine structure.
CO2	Apply mnemonic form of programming to write assembly language programs and design a two-pass assembler.
CO3	Design a two-pass macro processor and visualize various system level features in PL/I.
CO4	Distinguish between various loading schemes and design absolute & direct linking loaders.
CO5	Explain the phases of compilation process and use of formal system & grammars.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3								1	2		1
CO2	1	2	2	1	2							2	2		1
CO3	3	2	2	3								1	1		1
CO4	3	1	2	2								1	2		1
CO5	3	2	2	2								2	1		2

Type	Code	Design & Analysis of Algorithms Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-013	Design & Analysis of Algorithms Lab	0-0-2	1	100

Objectives	The objective of this course is to design and implement efficient algorithms for a specified application.		
Pre-Requisites Knowledge of Discrete Mathematics and Data Structures are essential.			
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.		

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Linear & Binary Search.
2	Conversion of infix to postfix expression using Stack.
3	Sorting: Selection, Bubble and Insertion Sort.
4	Sorting: Quick Sort and Merge Sort.
5	Sorting: Heap Sort.
6	Matrix Chain Multiplication.
7	Longest Common Subsequence.
8	Fractional and 0/1 Knapsack problem.
9	n-Queen problem.
10	Graph Traversal using BFS/DFS.
11	Dijkstra's single source shortest path algorithm.
12	Warshall's all pair shortest path algorithm.
13	Kruskal's/Prim's algorithm for Minimum Spanning Tree.
14	Naïve and Rabin-Karp string matching algorithm.

Text Books:

- T1. T. H.Cormen, C.E.Leiserson, R. L.Rivest, and C. Stein, *Introduction to Algorithms*, 3rd Edition, PHI Learning, 2014.
- T2. E. Horowitz, S.Sahni, and S.Rajasekaran, *Fundamentals of Computer Algorithms*, 2nd Edition, University Press, 2015.

Reference Books:

- R1. J. Kleinberg and E. Tardos, *Algorithm Design*, 1st Edition, Pearson Education, 2013.
- R2. M. T. Goodrich and R. Tamassia, *Algorithm Design: Foundations, Analysis, and Internet Examples,* 1st Edition, John Wiley & Sons, 2001.
- R3. U. Manber, *Introduction to Algorithms: A Creative Approach*, 1st Edition, Addison-Wesley, 1989.

P.T.O

Online Resources:

- 1. http://www.nptelvideos.in/2012/11/design-analysis-of-algorithms.html
- 2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms
- 3. https://www.geeksforgeeks.org/fundamentals-of-algorithms/
- 4. https://www.tutorialspoint.com/design_and_analysis_of_algorithms/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Implement various searching and sorting algorithms and compare their execution time.
CO2	Understand and develop skill to solve problems using divide and conquer strategy.
CO3	Apply greedy, dynamic programming, backtracking and branch and bound paradigms to solve real life problems.
CO4	Formulate engineering problems and solve them using graph algorithms.
CO5	Implement and compare various pattern matching algorithms such as Naïve, Rabin-Karp etc.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1	1						2	3	3	3
CO2	3	2	3	3	1	2						1	3	3	2
CO3	3	3	3	3	1	3						1	3	2	3
CO4	3	3	3	3	1	3						1	3	2	3
CO5	2	3	2	3	1							2	3	2	2

Type	Code	Database Management Systems Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-010	Database Management Systems Lab	0-0-4	2	100

Objectives The objective of this course is to provide a formal foundation in dequery, and data manipulation, and impart hand-on practice to the groom them into well-informed database application developers.			
Pre-Requisites Knowledge of theory of databases and programming skills is requ			
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.		

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to Oracle databases, simple queries for data retrieval.
2,3	Data retrieval based on conditions and sorting the query results.
4	Using single-row functions in SQL queries for data retrieval.
5	Applying grouping and aggregation functions.
6	Writing complex queries using sub-queries.
7	Create, alter, and manipulate design of tables.
8,9	Data manipulation using various DML statements.
10	Imposing various constraints on tables for maintaining data integrity.
11,12	Retrieve data from multiple tables using various types of Join operations.
13	Create, alter, and manage Views from single & multiple base tables.
14	Create and use other data base objects like sequence, indexes, and synonyms.
15	Controlling user access to database using DCL queries: Grant, Revoke.
16	Perform Set operations on tables: Union, Union All, Intersect, Minus.
17	Write SQL queries by using co-related sub-queries.
18	Introduction to PL/SQL, identifiers, literals, and keywords.
19	Write PL/SQL block by using conditional statements and expressions.
20	Using different types of Loops in a PL/SQL block.
21	Implement Exception Handling in a PL/SQL block.
22	Write PL/SQL block by using numeric, string, and other miscellaneous data types.
23	Introduction to data retrieval using Cursors by providing elementary idea.
24,25	Introduction to Stored procedures, Write PL/SQL block using procedures.
26	Develop functions with in/out parameters and using them in a PL/SQL block.
27, 28	Oracle Triggers – introduction, syntax, types and use.

Text Books:

T1. K. Loney, *Oracle Database* 11g: The Complete Reference, 1st Edition, McGraw-Hill, 2009.

T2. I. Bayross, *Teach Yourself SQL/PL SQL Using Oracle 8i and 9i with SQLJ*, 1st Edition, BPB Publications, 2003.

Reference Books:

- R1. S. Feuerstein, *Oracle PL/SQL Programming*, 6th Edition, O'Reilly, 2014.
- R2. M. Mclaughlin, *Oracle Database 11g PL/SQL Programming*, 6th Edition, McGraw-Hill Education, 2014.
- R3. A. Silberschatz, H. F. Korth, and S. Sudarshan, *Database System Concepts*, 6th Edition, McGraw-Hill Education, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/106106095/pdf/4_The_SQL_Standard.pdf
- 2. https://docs.oracle.com/cd/B28359_01/appdev.111/b28370.pdf
- 3. https://www.javatpoint.com/oracle-tutorial

Course Outcomes: At the end of this course, the students will be able to:

CO1	Construct queries using SQL and retrieve data from a database using single/multi-row functions, and sub-queries.
CO2	Design relational tables imposing integrity constraints, operate on table using DDL/DML statements.
CO3	Create other database objects like views, sequences and indices.
CO4	Write PL/SQL programs including control structures, loops, and exception handing for real-world applications.
CO5	Implement the techniques using Procedures, Functions, and Parameters in PL/SQL.

Program Outcomes Relevant to the Course:

PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PP-					(,			0/						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3		2	2							2	2		1
CO2		2		2	2							2	2		1
CO3			2	2	2							1	2		1
CO4		2		2	2							2	3		2
CO5		2		2	2							2	3		2

Type	Code	Operating Systems Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-017	Operating Systems Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to learn operating system level programming and provide a hands-on exposure on implementation of various algorithms of the operating system.
Pre-Requisites	Knowledge of programming, data structures, and concepts of operating systems taught in the theory class are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to Linux OS and basic VI editor commands.
2	Linux File Structure and advance Linux commands like grep, pipe, cut, etc.
3	Introduction to UNIX Shell Script: Arithmetic Expressions, Relational and Conditional Operators.
4	UNIX Shell Script: Looping, Switch Cases.
5	Process Creation, process handing, process signaling through fork(), exec().
6	CPU Scheduling (Non-Pre-emptive) FCFS, SJF, Priority.
7	CPU Scheduling (Pre-emptive) SRTF, RR, Priority-based preemptive.
8	Multi-Threaded application using POSIX threads.
9	Synchronization using Semaphore (Producer- Consumer, Reader-Writer).
10	Message passing : Pipe and Signals.
11	Inter-process communication using shared memory.
12	Deadlock implementation: Banker's Algorithm.
13	Implementing Page Replacement Algorithms.
14	Implementing Disk scheduling Algorithms.

Text Books:

- T1. V. Mukhi, *The C Odyssey: UNIX*, 1st Edition, BPB Publications, 1992.
- T2. A. Silberschatz, P. B. Galvin, and G. Gagne, *Operating System Concepts*, 8th Edition, Wiley, 2009.

Reference Books:

- R1. A. S. Tanenbaum, *Modern Operating Systems*, 3rd Edition, PHI, 2009.
- R2. P. B. Prasad, *Operating Systems and System Programming*, 2nd Edition, Scitech Publications, 2015.

Online Resources:

- 1. https://www.technicalsymposium.com/sharelabcodings_os.html
- 2. https://www.cse.iitb.ac.in/~mythili/teaching/cs347_autumn2016/index.html

Course Outcomes: At the end of this course, the students will be able to:

CO1	Become conversant with various Linux commands and their specific uses.
CO2	Write, debug, and execute UNIX shell scripts for a given problem.
CO3	Implement various scheduling algorithms used at the operating system level.
CO4	Write programs for creation of child processes and communication among them.
CO5	Develop and implement deadlock avoidance and detection algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1		1						2			1
CO2	2	2	2	1		1						2	2		
CO3	3	1	2	2		1						2	2		1
CO4	3	2	2	1		1						2	2		
CO5	3	2	3	1		1						2	2		1

Part III 3rd Year B. Tech. (CST)

Curriculum Structure

		Semester V						
Type	Code	Course Title		WCH		C		
	1	THEORY						
PC	BTCS-T-PC-013	Computer Networks	3	0	0	3	0	0
PC	BTCS-T-PC-015	Formal Languages & Automata Theory	3	0	0	3	0	0
PC	BTCS-T-PC-022	Machine Learning	3	1	0	3	1	0
PE		Professional Elective - II	3	0	0	3	0	0
PE		Professional Elective - III	3	0	0	3	0	0
MC	BTBS-T-MC-020	Universal Human Values & Professional Ethics	2	0	0	0	0	0
		PRACTICAL	•	•				
HS	BTBS-P-HS-021	Soft Skills & Inter-Personal Skills Lab	0	0	4	0	0	2
PC	BTCS-P-PC-014	Computer Networks Lab	0	0	2	0	0	1
PC	BTCS-P-PC-021	Internet & Web Technology Lab	0	0	4	0	0	2
PJ	BTCS-P-PJ-025	Skill Lab & Project - I	0	0	4	0	0	2
PJ	BTII-P-PJ-002	Summer Internship - II	0	0	0	0	0	1
	SUB-TOTAL					15	1	8
		TOTAL 32						

	Semester VI										
Type	Code		WCH			Credits L-T-P					
		THEORY									
PC	BTCS-T-PC-059	Cryptography & Network Security	3	0	0	3	0	0			
PC	BTCS-T-PC-999	Microcontrollers & Embedded Systems	3	0	0	3	0	0			
PC	BTCS-T-PC-026	Software Engineering	3	0	0	3	0	0			
PE		Professional Elective - IV	3	0	0	3	0	0			
PE		3	0	0	3	0	0				
PE		Professional Elective - VI	3	0	0	3	0	0			
		PRACTICAL			•						
PC	BTCS-P-PC-028	Cryptography & Network Security Lab	0	0	2	0	0	1			
PC	BTCS-P-PC-027	Software Engineering Lab	0	0	2	0	0	1			
PE	BTCS-P-PE-023 / BTBS-P-PE-024	Emerging Technologies Lab / Entrepreneurship Project	0	0	4	0	0	2			
MC	BTBS-P-MC-018	Yoga / NSS / NCC	0	0	2	0	0	0			
	SUB-TOTAL				10	18	0	4			
		TOTAL		28			22				

Note: Courses offered under each elective are given in "List of Electives" on Page 106.

List of Electives

Code	Elective # and Subjects		
Profe	essional Elective - II		
BTBS-T-PE-035	Statistical Inference		
BTCS-T-PE-047	Mobile Computing		
BTCS-T-PE-048	Realtime Systems		
BTCS-T-PE-049	Advanced Computer Architecture		
Profe	essional Elective - III		
BTCS-T-PE-045	Data Mining & Data Warehousing		
BTCS-T-PE-050	Wireless Sensor Networks		
BTCS-T-PE-051 Distributed Databases			
Profe	essional Elective - IV		
BTCS-T-PE-052	Natural Language Processing		
BTCS-T-PE-053	Cloud Computing		
BTCS-T-PE-054	Parallel & Distributed Systems		
BTCS-T-PE-023	Compiler Design		
Profe	essional Elective - V		
BTCS-T-PE-055	Advanced Machine Learning		
BTCS-T-PE-028	Computer Graphics		
BTCS-T-PE-057	Server Side Scripting		
Profe	essional Elective - VI		
BTCS-T-PE-058	Big Data Analytics		
BTCS-T-PE-031	Soft Computing		
BTCS-T-PE-061	Cyber Security & Forensics		

Type	Code	Computer Networks	L-T-P	Credits	Marks
PC	BTCS-T-PC-013	Computer Networks	3-0-0	3	100

Objectives	The objective of this course is to study the fundamental concepts of computer networks and develop an understanding of modern network architectures from design & performance perspective.
Pre-Requisites	Basic knowledge of a computer system and Internet is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real world examples.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Overview of Data Communication Networks, Protocols and standards, OSI Reference model, TCP/IP Protocol; Physical Layer: Analog Signals, Digital Signals, Data Rate Limits, Transmission Impairment; Digital Transmission: Digital-to-Digital & Analog-to- Digital conversion, Transmission Modes; Analog Transmission: Digital-to-Analog & Analog-to- Analog conversion; Multiplexing: FDM, TDM; Transmission Media: Guided Media, Unguided media; Switching: Circuit Switched, Datagram, and Virtual-Circuit Networks.	8 Hours
Module-2	Error Detection & Correction: Types of Errors, Error Detection mechanisms (Linear codes, Hamming codes, CRC, Checksum); Data Link Control and Protocols: Flow and Error Control, Stop-and-Wait ARQ, Go-Back-N ARQ, Selective Repeat ARQ; Introduction to HDLC and Point-to-Point Protocol; Multiple Access Mechanisms: Random Access - CSMA, CSMA/CD, CSMA/CA; Channelization: FDMA, TDMA, CDMA; Wired LANs (Ethernet): Traditional, Fast, and Gigabit Ethernet standards; Wireless LANs: IEEE802.11 Standards; Connecting Devices: Repeaters, Switches, Routers, Bridges, Modems, Hubs.	10 Hours
Module-3	Network Layer: IPV4 & IPV6 addresses, Subnets; Internet Protocol: Internetworking, IPV4 & IPV6 datagram format; Network Layer Protocols: ARP, RARP, ICMP working principles and datagram format; Routing: Unicast and Multicast Routing Protocols.	10 Hours
Module-4	Transport Layer: Process to Process Delivery, User Datagram Protocol (UDP) and Transmission Control Protocol (TCP), TCP and UDP segments and Flow Control.	8 Hours
Module-5	Domain Name System (DNS): Name Space, Domain Name Space and Distribution; Resolution: Recursive and Iterative DNS Queries; FTP, SMTP, HTTP.	6 Hours
	Total	42 Hours

Text Books:

T1. B. A. Forouzan, *Data Communication and Networking*, 5th Edition, Tata McGraw-Hill, 2017.

T2. A. S. Tannenbum and D. Wetherall, *Computer Networks*, 5th Edition, Prentice Hall, Imprint of Pearson, 2016.

Reference Books:

- R1. L. L. Peterson and B. S. Davie, *Computer Networks: A System Approach*, 5th Edition, Elsevier, 2011.
- R2. W. Stallings, *Data and Computer Communications*, 10th Edition, Pearson Education, 2017.
- R3. B. A. Forouzan and F. Mosharraf, *Computer Networks: A Top-Down Approach*, McGraw-Hill Education, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105183/: by Prof. S. Chakraborty and Prof. S. K. Ghosh, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106/106/106106091/: by Prof. H. A. Murthy, IIT Madras
- 3. https://nptel.ac.in/courses/106/105/106105080/: by Prof. A. Pal, IIT Kharagpur
- 4. https://nptel.ac.in/courses/106/105/106105081/: by Prof. S. Ghosh, IIT Kharagpur
- 5. http://intronetworks.cs.luc.edu/current/ComputerNetworks.pdf: eBook by Prof. P. L. Dordal, Loyola University, Chicago, USA

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the basics of computer networks, topology, TCP/IP, and OSI reference models and various techniques and modes of transmission (Analog and Digital).
CO2	Compare various Data Link protocols, Error detecting mechanisms, Multi-Channel Access protocols and IEEE 802.xx standards for LAN.
CO3	Describe IPv4 & IPv6 addressing schemes, subnets, routing principles and algorithms used in the network layer.
CO4	Explain the protocols of Transport & Application layers and understand the working principles of Internet & the World Wide Web.
CO5	Explain the principles of DNS hierarchy and working principles of various Application layer protocols.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3								1	3	1	3
CO2	2	3	2	3								1	3	1	3
CO3	3	2	2	3								1	2	1	3
CO4	3	2	2	2		1						1	3	1	3
CO5	2	2	2	2		2						1	3	1	2

Type	Code	Formal Languages & Automata Theory	L-T-P	Credits	Marks
PC	BTCS-T-PC-015	Tormar Languages & Automata Theory	3-0-0	3	100

Objectives	The objective of this course is to study the mathematical foundations & abstract models of of computation consisting of automata theory, formal languages & grammars, computability and concept of Turing machines.
Pre-Requisites	Basic knowledge of discrete mathematics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required; sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Automata theory, Computability theory, Complexity theory, Mathematical notations & terminology, Alphabet, String, Languages & operations on strings; Finite Automata (Deterministic): Formal definition, Transition function, Extended transition function, Language of DFA, Design of DFA; Finite Automata (Non-deterministic): Formal definition, Language of NFA, Equivalence of DFA & NFA; NFA with Epsilon Transition: Eliminating ε -transitions from NFA, Conversion from Epsilon-NFA to DFA, Minimization of DFA.	9 Hours
Module-2	Moore Machines, Mealy Machines; Regular Expressions: Operators and their precedence, Building Regular expressions, DFA to Regular Expressions, Regular Expressions to DFA, Arden's theorem, Pumping Lemma for Regular languages, Closure properties of Regular languages.	8 Hours
Module-3	Introduction to Grammars: Definition, Derivation of string, Left and right linear grammars, Regular grammars; Context Free Grammars: Definition, Derivation of string, Language of CFG, Parse Tree, Ambiguity in grammar, Elimination of ambiguity, Normal forms of CFG: Chomsky and Greibach normal forms, Converting CFG to CNF & GNF, Cook, Younger, Kasami Algorithm, Closure Properties of context free languages.	9 Hours
Module-4	Push Down Automata: Basic Model, Components, Moves of a PDA, ID of a PDA, Design of a PDA, PDA to CFG and CFG to PDA conversion, Pumping Lemma for CFL; Turing Machines: Model, Components, ID of TM, Design of a TM, Variation of TM model, Recursively Enumerable Languages, Universal Turing Machine and undecidable problems.	9 Hours
Module-5	Church Turing hypothesis, Recursive and recursively enumerable sets, Chomsky's hierarchy of languages. Undecidability of Post correspondence problem, Linear Bounded Automata and Context Sensitive Languages; Primitive Recursive Functions: μ -Recursive functions, Ackermann's function, Turing computable functions, Cantor and Godel numbering; NP Completeness: P and NP, NP complete and NP Hard problems.	7 Hours
	Total	42 Hours

Text Books:

- T1. J. E. Hopcroft, R. Motwani, and J. D. Ullman, *Introduction to Automata Theory, Languages and Computation*, 3rd Edition, Pearson Education, 2007.
- T2. P. Linz, *An Introduction to Formal Languages and Automata*, 4th Edition, Jones & Bartlett Learning, 2006.

Reference Books:

- R1. M. Sipser, *Introduction to the Theory of Computation*, 3rd Edition, Cengage Learning, 2012.
- R2. J. C. Martin, *Introduction to Languages and the Theory of Computation*, 4th Edition, Tata McGraw-Hill, 2010.
- R3. K. L. P. Mishra, and N. Chandrasekaran, *Theory of Computer Science: Automata, Languages and Computation*, 3rd Edition, PHI, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/111/103/111103016/: by Dr. K.V. Krishna and Dr. D. Goswami, IIT Guwahati
- 2. https://nptel.ac.in/courses/106/106/106106049/: by Prof. K. Krithivasan, IIT Madras
- 3. https://nptel.ac.in/courses/106/105/106105196/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 4. https://www.ics.uci.edu/~goodrich/teach/cs162/notes/: by Prof. M. T. Goodrich, University of California, Irvine, USA

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Develop and implement mathematical models with DFA, NFA for regular languages and grammar for real life applications.
CO2	Design and implement grammar and PDA for context free languages and demonstrate their properties.
CO3	Construct Turing machines for context sensitive and un-restricted languages.
CO4	Describe the Chomsky hierarchy of Formal Languages and Grammar.
CO5	Illustrate the relevance of the Church-Turing thesis, explain the concept of decidability & recursive enumerability, and classify a given language to the P, NP or NPC complexity classes.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1							2	3		3
CO2	3	2	3	1	3							2	3		2
CO3	3	3	3	2	3							2	3		2
CO4	2	3	2	2								2	3		2
CO5	2	2	2	3								1	3		2

Type	Code	Machine Learning	L-T-P	Credits	Marks
PC	BTCS-T-PC-022	Wideliffic Learning	3-1-0	4	100

Objectives	The objective of the course is to learn the fundamental concepts behind supervised, unsupervised & reinforcement learning, assess & select appropriate model and use cross validation to tune their parameters.
Pre-Requisites	Basic knowledge of engineering mathematics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Overview of supervised learning, K-nearest neighbour, Multiple linear regression, Shrinkage methods (Ridge regression, Lasso regression), Logistic regression, Linear Discriminant Analysis, Feature selection.	11 Hours
Module-2	Bias, Variance, and model complexity, Bias-variance trade off, Bayesian approach and BIC, Cross-validation, Bootstrap methods, Performance of Classification algorithms (Confusion matrix, Precision, Recall and ROC Curve).	11 Hours
Module-3	Generative model for discrete data (Bayesian concept learning, Naïve Bayes classifier), SVM for classification, Reproducing Kernels, SVM for regression, Regression and classification trees, Random forest.	11 Hours
Module-4	Clustering (K-means, spectral clustering), Feature Extraction (Principal Component Analysis (PCA), kernel based PCA, Independent Component Analysis (IDA), Non-negative matrix factorization), Mixture of Gaussians, Expectation Maximization (EM) algorithm.	12 Hours
Module-5	Boosting methods-exponential loss and AdaBoost, Numerical Optimization via gradient boosting; Introduction to Reinforcement Learning, Elements of Reinforcement Learning, Single State Case: K-Armed Bandit, Model-Based Learning (Value Iteration, Policy Iteration).	11 Hours
	Total	56 Hours

Text Books:

- T1. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning Data Mining, Inference, and Prediction, 2nd Edition, Springer, 2009.
- T2. S. Haykin, *Neural Networks and Learning Machines*, 3rd Edition, Pearson Education, 2009. T3. E. Alpaydın, *Introduction to Machine Learning*, 2nd Edition, Prentice Hall of India, 2010.

Reference Books:

- R1. Y. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with *Applications in R*, 2nd Edition, Springer, 2013.
- R2. T. M. Mitchell, *Machine Learning*, 1st Edition, McGrow-Hill Education, 2013.
- R3. C. M. Bishop, *Pattern Recognition and Machine Learning*, 1st Edition, Springer, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106139/: by Dr. B. Ravindran, IIT Madras
- 2. https://nptel.ac.in/courses/106/105/106105152/: by Prof. S. Sarkar, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply the concepts of supervised machine learning and its functionalities.
CO2	Determine most appropriate model in a specific context using model selection techniques.
CO3	Perform classification using Bayes classifier, SVM, Decision Tree, and Random Forest.
CO4	Reduce dimensionality using feature selection and apply unsupervised machine learning for solving problems.
CO5	Apply the basic concepts of boosting methods and reinforcement learning to real life problems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	1							1	3	1	2
CO2	3	3	3	2	1							1	3	1	3
CO3	3	3	3	2	1							1	3	1	3
CO4	3	3	3	2	1							1	3	1	3
CO5	3	3	3	2	1							1	3	1	3

Type	Code	Statistical Inference	L-T-P	Credits	Marks
PE	BTBS-T-PE-035	Statistical Interence	3-0-0	3	100

Objectives	The objective of this course is inculcate statistical thinking in designing data collection, derive insights from visualizing data, obtain supporting evidence for data-based decisions, and construct models for predicting & inferring future trends from statistical properties of data.
Pre-Requisites	Basic knowledge of probability & statistics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Distributions Derived from the Normal Distribution: χ^2 , t , and F distribution, Sample mean and sample variance; Survey Sampling: Population parameters, Sample random sampling - Expectation and variance of sample mean, Estimation of population variance, Normal approximation to the sampling distribution of \bar{X} , Estimation of a ratio.	9 Hours
Module-2	Estimation of Parameters & Fitting of Probability Distributions: Fitting the Poisson distribution, Parameter estimation (method of moments, maximum likelihood); Large sample theory for maximum likelihood estimates, Confidence intervals from maximum likelihood estimates, Bayesian approach to parameter estimation, Large sample normal approximation to the posterior, Computational aspects, Efficiency and the Camer-Rao lower bound, Negative binomial distribution, Sufficiency (a factorization theorem, Rao-Blackwell theorem).	9 Hours
Module-3	Testing Hypotheses & Assessing Goodness of Fit: The Neyman-Person paradigm - Specification of the significance level, Concept of a <i>p</i> -value, Null hypothesis, Uniformly most powerful tests, Duality of confidence intervals & hypothesis tests, Generalized likelihood ratio test, Likelihood ratio tests for the multinomial distribution, Probability plots, Tests for normality; Summarizing Data: Comparison of location estimates, Estimating variability of location estimates by bootstrap, Measures of dispersion, Boxplots, Exploring relationship with scatter plots.	8 Hours
Module-4	Comparing Two Samples: Comparing two independent samples – Methods based on the normal distribution, power, A nonparametric method - the Mann Whitney test, Bayesian approach, Comparing paired samples - Methods based on the normal distribution, Signed rank test, Case studies; Analysis of Variance: One-way layout - Normal theory, F test, Problem of multiple comparisons, Kruskal Wallis test.	8 Hours

Module-#	Topics	Hours
Module-5	Analysis of Categorical Data: Fisher's exact test, χ^2 test of homogeneity & independence, matched pairs designs, odds ratios; Simple Linear Regression: Statistical properties of the estimated slope & intercept, Accessing the fit, Correlation & regression.	8 Hours
	Total	42 Hours

Text Books:

T1. J. A. Rice, Mathematical Statistics and Data Analytics, 3rd Edition, Cengage Learning, 2006.

Reference Books:

- R1. L. Wasserman, *All of Statistics : A Concise Course in Statistical Inference*, 1st Edition, Springer, 2004.
- R2. B. Efron and T. Hastie, *Computer Age Statistical Inference : Algorithms, Evidence, and Data Science*, 1st Edition, Cambridge University Press, 2016.

Online Resources:

- 1. https://nptel.ac.in/courses/111105043/: by Prof. S. Kumar, IIT Kharagpur
- 2. https://nptel.ac.in/courses/111/102/111102112/: by Prof. N. Chaterjee, IIT Delhi
- 3. https://nptel.ac.in/courses/111/105/111105124/: by Prof. S. Kumar, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe sampling distributions such as χ^2 , t , and F distribution and use them in real life problems.
CO2	Estimate the parameters and fitting of probability distributions.
CO3	Apply methods of tests of hypothesis and goodness of fit.
CO4	Conduct a hypothesis test for a population proportion, make a decision using p -value and draw an appropriate conclusion.
CO5	Analyze categorical data and formulate linear regression model for the given data sets.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2						1	3	1	3
CO2	3	3	3	2	2	2						1	3	1	3
CO3	3	3	3	2	2	2						1	3	1	3
CO4	3	3	3	2	2	2						1	3	1	3
CO5	3	3	3	2	2	2						1	3	1	3

Type	Code	Mobile Computing	L-T-P	Credits	Marks
PE	BTCS-T-PE-047	widdie Computing	3-0-0	3	100

Objectives	The objective of this course is to study networking principles & wireless communication on cellular networks, wireless internet, wireless devices & satellite systems for unobtrusive connectivity that is always available.
Pre-Requisites	Basic knowledge of computer networks & Internet is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and latest trends.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Personal Communication Systems (PCS): Wireless Technologies, Signals and Frequency; Cellular Systems: Structure, Cluster, Frequency Reuse and Splitting; Medium Access Control Mechanisms: SDMA, FDMA, TDMA and CDMA; GSM: Channels, Bands, Architecture, Mobility Management, Handover Detection & Management; GPRS: Architecture, GPRS Interfaces, GPRS Network Protocols.	8 Hours
Module-2	Wireless LAN (WLAN): IEEE 802.11 System Architecture, Ad-Hoc and Infrastructural Mode, MAC Frame Format; Bluetooth: Piconet, Scatternet, Protocol stack, Profile; WAP: Architecture, Components, Gateway and Protocol Stack, WML Script: Variables, Control Structure & Functions; IMT 2000 Standards: WCDMA and CDMA 2000.	9 Hours
Module-3	Mobile IP: Overview, Requirements, Entities, Agent Advertisement & Discovery, Registration, IP Packet Delivery, Tunneling and Encapsulation; IPv6, DHCP, ICMP; Routing in Ad-hoc Network: DSDV, AODV, DSR, ZRP; Mobile Transport Layer: I-TCP, Snooping TCP, M-TCP, T-TCP; WLL: Architecture, Components, Functionalities; Wireless Enterprise Networks.	9 Hours
Module-4	Satellite Communication Networks: Architecture, Handoffs, Mobile Satellite Systems (GEO, LEO, MEO, HEO), Satellite Constellation for Satellite Phone, Case Studies: Iridium, GLOBALSTAR, GLONASS; Virtual Private Network: Features, Remote Access, Site to Site VPN, Protocols; Security Challenges in Mobile Computing: Algorithms & Implementation.	8 Hours
Module-5	VoIP & Real Time Protocols: Multimedia Content Delivery in Mobile Network, Introduction to Mobile OS: Android, iOS; Introduction to Application Development for Mobile Platforms, Introduction to Android Studio and Java Programming Language, 3-tier Architecture for Mobile Computing, Design Considerations and Computing through Internet, Internet of Things, Future/Current Trends and Research: A Discussion.	8 Hours
	Total	42 Hours

Text Books:

T1. J. Schiller, *Mobile Communication*, 2nd Edition, Pearson Education, 2008.

- T2. Y. –B. Lin and I. Chlamtac, *Wireless and Mobile Network Architectures*, 1st Edition, John Wiley & Sons, 2008.
- T3. D. Griffith and D. Griffiths, *Head First Android Development: A Brain-Friendly Guide*, 2nd Edition, O'Reilly Media, 2019.

Reference Books:

- R1. V. K. Garg, Wireless Communication and Networks, 2nd Edition, Pearson Education, 2003.
- R2. A. K. Talukder, H. Ahmed, and R. Yavagal, *Mobile Computing*, 2nd Edition, Tata McGraw Hill, 2010.
- R3. U. Hansmann, L. Merk, M. Nicklous, and T. Stober, *Principles of Mobile Computing*, 2nd Edition, Springer, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106147/: by Prof. P. Singh and Prof. S. Iyer, IIT Madras
- 2. https://nptel.ac.in/courses/117/104/117104099/: by Prof. A. K. Jagannatham, IIT Kanpur
- 3. https://nptel.ac.in/courses/106/106/106106167/: by Prof. D. K. Pillai, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand different frequency bands & their communication domains and explain the GSM & GPRS functionalities in cellular network.
CO2	Explain the MAC layer protocols of WLAN, Ad hoc Network and different 2G and 3G standards.
CO3	Implement different protocols of Mobile network and transport layer and analyze their performance.
CO4	Comprehend the access and communication mechanisms of satellite network and VPN with cellular network.
CO5	Use appropriate wireless technologies in commercial and enterprise application developments.

Program Outcomes Relevant to the Course:

- 0	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	2								3		3
CO2	3	2	3	2	2								3		3
CO3	3	3	3	3	2	1						1	3		3
CO4	3	3	2	2	2	1							3	1	3
CO5	3	1	2	1	2	1						1	3	2	3

Type	Code	Realtime Systems	L-T-P	Credits	Marks
PE	BTCS-T-PE-048	Realtime Systems	3-0-0	3	100

Objectives	The objective of this course is to study the concepts & approaches in the design & analysis of real-time systems covering real-time operating systems, communication, and databases.
Pre-Requisites	Knowledge of operating systems, computer networks, and database management is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples and problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Test(s) Assignment(s) Mid-Term End-Terr			
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Concept of real-time, Applications of real-time systems, Characteristics of real-time systems, Basic model of real-time system, Safety and reliability, Types of real-time tasks, Timing constraints, Modeling timing constraints.	8 Hours
Module-2	Real-time Task Scheduling : Basic concepts & terminologies, Types of real-time tasks & their characteristics, Classification of real-time task scheduling algorithms, Clock-driven scheduling, Hybrid scheduler, Event-driven scheduling, EDF scheduling, RMA; Scheduling Real-time Tasks in Multiprocessor and Distributed Systems: Dynamic allocation of tasks, Fault-tolerant scheduling of tasks, Clocks in distributed real-time systems, Centralized and distributed clock synchronization.	8 Hours
Module-3	Resource Sharing & Dependencies : Resource sharing among real-time tasks, Priority inversion, Priority Inversion Protocol (PIP), Highest Locker Protocol (HLP), Priority Ceiling Protocol (PCP), Different types of priority inversions under PCP, Important features of PCP, Issues in using resource sharing protocol, Handling task dependencies.	8 Hours
Module-4	Real-time Operating Systems : Time services, Features of a real-time operating system, Unix as a real-time operating system, Windows as a real-time operating system, POSIX, A survey on contemporary real-time operating systems, Benchmarking real-time systems.	8 Hours
Module-5	Real-time Communication & Databases : Basic concepts of real-time communication, Examples of applications requiring real-time communication, Soft & Hard real-time communication in a LAN, Basic concepts of real-time databases, Example applications of real-time databases, Characteristics of temporal data, Concurrency control in real-time databases, Commercial real-time databases.	8 Hours
	Total	42 Hours

Text Books:

T1. R. Mall, *Real-Time Systems*, 2nd Edition, Pearson Education, 2010.

Reference Books:

- R1. J. W. S Liu, *Real-Time Systems*, 1st Edition, Pearson Education, 2002.
- R2. C. M. Krishna and K. G. Shin, *Real-Time Systems*, 1st Edition, McGraw-Hill Education, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105036/: by Prof. R. Mall, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106/105/106105172/: by Prof. R. Mall, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe characteristics & applications of real-time systems and their timing constraints.
CO2	Compare real-time task scheduling algorithms and analyze their schedulability criteria.
CO3	Explain the PIP, HLP & PCP protocols for sharing critical resources among real-time tasks.
CO4	Describe the principles, structure & operation of real-time operating systems and evaluate their suitability for real-time applications.
CO5	Understand the concepts of real-time communication and real-time databases.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	2	1								1		
CO2	3	3	2	2	1							2	3	1	1
CO3	3	3	2	2	2							2	3	1	1
CO4	3	2	2	1	2								1	1	1
CO5	3	2	2	2								2	2	1	1

Type	Code	Advanced Computer Architecture	L-T-P	Credits	Marks
PE	BTCS-T-PE-049		3-0-0	3	100

Objectives	The objective of this course is to provide the theoretical insights into the design & organization of modern computing systems, including structured design methods, analytical techniques, fundamental architectural issues, and the inherent limitations of the traditional approaches.
Pre-Requisites	Knowledge of computer organization and architecture is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Test(s) Assignment(s) Mid-Term End-Term			
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Fundamental Concepts : Microprocessor and Microcontroller, RISC and CISC architectures, Instruction set architecture, Measuring, Reporting and summarizing the performance, Flynn's classification, UMA, NUMA, Distributed Memory Architecture, Array Processor, Vector Processors.	10 Hours
Module-2	Parallelism : Pipelining fundamentals, Parallelism, Arithmetic and Instruction pipelining, Pipeline performance and speedup.	8 Hours
Module-3	Hazards : Pipeline Hazards, Traditional methods to overcome hazards, Branch prediction using BTB, Static and dynamic branch prediction, Scoreboard Technique, Tamasulo's approach.	8 Hours
Module-4	Memory Technologies: Unified Cache, Split Cache, Data vs. instruction Cache, Cache Coherence, Cache Updating Scheme, Cache optimization, Virtual Memory, TLB. IO System: Interface, Data Transfer, Interrupts, Collision Resolution Techniques, Bus Arbitration.	9 Hours
Module-5	Case Studies: Superscalar Operations, UltraSPARC-II, SIMD Array Processor, ILLIAC-IV. Interconnection Networks: Static Networks, Network Topologies, Dynamic Networks.	7 Hours
	Total	42 Hours

Text Books:

- T1. J. L. Hennessy and D. A. Patterson, *Computer Architecture A Quantitative Approach*, 5th Edition, Morgan Kaufmann, 2012.
- T2. K. Hwang and F. A. Briggs, *Computer Architecture and Parallel Processing*, McGraw-Hill Education, 1986.

Reference Books:

R1. D. Sima, T. Fountain, and P. Kacsuk, *Advanced Computer Architecture : A Design Space Approach*, Addison Wesley, 1997.

- R2. J. P. Shen and M. H. Lipasti, *Modern Processor Design: Fundamentals of Superscalar Processors*, McGraw-Hill Education, 2014.
- R3. C. Hamacher, Z. Vranesic, and S. Zaky, *Computer Organization*, 5th Edition, McGraw-Hill, 2017.

Online Resources:

1. https://nptel.ac.in/courses/106/103/106103206/: by Prof. J. Jose, IIT Guwahati

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Define the fundamentals and compare among various multi-processor architectures.			
CO2	Explain the effectiveness of pipelining, classify and compute the speedup thereof.			
CO3	Elaborate the hazards of pipeline architecture and various techniques to overcome them.			
CO4	Describe cache optimization techniques, virtual memory concepts, and IO mechanisms.			
CO5 Compare various industrial processors and explain basics of interconnection networks.				

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1								1	2	2	2
CO2	1	1	1	1								1	3	2	1
CO3	2	2	1	1								1	3	1	1
CO4	1	2	2	2								2	2	1	1
CO5	2	1	2	1								2	2	1	1

Type	Code	Data Mining & Data Warehousing	L-T-P	Credits	Marks
PE	BTCS-T-PE-045	Data Willing & Data Waterlousing	3-0-0	3	100

Objectives	The objective of this course is to understand the need for analysis of large, complex, information-rich data sets, study the fundamentals of data warehousing and discover useful information by data mining.				
Pre-Requisites	Basic knowledge of database systems and probability theory is required.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.				

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotal	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Data Warehousing : Introduction, Difference between operational databases and data warehouses, Three-tier architecture of Data Warehouse, Data Marts, Data staging area, Metadata.	8 Hours
Module-2	Data Mining Basics : Introduction, Application areas in data mining, KDD process; Getting to know your data: Data Objects and attributes types; Data Pre-processing: Why pre-process data? Data cleaning, Data integration, Data transformation and reduction.	8 Hours
Module-3	Mining Frequent Patterns, Associations and Correlations: Introduction, Market Basket Analysis, Frequent Item-set generation using Apriori algorithm, Rule generation; Alternative methods for generating frequent item-sets using FP-Growth algorithm, Evaluation of association patterns; From association analysis to correlation analysis.	8 Hours
Module-4	Classification: Introduction, Naïve Bayesian classifiers, Decision trees induction, Nearest neighbor classifiers; Neural Network: Multilayer perceptron model; Classification model evaluation techniques, Techniques to improve classification accuracy - Bagging, Boosting, Handling the class imbalance problem.	10 Hours
Module-5	Clustering : Overview, K-Means, K-Medoid, Agglomerative hierarchical clustering, DBSCAN, Cluster evaluation, Density-based clustering, Graphbased clustering, Scalable clustering algorithms.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. Han, M. Kamber, and J. Pei, *Data Mining: Concepts and Techniques*, 3rd Edition, Morgan Kaufmann, 2011.
- T2. R. Thareja, *Data Warehousing*, 1st Edition, Oxford University Press, 2009.

Reference Books:

- R1. A. Berson and S. J. Smith, *Data Warehousing, Data Mining & OLAP*, 1st Edition, McGraw Hill Education, 2017.
- R2. P. N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, *Introduction to Data Mining*, 2nd Edition, Pearson Education, 2019.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105174/: by Prof. P. Mitra, IIT Kharagpur
- 2. http://infolab.stanford.edu/~ullman/mining/2003.html: notes by Stanford University

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the requirement of a data warehouse and its components.
CO2	Explain the concepts of data mining and data pre-processing.
CO3	Generate frequent patterns, association rules, and correlations using different data mining algorithms.
CO4	Analyze different classification algorithms and apply the same to real life problems.
CO5	Apply different clustering algorithms for solving problems in various domains.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1									1	3	1	1
CO2	3	3	1									1	3	1	1
CO3	3	3	2	1								1	3	1	1
CO4	3	3	2	1								1	3	1	1
CO5	3	3	2	1								1	3	1	1

	Type	Code	Wireless Sensor Networks	L-T-P	Credits	Marks
Ī	PE	BTCS-T-PE-050	Wifeless Selisor Networks	3-0-0	3	100

Objectives	The objective of this course is to provide concepts & unique design challenges presented by wireless sensor networks (WSNs), and introduction to programming for WSNs at the system, network, and application levels.
Pre-Requisites	Knowledge of computer networks and wireless communication is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, applications, and latest research.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Overview of WSN & its technology, motivation & applications, Taxonomy of WSN technologies, Traditional layered stack, Cross-layer designs, Sensor network architecture.	8 Hours
Module-2	Sensor Node Technology: Overview, Hardware & software, Sensor taxonomy, Wireless network trends, Wireless transmission technology & systems, Radio technology primer, Available wireless technologies, Medium access control protocols for WSN, Fundamentals of MAC protocols, MAC protocols for WSNs, Sensor-MAC case study, IEEE 802.15.4 LR-WPANs Standard case study, MAC protocols analysis using Markov Chain.	10 Hours
Module-3	Routing Protocols : Data dissemination & gathering, Routing challenges, design issues, and strategies; Transport Control Protocols: Design issues, Resource aware routing, Data-centric routing, Geographic routing, Opportunistic routing.	10 Hours
Module-4	WSN Middleware : Principles, Architecture, Existing middleware, Network management - requirements, traditional models, design issues; Security issues of WSN: Possible attacks, Countermeasures, Static & dynamic key distribution.	8 Hours
Module-5	WSN Platforms & Tools: Sensor node Hardware, Berkeley Motes, Programming challenges, Node-level software platforms, Node-level simulators, State-centric programming; Applications of WSNs: Ultra wide band radio communication, Wireless fidelity systems, Future directions, Home automation, Smart metering applications.	6 Hours
	Total	42 Hours

Text Books:

- T1. W. Dargie and C. Poellabauer, *Fundamentals of Wireless Sensor Networks Theory and Practice*, 1st Edition, Wiley, 2010.
- T2. K. Sohraby, D. Minoli, and T. Znati, *Wireless Sensor Networks Technology, Protocols, and Applications*, 1st Edition, Wiley InterScience, 2007.

Reference Books:

- R1. T. Hara, V. I. Zadorozhny, and E. Buchmann, *Wireless Sensor Network Technologies for the Information Explosion Era*, 1st Edition, Springer, 2010.
- R2. B. Krishnamachari, *Networking Wireless Sensors*, 1st Edition, Cambridge University Press, 2005.

Online Resources:

1. https://nptel.ac.in/courses/106/105/106105160/: by Prof. S. Misra, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Describe different types of wireless networks, their architecture and supporting protocols.
CO2	Explain the hardware & software of WSNs and MAC layer protocols to address media accessing.
CO3	Analyze the network & transport layer protocols to address issues like addressing, route optimization, handover, and reliability.
CO4	Explain architecture of WSN middleware, identify security issues and apply necessary countermeasures.
CO5	Apply various WSN platforms and tools to design real world applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

									<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2									1		1		1
CO2	2	2	2	3	3						1		1	1	1
CO3	2	3	2	3	2	1					1		3	1	1
CO4	2	2	3	3	3	1					1		1		2
CO5	2	3	3	3	2	1					1		1		2

Type	Code	Distributed Databases	L-T-P	Credits	Marks
PE	BTCS-T-PE-051	Distributed Databases	3-0-0	3	100

Objectives	The objective of this course is to introduce the fundamental concepts, techniques, and challenges of managing large volume of shared data in a parallel and distributed environment, and provide insight into related research.
Pre-Requisites	Knowledge of relational database management systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and research.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Features of Distributed vs. Centralized Databases, Need of Distributed Databases, Components of DDBMSs, Types of Accesses, Review of Relational Model, Applications, Programs, and Transactions, Levels of Distribution Transparency, Reference Architecture for DDBs, Types of Data Fragmentation, An example DDB, Distribution Transparency for Read-Only & Update Applications, Distributed Database Access Primitives, Integrity Constraints in DDBs.	8 Hours
Module-2	Distributed Database Design, Framework, Objectives, and Approaches, Design of Database Fragmentation, Horizontal Fragmentation, Distributed Join Graphs, Vertical and Mixed Fragmentation, Allocation of Fragments, Equivalence Transformations For Queries, Transforming Global Queries into Fragment Queries, Algebra of Qualified Relations, Simplification of Fragmented Relations, Semi-join Programs, Distributed Grouping and Aggregate Functions, Parametric Queries.	9 Hours
Module-3	Framework for Query Optimization, Problems and Objectives, New model for Queries, Database Profiles, Assumptions and Importance of Distributed Query Optimization, Join Queries, Use of Semi-join Programs, Determination of Semi-join Programs in SDD-1, Determination of Semi-join Programs by AHY Algorithm, Use of Joins for Query Processing, The R* Approach, General Queries, Effect of Commuting Joins and Unions.	9 Hours
Module-4	Framework for Transaction Management, Properties and Goals, Supporting Atomicity of Distributed Transactions, Communication Failures, Recovery of Distributed Transactions, The 2-Phase Commitment Protocol, Lock-based Concurrency Control for Distributed Transactions, Deadlock Detection, Architectural Aspects of Distributed Transactions, Distributed Concurrency Control, Serializability in Distributed Databases, Distributed Deadlocks.	8 Hours

Module-#	Topics	Hours
Module-5	Concurrency Control Based on Timestamps, Optimistic Methods for Distributed Concurrency Control, Reliability - Basic Concepts, Non-blocking Commitment Protocols, Reliability and Concurrency Control, Determining a Consistent View of the Network, Detection and Resolution of Inconsistency, Checkpoints And Cold Restart, Distributed Database Administration, Catalog Management, Authorization and Protection.	8 Hours
	Total	42 Hours

Text Books:

T1. S. Ceri and G. Pelagatti, *Distributed Databases: Principles and Systems*, 1st Edition, McGraw-Hill, 2008.

Reference Books:

- R1. M. T. Özsu and P. Valduriez, *Principles of Distributed Database Systems*, 3rd Edition, Springer, 2010.
- R2. S. K. Rahimi and S. H. Frank, *Distributed Database Management Systems*, 1st Edition, Wiley-IEEE Computer Society, 2011.
- R3. D. Bell and J. Grimson, *Distributed Database Systems*, 1st Edition, Addison-Wesley, 1992.

Online Resources:

1. https://www.tutorialspoint.com/distributed_dbms

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the fundamentals, architecture and data fragmentation in distributed databases.
CO2	Design distributed databases with fragmentation & allocation of data, and explain query execution in a distributed environment.
CO3	Apply query optimization strategies for query execution in a distributed database system.
CO4	Visualize transaction processing and lock based concurrency control in distributed databases.
CO5	Describe timestamp-based concurrency control, reliability and administration of distributed databases.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1		2						1	2	2	2
CO2	3	3	3	2	1	1						1	3	2	2
CO3	3	3	3	2	1	1						1	3	2	2
CO4	3	3	3	2	1	1						1	2	2	2
CO5	3	2	1	1	1	2						1	3	2	2

Ty	oe Code	Universal Human Values & Professional	L-T-P	Credits	Marks
M	BTBS-T-MC-020	Ethics	2-0-0	0	100

Objectives	The objective of this course is to enable the students to become aware of professional ethics and universal human values. It will instill moral and social values and loyalty to appreciate the rights of others. This course also provides the basis for deciding whether a particular action is morally good or bad.
Pre-Requisites	Elementary idea on Psychology, sensitivity to professionalism with respect to morality, judgment, and commitment are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, and planned interactive sessions.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Value Education : Understanding Value Education, Self-exploration as the Process for Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity – Current Scenario, Method to Fulfill the Basic Human Aspirations.	6 Hours
Module-2	Harmony in the Human Being: Understanding Human being as the Coexistence of the Self and the Body, Distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Programme to ensure self-regulation and Health.	6 Hours
Module-3	Harmony in the Family and Society: Harmony in the Family – Family as the Basic Unit of Human Interaction, Values in Human-to-Human Relationship, 'Trust' – the Foundational Value in Human Relationship, 'Trust Deficit' - the concept and its dimensions and implications, 'Respect' as the Right Evaluation, Understanding Harmony in the Society, Vision for the Universal Human Order.	6 Hours
Module-4	Harmony in the Nature or Existence: The Four Orders of Nature, Understanding Harmony in the Nature, Interconnectedness, Self-regulation and Mutual Fulfillment among the Four Orders of Nature, Realizing Existence as Co-existence at all Levels, The Holistic Perception of Harmony in Existence.	4 Hours
Module-5	Implications of the Holistic Understanding – A Look at Professional Ethics: Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production Systems and Management Models-Typical Case Studies, Strategies for Transition towards Value-based Life and Profession.	6 Hours
	Total	28 Hours

Text Books:

- T1. R. R. Gaur, R. Asthana, and G. P. Bagaria, *A Foundation Course in Human Values and Professional Ethics*, 2nd Edition, Excel Books, 2019.
- T2. A. Nagaraj, Jeevan Vidya: Ek Parichaya, Jeevan Vidya Prakashan, 1999.

Reference Books:

- R1. A. N. Tripathi, *Human Values*, 3rd Edition, New Age International Publishers, 2019.
- R2. M. K. Gandhi, Translated by (from Gujarati) M. Desai, *The Story of My Experiments with Truth*, 1st Edition, FingerPrint Publishing, 2009.

Online Resources:

- 1. http://hvpe1.blogspot.com/2016/06/notes-human-values-and-professional.html
- 2. https://examupdates.in/professional-ethics-and-human-values
- 3. http://www.storyofstuff.com
- 4. https://aktu.ac.in/hvpe/ResourceVideo.aspx

Course Outcomes: At the end of this course, the students will be able to:

CO1	Learn ethical concepts which will enable them to effectively resolve ethical issues in their personal and professional lives.
CO2	Be aware of their duties and responsibilities as professionals towards their organization and society.
CO3	Gather primary knowledge on engineering ethics and its objectives, different parameters of enquiry and engineering as an experiment in society.
CO4	Be conscious about risk and safety while finding a solution to an engineering problem.
CO5	Become attentive of the different global ethical issues.

Program Outcomes Relevant to the Course:

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			1	1	1				1			1
CO2			1			1	1	2	1	1		1		1	1
CO3			1			1		2		1		1		1	1
CO4			1			1	2	1	1			1			1
CO5			1			1	1	1	1	1		1			

Type	Code	Soft Skills & Interpersonal Skills Lab	L-T-P	Credits	Marks
HS	BTBS-P-HS-021	Soft Skills & Interpersonal Skills Lab	0-0-4	2	100

Objectives	The objectives of this laboratory course is to practice language skills to become effective communicators by addressing issues like speaking inhibitions. The comprises of individual and team activities based on the four skills of langu (LSRW).						
Pre-Requisites	Basic knowledge of English grammar and the ability to speak, read, and write using the English language is required.						
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair and/or team activities with regular assessments, presentations, discussions, role play, audio-visual supplements, writing activities, business writing practices and vocabulary enhancement.						

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Process of Communication – Group activity.
2	Mock GD 1 – Effective Communication Skills.
3	Mock GD 2 – Subject clarity & group dynamics.
4	Mock GD 3 – Behaviour and Mannerisms.
5	GD: Test – Final Assessment.
6	Presentation Skills 1 (Group Activity: 4-5 students) – Language Fluency, Active Listening, Voice Modulation.
7	Presentation Skills 2 (Group Activity: 2-3 students) – Develop awareness of non-verbal attributes in presenters.
8	Presentation Skills 3 (in pairs) – Subject clarity and knowledge.
9	Presentation Skills: Test 1 – Individual activity.
10	Presentation Skills: Test 2 – Individual activity.
11	Verbal Ability 1 – Activity Sheets: Error identification and correction.
12	Verbal Ability 2 – Activity Sheets: synonyms, antonyms & homonyms, one word substitution, jumbled paragraphs & sentences.
13	Verbal Ability 3 – Activity Sheets: tenses, voice change.
14	Teamsmanship & Leadership Skills 1 – Video.
15	Teamsmanship & Leadership Skills 2 – Group activity.
16	Listening 1 – Correct Pronunciation & Stress.
17	Listening 2 – Video 1.
18	Listening 3 – Video 2.
19	Mock Interview 1 – CV and Cover Letter writing.

Experiment-#	Assignment/Experiment	
20	Mock Interview 2 – Handling FAQ's and language fluency.	
21	Mock Interview 3 – Assessment.	
22	Mock Interview 4 – Assessment.	
23	Writing Skill 1 – Essay writing.	
24	Writing Skills 2 – Precis writing.	
25	Assertiveness Skills – Activity and assessment.	
26	Mind Mapping & SWOC – Assessment.	
27	Enhancing Reading Skills 1 – Summarising & Note-making.	
28	Reading Skills 2 – Comprehension passage.	

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, Tata McGraw Hill, 2017.
- T2. T. Balasubramaniam, English Phonetics for Indian Students, 3rd Edition, Trinity Press, 2013.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practice*, 3rd Edition, Oxford University Press, 2015.

Reference Books:

- R1. S. Samantray, *Business Communication and Communicative English*, 3rd Edition, Sultan Chand, 2006.
- R2. S. John, *The Oxford Guide to Writing and Speaking*, 3rd Edition, Oxford University Press, 2013.
- R3. B. K. Mitra, *Personality Development and Soft Skills*, 2nd Edition, Oxford University Press, 2016.
- R4. B. K. Das et. al., An Introduction to Professional English and Soft Skills, Cambridge University Press, 2009.
- R5. B. K. Mitra, *Effective Technical Communication A Guide for Scientists and Engineers*, 1st Edition, Oxford University Press, 2006.

Online Resources:

- 1. https://owl.purdue.edu/owl/purdue_owl.html
- 2. https://www.usingenglish.com/
- 3. http://www.english-test.net/
- 4. https://www.ef.com/wwen/english-resources/

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Develop the skills to use English language for effective communication.
CO2	Utilise function of language in context of formality, appropriateness and sensitive issues.
CO3	Formulate and structure sentences using grammatically correct English.
CO4	Compose clear and effective business messages for specific purposes.
CO5	Build up a strong personality and develop skills for efficient public speaking.

Program Outcomes Relevant to the Course:

_		
	PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess
		societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
		the professional engineering practice.
Ī	PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
		norms of the engineering practice.

PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						3		1	2	3	2	3	1	3	3
CO2								2	2	3	2	3		3	2
CO3										3		3		2	2
CO4								1	1	3		3		3	3
CO5			·				·	1	2	3	1	3		3	3

Type	Code	Computer Networks Lah	L-T-P	Credits	Marks
PC	BTCS-P-PC-014	Computer Networks Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to implement various computer networking protocols in a high-level programming language and become acquainted with socket programming & GUI based Network Simulation tools like NetSim/NS3.				
Pre-Requisites	Knowledge of C programming and concepts of computer networks taught in the theory class are required.				
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.				

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to Network Hardware and Software, Network Command like Netstat, Tracert, Ping, Pathping, Telnet, FTP.
2	Basic idea about IPv4 addressing and programming to find the IP address of a machine and Ethernet address.
3	To study various types of connector devices: Router, Hub, Switch, Bridge and verification of standard Network topologies: Star, Bus, Ring etc.
4	Introduction to Socket Programming: TCP and UDP sockets.
5	Socket Programming for Echo Client and Echo Server using TCP socket.
6	Socket Programming for Chatting between two Machines using TCP socket.
7	Socket Programming for Echo Client and Echo Server using UDP socket.
8	Socket Programming for communicating between two Machines using UDP socket.
9	Socket Programming for HTTP web page upload and download.
10	C Program to implement ARP/RARP Protocols.
11	Introduction to Network Simulator details (NetSim/NS3).
12	Simulation of different MAC Protocols: ALOHA, CSMA etc.
13	Simulation of Routing Protocol: Link state Routing.
14	Implementation of STOP and Wait Protocol.

Text Books:

- T1. R. Stevens and S. A Rago, *Advanced UNIX Programming*, 3rd Edition, Pearson Education, 2013. T2. L. V. Winkle, *Hands-On Network Programming with C*, 1st Edition, Packt Publishing, 2019.

Reference Books:

- R1. S. Walton, *LINUX Socket Programming*, 2nd Edition, SAMS Publication, 2007.
- R2. M. J. Donahoo and K. L. Calvert, TCP/IP Sockets in C: Practical Guide for Programmers, 2nd Edition, Morgan Kaufmann, 2009.

Online Resources:

- 1. http://home.iitk.ac.in/~chebrolu/ee673-f06/sockets.pdf: Socket Programming by Prof. K. Chebrolu, IIT Kanpur
- 2. https://www.csd.uoc.gr/~hy556/material/tutorials/cs556-3rd-tutorial.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Experiment with transmission media, connector, Hubs, Switches and installation of NIC.
CO2	Implement client server applications with TCP/UDP Socket Programming in a standalone machine and over a network.
CO3	Apply HTTP over TCP/UDP connection with help of a Browser.
CO4	Simulate Datalink layer protocols using NetSim/NS3.
CO5	Develop applications to communicate over heterogeneous networks (Internet).

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

11	0				,			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1							2	2	1	3
CO2	3	2	3	1	2							2	2	1	3
CO3	2	3	3	2	3							2	2	1	3
CO4	2	2	2	2								2	3	1	2
CO5	2	2	2	3									3	1	2

Type	Code	Internet & Web Technology Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-021	Internet & Web Technology Lab	0-0-4	2	100

Objectives	The objective of this course is to provide hands-on exposure on development of static & dynamic web pages using client-side and server-side programming with database connectivity and deployment of web applications.			
Pre-Requisites Knowledge on programming, databases, internet and browsers is requi				
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.			

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study of Web Browsers - Internet Explorer, Chrome, Mozilla Firefox; Browser Settings and options, security features, Cookies, temporary files etc.
2	Working of Application Layer Protocols - HTTP, FTP and SMTP.
3	HTML - Basics of HTML, text, image, MIME types, lists, tables.
4	Creating Web Forms and Use of HTTP GET & POST Methods.
5	Embedding audio and video, Image Map and Anchor Tag.
6	CSS - Introduction to Style Sheets.
7	Use of CSS2, CSS3, DIV and SPAN tags.
8,9	JavaScript - Introduction to Client side Script, DOM (Document Object Model).
10, 11	JavaScript - Use of Different Elements of DOM, Form, Client Side Validation.
12	Introduction to PERL script and PERL Interpreter.
13	Text processing in PERL.
14	FORM handling in PERL.
15	Server Side Scripting - Introduction to Web Server Architecture (APACHE/IIS)
16	Server Side Scripting - Overview of PHP/JSP.
17	Server Side Scripting - Practice of PHP/JSP – Creating dynamic web pages.
18	XML - Introduction to Extensible Markup Language.
19	Database connection using MySQL.
20	FORM data handling and validation
21	Project Assignment (requirements, test scenarios & implementation criteria).
22-27	Development of assigned project using various web technologies taught.
28	Demonstration of working project, presentation, viva and evaluation.

Text Books:

T1. Kogent Learning Solutions, Web Technologies: Black Book, 1st Edition, Dreamtech Press, 2009.

Reference Books:

- R1. T. A. Powell, *The Complete Reference HTML and CSS*, 5th Edition, McGraw-Hill, 2017. R2. M. C. Brown, *Perl: The Complete Reference*, 2nd Edition, McGraw-Hill, 2001.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105084/: Prof. I. Sengupta, IIT Kharagpur
- 2. https://www.w3schools.com: HTML & CSS with working examples
- 3. https://www.tutorialspoint.com/html/html_javascript.htm: Javascript working examples and practice sets
- 4. https://perlmaven.com/perl-tutorial: Perl tutorial

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Explain the working of Browsers and Internet protocols.
CO2	Develop web pages using HTML and CSS.
CO3	Develop interactive Web pages using Java script and XML.
CO4	Use Web server software and Server side scripts to develop & deploy websites.
CO5	Create and host fully fledged user interactive site, using Web tools and languages.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2							2	1		
CO2	2	2	3	1	3							2	1		
CO3	3	3	2	2	2							2	1	1	1
CO4	2	3	2	2								2	2	1	1
CO5	2	2	2	3									2	1	1

Type	Code	Skill Lab & Project-I	L-T-P	Credits	Marks
PJ	BTCS-P-PJ-025	Skiii Lab & Hoject-i	0-0-4	2	100

Objectives	This laboratory course focuses on overall skill development of through problem formulation, designing, development and implementation of models as solution for the identified problem. Students will be introduced to different open source tools to carry out the assigned project, finishing with project demonstration, report, presentation, viva, and evaluation.
Pre-Requisites	Knowledge on programming languages like C, C++, Java, Python, RDBMS tools such as PL/SQL, PostreSQL, front-end tools and Scientific Document preparation tools are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher, and shall comprise of programming assignments leading to a complete project.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Problem Identification –I.
2	Problem Identification –II.
3	Problem Formulation.
4	Designing the Model – I.
5	Designing the Model – II.
6	Database Design – I.
7	Database Design – II.
8	Development and Implementation of Model – I.
9	Development and Implementation of Model – II.
10	Development and Implementation of Model – III.
11	Development and Implementation of Model – IV.
12	Interim Project Presentation & Viva.
13	Development and Implementation of Model – V.
14	Development and Implementation of Model – VI.
15	Development and Implementation of Model – VII.
16	Development and Implementation of Model – VIII.
17	Development and Implementation of Model – IX.
18	Development and Implementation of Model – X.
19	GUI Development – I.
20	GUI Development – II.
21	GUI Development – III.
22	Performance Analysis and Testing – I.

Cont'd...

Experiment-#	Experiment-# Assignment/Experiment		
23	Performance Analysis and Testing – II.		
24 Project Report Preparation – I.			
25	Project Report Preparation – II.		
26	Project Report Preparation – III.		
27	Project Report Preparation – IV.		
28	Final Project Presentation & Viva.		

Text Books:

- T1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Edition, Pearson Education, 2015.
- T2. H. Schildt, *The Complete Reference C++*, 4th Edition, McGraw-Hill, 2003.
- T3. H. Schildt, *Java The Complete Reference*, 9th Edition, McGraw-Hill, 2014.
- T4. R. Sedgewick, K. Wayne, and R. Dondero, *Introduction to Programming in Python : An Interdisciplinary Approach*, 1st Edition, Pearson Education, 2016.

Reference Books:

- R1. Z. A. Shaw, Learn C the Hard Way: Practical Exercises on the Computational Subjects You Keep Avoiding (Like C), 1st Edition, Addison Wesley, 2015.
- R2. B. Stroustrup, *The C++ Programming Language*, 4th Edition, Addison-Wesley, 2013.
- R3. E. Matthes, *Python Crash Course: A Hands on Project-based Introduction to Programming*, 2nd Edition, William Pollock, 2019.

Online Resources: There are a number of online resources available for this course. The student is advised to search on the Internet and locate the required study materials as per advise of the teacher.

Note: Additional course/reference materials, research publications, manuals/API, tools, libraries, or other software may be suggested by the teacher as per requirement of the skills needed for the project.

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify different real-life problems from a given situation or environment.
CO2	Design and develop mathematical models for the existing problems.
CO3	Implement the proposed models by some programming languages or tools.
CO4	Test the model using test cases for practical implementation in real-life as a product.
CO5	Deploy the model and contribute it as a product to the society.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Cont'd...

PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1_1	11 8														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3			2		3		2		2	2	3	3	3
CO2	1				3		3		3		2	2	3		3
CO3	1		3	2	3	2	2		3		2	2	3		3
CO4	1	1	3	2	3	2			2			2	3	3	3
CO5	1	1			2	1	1		1			1	3	3	3

T	ype	Code	Cryptography & Network Security	L-T-P	Credits	Marks
]	PC	BTCS-T-PC-059	Cryptography & Network Security	3-0-0	3	100

Objectives	The objective of this course is to introduce different security goals, services & mechanisms with primary focus on various cryptography techniques used to protect from security threats in computer networks and data communications.
Pre-Requisites	Knowledge on computer networks and engineering mathematics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on problem solving and examples.

To	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Computer Security Concepts, Security Attacks, Security Services and Mechanisms, Symmetric Cipher model, Cryptography & Cryptanalysis, Substitution Techniques: Caesar cipher, Monoalphabetic cipher, Playfair cipher, Hill Cipher, Polyalphabetic ciphers: Vignere cipher, Vernam cipher, Transposition cipher.	8 Hours
Module-2	Integer and Modular Arithmetic, Euclidean and Extended Euclidean Algorithms, Concept of groups, rings, and fields, Difference between GF(p) and GF(2 ^m), Block cipher principles, Data Encryption Standard (DES), Advanced Encryption Standard (AES).	9 Hours
Module-3	Fermat's and Euler's Theorems, Chinese Remainder Theorem, Integer Factorization, Discrete Logarithms; Public Key Cryptography - RSA, ElGamal, Diffie-Hellman Key Exchange; Elliptic Curve Cryptography - Introduction to elliptic curve, arithmetic, application.	9 Hours
Module-4	Message Integrity and Authentication; Cryptographic Hash Functions: MD5, SHA family, Digital Signature and applications - ElGamal.	7 Hours
Module-5	Key Distribution, Certificate Authority, X.509, Kerberos, E-mail security: PGP, S/MIME, Security at the Transport Layer: SSL/TLS, Security at Network Layer: IPSec, Malicious Software, Firewall, Intrusion Detection.	9 Hours
	Total	42 Hours

Text Books:

T1. W. Stallings, *Cryptography and Network Security: Principle and Practice*, 7th Edition, Pearson Education, 2017.

Reference Books:

- R1. B. A. Forouzan and D. Mukhopadhaya, *Cryptography and Network Security*, 2nd Edition, McGraw-Hill Education, 2010.
- R2. C. P. Pfleeger, S. L. Pfleeger, and J. Margulies, *Security in Computing*, 5th Edition, Prentice Hall India, 2015
- R3. C. Kaufman, R. Perlman, and M. Speciner, *Network Security: Private Communication in a Public World*, 2nd Edition, Prentice Hall India, 2002.

R4. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 1996.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105031/: by Dr. D. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106/105/106105162/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106/106/106106221/: by Prof. A. Choudhury, IIIT Bangalore
- 4. https://www.cryptool.org/en/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify security objectives & threats and enumerate necessary services & mechanisms for effective counter measures.
CO2	Explain the mathematical foundation of cryptography through modular arithmetic, linear algebra, number theory, factorization and discrete logarithm.
CO3	Analyze the performance of traditional symmetric key cryptography techniques and modern symmetric key ciphers like DES and AES.
CO4	Apply public key cryptography and Hash algorithms in encryption, data integrity, authentication, digital signature, and key exchange.
CO5	Apply cryptography techniques in various network security protocols like SSL, TLS, PGP, S/MIME, and IPsec.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1									3		3
CO2	3	3	1	1									3		3
CO3	3	3	3	2		2							3		2
CO4	3	3	3	2		2							3		3
CO5	1	3	3	3		2							3		3

Type	Code	Microcontrollers & Embedded Systems	L-T-P	Credits	Marks
PC	BTCS-T-PC-999	Wilefocontrollers & Embedded Systems	3-0-0	3	100

Objectives	The objective of this course is to study the concepts & architecture of embedded systems including 8051 and ARM architecture, modeling embedded solutions, hardware-software co-design, hardware-software partitioning, and real-time operating systems.
Pre-Requisites	Knowledge of digital electronics, operating systems, computer organization and architecture is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and latest trends.

Te	eacher's Assessme	Written A	Total			
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Processors and Controllers: CPU in Computing Systems, CPU Choice – Performance Metrics, Evolution of Microprocessor, Internal Microprocessor (8086 to Pentium), Comparison of Microprocessors and Microcontrollers, 8051 Microcontroller: Intel MCS-51 family features, 8051 Organization and Architecture, Registers, Addressing Modes, Instruction Set, Conditional Instructions,	10 Hours
Module-2	ARM Microcontrollers: Introduction to RISC Processor, ARM Pipeline, Instruction Set Architecture (ISA) – Registers, Data Processing Instructions, Data Transfer Instructions, Multiplications Instructions, Software Interrupt, Conditional Execution, Branch Instruction, Swap Instruction, THUMB Instructions.	8 Hours
Module-3	Embedded Systems: Embedded Systems vs. General Computing Systems, Classification of Embedded Systems, Different Modules of Embedded Systems, Devices, Device Drivers and Communication Interfaces – I/O Devices, Device Drivers, Serial Peripheral Interfaces, IIC, RS232C, RS422, RS485, Universal Serial Bus, USB Interface, USB Connector IrDA, CAN, Bluetooth, ISA, PCI, PCI-X and Advanced Busses.	8 Hours
Module-4	Modelling Techniques and Co-Design Issues: Software and Programming Concepts, Processor Selection for an Embedded System, State Chart, SDL, Petri-Nets and Unified Modeling Language (UML), Hardware Software Co-Design, Hardware and Software Partitioning – K-L Partitioning, Partitioning using Genetic Algorithm.	8 Hours
Module-5	Real Time Operating Systems (RTOS): Real-Time Task Scheduling, Important Concepts, Types of Real-Time Tasks and their Characteristics, Task Scheduling, Clock-Driven Scheduling, Hybrid Schedulers, Event-Driven Scheduling, Earliest Deadline First (EDF) Scheduling, Rate Monotonic Algorithm (RMA).	8 Hours
	Total	42 Hours

Text Books:

- T1. R. Kamal, *Embedded System Architecture*, *Programming and Design*, 3rd Edition, Tata McGraw-Hill, 2017
- T2. S. Chattopadhyay, *Embedded System Design*, 2nd Edition, Prentice Hall India, 2013.
- T3. F. Vahid and T. Givargis, *Embedded Systems Design: A Unified Hardware I Software Introduction*, Student Edition, Wiley India, 2002.

Reference Books:

- R1. R. Niemann, *Hardware Software Co-Design for Data Flow Dominated Embedded Systems*, Kulwer Academic, 1998.
- R2. S. V. Iyer and P. Gupta, Embedded Realtime Systems Programming, McGraw Hill Education, 2017.
- R3. R. Mall, *Real-Time Systems*, 2nd Edition, Pearson Education, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105159/: by Prof. A. Basu, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/105/108105057/: by Prof. R. Mall, Prof. A. Patra, and Prof. A. Routray, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108/102/108102045/: by Prof. S. Chaudhary, IIT Delhi
- 4. https://nptel.ac.in/courses/106/105/106105193/: by Prof. I. Sengupta and Prof. K. Datta, IIT Kharagpur
- 5. https://in.udacity.com/course/embedded-systems: by Prof. S. Pande and C. Gamboa, GeorgiaTech.

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Explain the concepts of embedded systems and select a processor for specific applications.
CO2	Describe RISC architecture with ARM and design embedded system around the same.
CO3	Analyze different serial and parallel communication protocols used in embedded systems.
CO4	Apply different techniques used for H/w and S/w modeling and partitioning methods.
CO5	Explore different types of real-time operating systems and their task scheduling mechanisms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Cont'd...

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2							2	1	2	2
CO2	3	3	3	1	3							1	1	2	2
CO3	3	1	1	2		2						1		1	
CO4	3	2	3		3										2
CO5	2	1	2		2							1		1	1

Type	Code	Software Engineering	L-T-P	Credits	Marks
PC	BTCS-T-PC-026	Software Engineering	3-0-0	3	100

Objectives	The objective of this course is to learn the concepts & practices of software engineering starting with different phases of SDLC up to deployment & maintenance covering all facets of software development in industry.
Pre-Requisites	Basic programming knowledge and understanding of databases are required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and latest trends.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Software Engineering : Introduction, Evolving role of software, Legacy software, Software myths, Process framework, CMM, Life-cycle models, Waterfall model, Incremental models, Evolutionary models, Specialized models, Unified process, Agile Process Models (Extreme programming, Crystal, Scrum)	8 Hours
Module-2	Requirements Engineering : Types of Requirements, Functional and non-functional requirements, The software requirements document, Requirements - specification, engineering processes, elicitation & analysis, validation, and management; Decision Trees and Decision Tables, Formal Specification (Axiomatic specs for Stacks & Queues)	9 Hours
Module-3	Software Project Management : Software project planning process, Project estimation (Cost, Time, Effort), Decomposition techniques, Empirical estimation models, The Make/Buy decision, Project scheduling, Task network, Critical Path method, PERT Scheduling, Earned Value analysis.	9 Hours
Module-4	Design Engineering : Function-oriented Software Design (DFD, Structure charts), Object-oriented Design using UML, User Interface design; Software Testing : Testing strategies, Types of testing, Black-Box testing, White-box testing, Basis Path testing, Control Structure testing, Reliability testing, Security testing.	9 Hours
Module-5	Advanced Topics : Testing web-apps, Formal methods, Risk Management, Configuration Management, Re-Engineering, Security Engineering.	7 Hours
	Total	42 Hours

Text Books:

- T1. R. S. Pressman, *Software Engineering : A Practitioners Approach*, 7th Edition, McGraw Hill, 2010. T2. I. Sommerville, *Software Engineering*, 9th Edition, Pearson Education, 2011.

Reference Books:

R1. R. Mall, Fundamentals of Software Engineering, 4th Edition, PHI, 2014.

P.T.O

Online Resources:

- 1. https://nptel.ac.in/courses/106/101/106101061/: by Prof. N. L. Sarda, Prof. U. Bellur, and Prof. R. K. Joshi, IIT Bombay
- 2. https://nptel.ac.in/courses/106/105/106105087/: by Prof. R. Mall, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106/101/106101163/: by Prof. M. D'souza, IIIT Bangalore
- 4. https://nptel.ac.in/courses/106/105/106105218/: by Prof. D. P. Mohapatra, NIT Rourkela and Prof. R. Mall, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand the SDLC phases and apply suitable life-cycle model in building of software products based on their characteristics.
CO2	Apply various requirement analysis tools for the requirements engineering process.
CO3	Describe the project management components and apply them for cost, time & effort estimation for software development projects.
CO4	Explain the design artifacts, testing strategies and implement them appropriately.
CO5	Achieve competitive advantage and enhanced quality by applying advanced concepts.

Program Outcomes Relevant to the Course:

110514111	Outcomes refevant to the course.
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	3		1	1				2	1	1	1	1	3
CO2	3	2	1		3	1				2	2	2	3	1	3
CO3	3	2	1		2	3				3	3	2	3	2	3
CO4	3	1	3		3	1				3	3	1	3	1	3
CO5	1	2	2		2	1				1	1	1	2	3	2

Type	Code	Natural Language Processing	L-T-P	Credits	Marks
PE	BTCS-T-PE-052	Natural Language 1 locessing	3-0-0	3	100

Objectives	The objective of this course is to study fundamentals, algorithms, and techniques to enable processing of human languages by computers in order to design different human-computer interactive systems.
Pre-Requisites	Knowledge on grammar rules, statistics, regular expressions, and automata theory is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, problem solving, and latest advances.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to NLP : Need for processing natural languages, issues and processing complexities, Overview of phases of natural language processing; Language Modeling: Grammar based language models, Statistical modelling, <i>n</i> -gram model.	8 Hours
Module-2	Word Level Analysis : Use of Regular expressions, Use of finite state automata, Morphological parsing, Spelling error detection and correction, Part of speech tagging.	8 Hours
Module-3	Syntactic Analysis : Phrase and sentence level constructions, Parsing: Topdown parsing, Bottom-up parsing, A basic top-down parser, The Earley parser, The CYK Parser, Probabilistic parsing.	9 Hours
Module-4	Semantic Analysis : Meaning representation, Meaning structure of languages, WordNet, Internal structure of words, Ambiguity, Word sense disambiguation, Discourse Analysis: Anaphora resolution, Discourse structure, Natural Language Generation.	9 Hours
Module-5	Advanced Applications : Information Retrieval System, Machine Translation System, Question Answering System, Text Summarization, Other applications.	8 Hours
	Total	42 Hours

Text Books:

- T1. D. Jurafsky and J. H. Martin, Speech and Language Processing An introduction to Language Processing, Computational Linguistics, and Speech Recognition, 2nd Edition, Pearson Education, 2013.
- T2. T. Siddiqui and U. S. Tiwary, *Natural language Processing and Information Retrieval*, 1st Edition, Oxford University Press, 2008.

Reference Books:

- R1. J. Allen, *Natural Language Understanding*, 2nd Edition, Pearson Education, 2008.
- R2. C. D. Manning and H. Schütze, *Foundations of Statistical Natural Language Processing*, 2nd Edition, MIT Press, 2000.

Online Resources:

- 1. https://nptel.ac.in/courses/106/101/106101007/: by Prof. P. Bhattacharyya, IIT Bombay
- 2. https://nptel.ac.in/courses/106/105/106105158/: by Prof. P. Goyal, IIT Kharagpur
- 3. https://nlp.stanford.edu/fsnlp/
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-863j-natural-language-and-the-computer-representation-of-knowledge-spring-2003/lecture-notes/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain the fundamental concepts and grammar based models for natural language processing.
CO2	Apply various word-level analysis techniques to convert natural languages into computer processible form.
CO3	Perform syntactic analysis of natural languages using various parsing techniques.
CO4	Derive unambiguous contextual meaning of natural languages by semantic analysis.
CO5	Appreciate applications of NLP in various human-computer interactive systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PP-	The print of cost of cost and roos (i. 2011) 2. Medianity of ringing														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2						1	2		2
CO2	3	3	2	3	2	2						2	3		3
CO3	3	2	2	2	2	2						2	3		3
CO4	3	3	3	3	3	3						3	3		3
CO5	3	3	3	3	3	3						3	3		3

Type	Code	Cloud Computing	L-T-P	Credits	Marks
PE	BTCS-T-PE-053	Cloud Computing	3-0-0	3	100

Objectives	The objective of this course is to study fundamental concepts of cloud computing platforms, technologies, service & deployment models, commercial implementations, and security aspects of applications on cloud.
Pre-Requisites	Knowledge on computer networking, client-server concepts, internet & web technologies is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and latest trends.

T	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Client/Server systems, Thin & Thick Clients, Centralized computing, Parallel & Distributed Computing, Amdahl's Law, P2P Computing, Cluster Computing, Grid Computing, Utility Computing, Autonomic Computing, Hosting, Data Center, Evolution of Computing Paradigms, Convergence of Technologies, Role of Open Standards.	8 Hours
Module-2	The NIST Model of Cloud Computing, Characteristics, Deployment Models, Service Models & their comparison, Disadvantages, Cloud Computing Stack, Virtualization, Types of Hypervisors, Levels of Virtualization, Requirements of VMM, Hypervisor & the Xen Architecture, Types of Virtualization, Memory Virtualization, Storage Virtualization, Load Balancing, Horizontal & Vertical Scaling.	9 Hours
Module-3	Cloud Implementations: Infrastructure as a Service (IaaS) – Amazon Web Services, Elastic Compute Cloud (EC2), Simple Storage Service (S3), Simple Queuing Service (SQS), VMWare vCloud, vCloud Express; Platform as a Service (PaaS) – Google App Engine, Java & Python Runtime Environments, Google File System, Google BigTable.	9 Hours
Module-4	Windows Azure, SQL Azure, Windows Azure AppFabric; Software as a Service (SaaS): Introduction, Web Services, Web 2.0, Web OS, Case studies on SaaS - SalesForce.com, Force.com, LiveMesh, MS Office Live, Google Apps; Service Level Agreements, Billing & Accounting in SaaS models.	8 Hours
Module-5	Cloud Security: Infrastructure Security - Network level, Host level, Application level, Data Security - Aspects, Mitigation, Provider Data & its Security, Identity & Access Management, Trust Boundaries, Challenges, Definitions, Architecture & Practice, IAM Standards & Protocols, Access Control, Privacy, Audit & Compliance.	8 Hours
	Total	42 Hours

Text Books:

T1. K. Hwang, G. C. Fox, and J. J. Dongarra, Distributed and Cloud Computing - From Parallel *Processing to the Internet of Things*, 1st Edition, Elsevier, 2012.

- T2. B. Sosinsky, *Cloud Computing Bible*, 1st Edition, Wiley-India, 2011.
- T3. T. Mather, S. K. Swamy, and S. Latif, *Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance*, 1st Edition, O'Reilly Media, 2009.

Reference Books:

- R1. A. T. Velte, T. J. Velte, and R. Elsenpeter, *Cloud Computing: A Practical Approach*, 1st Edition, McGraw-Hill Education, 2017.
- R2. A. Bahga and V. Madisetti, *Cloud Computing: A Hands-On Approach*, 1st Edition, Orient Blackswan, 2014.
- R3. T. Erl, Z. Mahmood, and R. Puttini, *Cloud Computing: Concepts, Technology & Architecture*, 1st Edition, Pearson India Education, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105223/: by Prof. S. K. Ghosh, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106/105/106105167/: by Prof. S. K. Ghosh, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106/104/106104182/: by Dr. R. Misra, IIT Kanpur
- 4. http://web.mit.edu/6.897/www/readings.html: by Prof. H. Balakrishnan, MIT

Course Outcomes: At the end of this course, the students will be able to:

CO1	Define different types of computing paradigms and concepts of cloud technologies.
CO2	Explain the cloud computing architecture, models, and various virtualization techniques.
CO3	Understand the IaaS and PaaS implementations by leading vendors in the industry.
CO4	Appreciate the SaaS model implementations and importance of SLA in cloud environment.
CO5	Describe various aspects of security, privacy, and performance in cloud environments.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Cont'd...

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		1			1				1			1	1	1
CO2	3		3	1	2	1			1	1		1	1	1	1
CO3	2		2	1	3	1			2	1		1	2	1	2
CO4	2		2	1	3	1			2	1		1	2	1	2
CO5	3		3	2	2	2			2	1		1	2	1	2

Type	Code	Parallel & Distributed Systems	L-T-P	Credits	Marks
PE	BTCS-T-PE-054	Taranci & Distributed Systems	3-0-0	3	100

Objectives	The objective of this course is to study the concepts of parallel and distributed computing including models, design of parallel algorithms, solving complex problems by parallel computation, and performance evaluation.
Pre-Requisites	Knowledge on computer architecture, operating systems, programming and data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on problem solving & programming.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Motivating Parallelism, Scope of Parallel Computing; Parallel Programming Platforms - Implicit parallelism, Limitation of Memory System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs of Parallel Machines, Routing Mechanism for Interconnection Networks, Impact of Process-processor Mapping & Mapping Techniques.	8 Hours
Module-2	Principles of Parallel Algorithm Design - Preliminaries, Decomposition Techniques, Characteristics of Tasks & Interactions, Mapping Techniques for Load Balancing, Parallel Algorithm Models; Analytical Modeling of Parallel Programs - Sources of Overheads, Performance Metrics, Effect of Granularity on Performance.	9 Hours
Module-3	Scalability of Parallel Systems, Minimum Execution Time and Minimum Cost-optional Execution Time, Asymptotic Analysis of Parallel Programs; Basic Communication Operations - One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction.	8 Hours
Module-4	All-Reduce and Prefix-Sum operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of some Communication Operations, Programming using the Message Passing Paradigm - Introduction, Building Blocks.	8 Hours
Module-5	Message Passing Interface (MPI), Communication and Computation; Dense Matrix Algorithms - Matrix-Vector Multiplication, Matrix-Matrix Multiplication (basic algorithm), Solving a System of Linear Equations (Gaussian); Sorting - Issues in Sorting on Parallel Computers, Bubble Sort and its Variants (Odd-Even Transposition); Distributed Systems - Definition, Goal, Types, Architectures, Key Characteristics.	9 Hours
	Total	42 Hours

Text Books:

T1. A. Grama, G. Karypis, V. Kumar, and A. Gupta, *Introduction to Parallel Computing*, 2nd Edition, Pearson Education, 2004.

T2. M. J. Quinn, *Parallel Computing: Theory and Practice*, 2nd Edition, McGraw-Hill, 2017.

Reference Books:

- R1. C. Lin and L. Snyder, *Principles of Parallel Programming*, 1st Edition, Pearson Education, 2009.
- R2. M. J. Quinn, *Parallel Programming in C with MPI and OpenMP*, 1st Edition, McGraw-Hill Education, 2004.
- R3. B. Wilkinson, *Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers*, 2nd Edition, Pearson Education, 2005.
- R4. Y. Robert, H. Casanova, and A. Legrand, *Parallel Algorithms*, 1st Edition, CRC Press, 2009.
- R5. H. F. Jordan and G. Alagband, Fundamentals of Parallel Processing, 1st Edition, PHI, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106/102/106102114/: by Dr. S. Kumar, IIT Delhi
- 2. https://nptel.ac.in/courses/106/103/106103188/: by Prof. S. Gopalan, IIT Guwahati
- 3. https://nptel.ac.in/courses/106/102/106102163/: by Dr. Y. Sabharwal, IIT Delhi
- 4. https://nptel.ac.in/courses/106/104/106104120/: by Prof. P. Gupta, IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Assess the performance, limitations, routing, and process-processor mapping techniques in parallel computing architectures.					
CO2	Design parallel algorithms using decomposition, load balancing, and interaction overheads.					
CO3	Investigate & analyze the basic communication operations in parallel models.					
CO4	Explore the advance communication operations in parallel models.					
CO5	Apply parallel programming models for solving complex problems using MPI.					

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1									3	1	1
CO2	3	3	3	1									3	1	1
CO3	3	3	3	3									3	1	1
CO4	3	3	2	1									3	1	1
CO5	3	3	3	3									3	1	3

Type	Code	Compiler Design	L-T-P	Credits	Marks
PE	BTCS-T-PE-023	Compiler Design	3-0-0	3	100

Objectives	The objective of this course is to study the components of compiler and the principles involved in design of compilers for modern computer languages.
Pre-Requisites	Knowledge of formal language & automata theory and proficiency in any programming language is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on algorithms, problem solving, and examples.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Overview of Compiler, Introduction to Lexical Analysis, Regular Language, Regular Expression (RE), Regular Definitions, Finite State Automata (DFA, NFA), RE to DFA conversion, Transition Diagram (TD), Lexical Analyzer (LA), LA Implementation from TD, LEX tool as LA Generator, LEX examples.	9 Hours
Module-2	Context Free Grammar (CFG), Ambiguity in CFG, Ambiguity removal, Elimination of Left Recursion, Elimination of non-determinism, Introduction to Parser, Top-Down Parsing, LL(1), Bottom-Up parsing, Construction of LR(0), SLR(1) parsing table, Construction of CLR(1), LALR(1) parsing table, Conflicts in LR, SLR, CLR, LALR parsing, LR parsing algorithm with example.	10 Hours
Module-3	Operator Precedence Parser, Error Reporting and Recovery, Syntax Directed Translation (SDT), S-attribute SDT, S-attribute SDT examples, YACC, Symbol Table.	8 Hours
Module-4	Intermediate Code Generation, Type of Intermediate Code, Intermediate code for various programming construct, Run-Time Environment, Run-Time Support, parameter passing methods, Activation Record, Variable storage and offset computation, Accessing Global Variable & allocation of Activation Record.	8 Hours
Module-5	Scope (Static, dynamic), Machine Code Generation, Different Schemes of Code Generation, Code Optimization, peephole optimization (Redundant Instruction Elimination, Flow of control optimization, Eliminating unreachable codes), Local Optimization, Control Flow Graph, DAG, Local common sub expression elimination (Value Numbering in Basic Blocks).	8 Hours
	Total	42 Hours

Text Books:

T1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, *Compilers: Principles, Techniques and Tools*, 2nd Edition, Pearson Education, 2009.

Reference Books:

R1. K. D. Cooper and L. Torczon, *Engineering a Compiler*, 2nd Edition, Morgan Kaufmann, 2011.

R2. A. I. Holub, *Compiler Design in C*, 2nd Edition, Prentice Hall of India, 2002.

Online Resources:

- 1. https://nptel.ac.in/courses/128/106/128106009/: from IIT Madras
- 2. https://nptel.ac.in/courses/106/105/106105190/: by Prof. S. Chattopadhyay, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106/104/106104123/: by Prof. S. K. Aggarwal, IIT Kanpur
- 4. https://nptel.ac.in/courses/106/108/106108113/: by Prof. Y. N. Srikanth, IISc Bangalore
- 5. https://nptel.ac.in/courses/106/104/106104072/: by Prof. S. K. Aggarwal, IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify phases of a compiler, process of designing lexical analyzer, and apply LEX tool.
CO2	Construct parsing tables and implement parser using BISON tool.
CO3	Understand use of symbol table and design SDT as semantic analyzer for a language.
CO4	Generate intermediate code using lexical analyzer, parser and semantic analyzer.
CO5	Translate intermediate code to machine code, handle run-time environment, and apply code optimization techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2								3		2
CO2	3	3	2	2	2								3		2
CO3	3	2	2	2									3		2
CO4	3	3	2	2									3		3
CO5	3	3	2	2									3		2

Type	Code	Advanced Machine Learning	L-T-P	Credits	Marks
PE	BTCS-T-PE-055	Auvanced Machine Leanning	3-0-0	3	100

Objectives	The objective of the course is to learn the concepts behind regularization of parameters, deep neural networks, probabilistic graphical models, dimensionality reduction etc., and their use to solve related machine learning problems in real world applications.
Pre-Requisites	Knowledge of mathematics and basic machine learning is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training. Optimization for Training Deep Models: Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-order Methods, Optimization Strategies.	10 Hours
Module-2	Convolutional Networks: The Convolution Operation, Motivation, Pooling, convolution and Pooling as an infinitely strong prior, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient convolution Algorithms, Random or Unsupervised Features, The Neuroscientific Basis for Convolutional Networks, Convolutional Networks and the History of Deep Learning, Applications.	6 Hours
Module-3	Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architecture, Deep recurrent Networks, Recursive Neural Networks, The Challenge of Long-Term Dependencies, Echo State Networks, Leaky Units and Other Strategies for Multiple Time Scales, The Long Short-Term Memory and Other Gated RNNs, Optimization for Long-Term Dependencies, Applications.	6 Hours
Module-4	Graphical models-DIRECTED Graphical models (Bayesian networks), Hidden Markov Models and Markov Random fields. EM algorithm and Gaussian mixture model.	10 Hours
Module-5	Review of SVM: Multiclass SVM, Multiple kernels, kernels for texts, strings, and graphs, Applications; Dimensionality Reduction: Orthogonal feature selection, LLE, Auto Encoder, Matrix factorization and applications (image processing, Collaborative filtering).	10 Hours
	Total	42 Hours

Text Books:

- T1. I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*, 1st Edition, The MIT Press, 2016.
- T2. S. Marsland, Machine Learning: An Algorithmic Perspective, 1st Edition, CRC Press, 2009.
- T3. J. S. Taylor and N. Cristianini, *Kernel Methods for Pattern Analysis*, 1st Edition, Cambridge University Press, 2004.
- T4. A. Geron, *Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems*, 2nd Edition, O'Reilly Media, 2019.

Reference Books:

- R1. D. Koller and N. Friedman, *Probabilistic Graphical Models: Principles and Techniques*, 1st Edition, The MIT Press, 2009.
- R2. D. Barber, *Bayesian Reasoning and Machine Learning*, 1st Edition, Cambridge University Press, 2012.
- R3. K. P. Murphy, *Machine Learning: A Probabilistic Perspective*, 1st Edition, The MIT Press, 2012.
- R4. C. M. Bishop, *Pattern Recognition and Machine Learning*, 1st Edition, Springer, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105215/: by Prof. P. K. Biswas, IIT Kharagpur
- 2. http://cs229.stanford.edu/syllabus.html: Notes by Stanford University

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply knowledge of regularization to improve the performance of deep learning methods.
CO2	Understand the basics of CNN and apply this to solve related problems.
CO3	Understand the basics of RNN and apply this to solve related problems.
CO4	Study the representation, learning and inference of some graphical models.
CO5	Understand an advanced SVM technique and some algorithms for feature selection and extraction.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2		1						1	3	2	3
CO2	3	3	2	2		1						1	3	2	3
CO3	3	3	2	2		1						1	3	2	3
CO4	3	3	2	2		1						1	3	1	3
CO5	3	3	2	2		1						1	3	1	3

Type	Code	Computer Graphics	L-T-P	Credits	Marks
PE	BTCS-T-PE-056	Computer Grapmes	3-0-0	3	100

Objectives	The objective of this course is to study computer modeling of 2D & 3-D objects and efficiently generating photorealistic renderings on color raster graphics devices.		
Pre-Requisites Knowledge of coordinate geometry and matrix operations is required.			
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on problem solving activities.		

To	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Overview of computer graphics, Basic terminologies in graphics, Lookup table, Plotters, Printers, Digitizers, Light pens, Active & passive graphics devices, Raster & random scan displays, CRT basics, Video basics.	8 Hours
Module-2	Output Primitives - Points, Lines, Circles and Ellipses as primitives, Scan conversion algorithms for primitives, Fill area primitives including scanline polygon filling, Inside-outside test, Boundary and flood-fill, Character generation, Line attributes, Area-fill attributes, Character attributers.	10 Hours
Module-3	2D and 3D Transformations (translation, rotation, scaling), Matrix representation, Homogeneous coordinates, Composite transformations, Reflection and shearing, Viewing pipeline and coordinates system, Windowto-viewport transformation, Clipping including point clipping, Line clipping (Cohen-Sutherland, Liang-Bersky), Polygon clipping.	8 Hours
Module-4	3D display methods, Polygon surfaces, Tables, Equations, Meshes, Curved lines and surfaces, Quadric surfaces, Spline representation, Cubic spline interpolation methods, Bezier curves and surfaces, B-spline curves and surfaces, General (parallel and perspective) projection transformations, Fractal geometry.	8 Hours
Module-5	Visible surface detection concepts, Back-face detection, Depth buffer method, Illumination, Light sources, Illumination methods (ambient, diffuse reflection, specular reflection), Color models - properties of light, XYZ, RGB, YIQ and CMY color models, Animation (introduction only).	8 Hours
	Total	42 Hours

Text Books:

- T1. D. Hearn and P. Baker, *Computer Graphics C Version*, 2nd Edition, Pearson Education, 2004. T2. F. S. Hill, *Computer Graphics using OpenGL*, 2nd Edition, Pearson Education, 2003.

Reference Books:

R1. J. F. Huges, A. V. Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K. Feiner, and K. Akeley, *Computer Graphics: Principles and Practice*, 3rd Edition, Addison-Wesley Professional, 2013.

- R2. D. Hearn, M. P. Baker and W. Caritthers, *Computer Graphics with OpenGL*, 4th Edition, Prentice Hall India, 2010.
- R3. S. Harrington, *Computer Graphics A Programming Approach*, 2nd Edition, Tata McGraw-Hill, 2004.

Online Resources:

- 1. http://nptel.ac.in/courses/106102065/: by Prof. P. K Kalra, IIT Delhi
- 2. https://nptel.ac.in/courses/106/106/106106090/: by Prof. S. Das, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the basics of computer graphics and its applications.
CO2	Explore the standard line, circle, and area filling algorithms.
CO3	Design various transformation models in 2D and 3D spaces.
CO4	Apply the design principles to generate curves and mapping using projection.
CO5	Explore hidden lines and surface detection techniques with color models.

Program Outcomes Relevant to the Course:

U	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	1					1	1	1	2	2	1	1
CO2	3	1	2	1			1			2	1	3	3	1	1
CO3	3	2	3	2									1		
CO4	1	1	2			2							2	1	1
CO5	3	2	2	1			1		·	2		1	1		

Type	Code	Server Side Scripting	L-T-P	Credits	Marks
PE	BTCS-T-PE-057	Server Side Seripting	3-0-0	3	100

Objectives	The objective of this course is to introduce various server side scripting technologies and their application for developing & hosting small to large scale web-based applications.
Pre-Requisites	Knowledge of internet technologies and client side scripting languages like HTML, CSS, and Java Script is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on solution design, programming, and examples.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Web Applications: Architecture, Client-side script vs. Server-side script, Web servers (Apache Tomcat/Web Logic); Hosting Web Applications: Cloud hosting, AWS server creation, Hosting in AWS server (with example), Other Hosting Environments; JQuery and Bootstrap 4: JQuery Syntax, Effects, HTML, Ajax, Bootstrap 4 Containers, Grid System, Dropdown, Navigation Bar, Forms.	9 Hours
Module-2	Java Server Pages (JSP): Advantages of JSP over Servlet, Lifecycle of a JSP page, JSP API, Scriptlet tag, Implicit Objects, Directives, Exception Handling, Action Tags, Expression Language (EL); Advanced Features of JSP: Session Tracking, MVC, JSTL (JSP Standard Tag Library), Custom Tags, CRUD operations; JSP Sample Code: Pagination, Registration Form, File Uploading.	9 Hours
Module-3	Introduction to PHP: Syntax, Variables, Data Types, Loops, Functions, Arrays, Global Variables (Superglobals); PHP Form Handling: Form Validation, Required Fields, Validate E-mail and URL; PHP & XML: XML Parsers, SimpleXML Parser, Get Node/Attribute Values, Expat Parser, XML DOM Parser.	8 Hours
Module-4	Advanced PHP: Include Files, File Handling, Cookies, Sessions, JSON, Filters; PHP MySQL: Connecting to MySQL, Insert Data, Prepared Statements, Select Data, Delete Data, Update Data; PHP AJAX: Introduction, AJAX and MySQL, AJAX and XML, Live Search, Poll.	8 Hours
Module-5	Node.js: Introduction, Module, HTTP Module, File System Module, URL Module, NPM, Events, Sending an Email; Node.js & MySQL: Create database, Create tables, Insert, Select, Update, Delete, Limit, Join; Node.js & MangoDB: Create Collection, Insert, Find, Query, Sort, Update, Delete, Drop Collection, Limit, Join.	8 Hours
	Total	42 Hours

Text Books:

T1. E. Brown, *Web Development with Node and Express: Leveraging the JavaScript Stack*, 2nd Edition, O'Reilly Media, 2019.

T2. J. Keogh, *J2EE: The complete Reference*, 11th Edition, McGraw-Hill Education, 2017.

Reference Books:

- R1. S. K. Patel, *Developing Responsive Web Applications with AJAX and jQuery*, 1st Edition, Packt Publishing, 2014.
- R2. R. Nixon, Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating Dynamic Websites, 3rd Edition, O'Reilly Media, 2014.

Online Resources:

- 1. https://www.w3schools.com/jquery/default.asp
- 2. https://www.w3schools.com/bootstrap4/default.asp
- 3. https://www.tutorialspoint.com/php/index.htm
- 4. https://www.w3schools.com/nodejs/default.asp

Course Outcomes: At the end of this course, the students will be able to:

CO1	Distinguish between client side and server side scripts concepts and will have the knowledge to create server side web page development.
CO2	Design web applications using JSP technology.
CO3	Design and develop small to complex web applications using PHP and MySQL as back-end database.
CO4	Develop complete mail application using PHP and Node.js scripts.
CO5	Create large scale application using Node.js, Ajax and MongoDB concepts.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2									1	2	1	2
CO2	3	3	2		2							1	3	1	2
CO3	2	3	2		2							1	3	1	2
CO4	2	3	2	1	2							1	2	1	2
CO5	2	2	2	1	2							1	2	1	3

Type	Code	Big Data Analytics	L-T-P	Credits	Marks
PE	BTCS-T-PE-058	Dig Data Analytics	3-0-0	3	100

Objectives	The objective of the course is to study different techniques to find similar items, mining data streams, link analysis, clustering techniques, recommendation systems, and collaborative filtering used for Big Data, along with the concepts of batch processing, Hadoop, MapReduce & Spark.
Pre-Requisites	Knowledge of basics of data mining & algorithm design is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours				
Module-1	Introduction to Big Data, Data Management for Big Data, Data Exploration and Reproducibility, Data Quality; Introduction to Map Reduce, Map Reduce algorithm, patterns & relations, Parallel databases vs. Map Reduce, Storage solutions.					
Module-2	Module-2 Big Data Algorithms-I: Nearest Neighbor Search, Shingling of Documents, Similarity Preserving Summaries of Sets, Locality Sensitive Hashing for Documents, Distance Measures, Theory of Locality Sensitive Functions, LSH Families for High Degree of Similarities.					
Module-3	Big Data Algorithms-II: Streaming Data Models, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Estimating Moments, Counting Ones in Window, Page Rank, Efficient Computation of Page Rank, Topic Sensitive Page Rank.					
Module-4	Big Data Algorithms-III: Clustering Techniques - BFR Algorithm, CURE Algorithm, Clustering in Non-Euclidean Space, Clustering for Streams and Parallelism; Matrix Factorization, Recommendation Systems and Collaborative Filtering.	9 Hours				
Module-5	Introductions to Spark, Hadoop, Hive, Pig-Latin, Large Scale Visualization.	8 Hours				
	Total	42 Hours				

Text Books:

- T1. J. Leskovec, A. Rajaraman, and J. D. Ullman, *Mining of Massive Datasets*, 2nd Edition, Cambridge University Press, 2014.
- T2. J. Bell, Machine Learning for Big Data: Hands-On for Developers and Technical Professionals, Wiley, 2014.

Reference Books:

- R1. J. Han, M. Kamber, and J. Pei, *Data Mining Concepts and Techniques*, 3rd Edition, Morgan Kaufman Publications, 2011.
- R2. T. M. Mitchell, *Machine Learning*, 1st Edition, McGraw-Hill Education, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106142/: by Prof. J. Augustine, IIT Madras
- 2. https://nptel.ac.in/courses/106/104/106104189/: by Dr. R. Misra, IIT Patna
- 3. http://www.mmds.org: Material on Mining of Massive Data Sets
- 4. http://lintool.github.com/MapReduceAlgorithms/index.html

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the concepts of Big Data and Map Reduce techniques.
CO2	Apply different tools and techniques used for finding similar items.
CO3	Demonstrate application of algorithms for analysis of streaming data and link analysis.
CO4	Apply different techniques for recommendation systems & collaborative filtering and compare different clustering techniques to apply them for large dataset.
CO5	Explore the concepts of Hadoop, MapReduce, Spark and apply them to implement big data algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

11	0				,			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1							1	3	1	1
CO2	3	3	3	2	1							1	3	1	2
CO3	3	3	3	2	1							1	3	1	2
CO4	3	3	3	2	1							1	3	1	2
CO5	1	1	1	2	3							1	3	1	2

Type	Code	Soft Computing	L-T-P	Credits	Marks
PE	BTCS-T-PE-031	Soft Computing	3-0-0	3	100

Objectives	The objective of this course is to study non-traditional computing techniques to solve hard real-world problems using artificial neural networks, fuzzy systems and genetic algorithm. Different aspects of hybridization with some case studies will also be discussed.
Pre-Requisites	Knowledge of Linear Algebra, Data Structures, and Algorithm Design is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on problem solving and applications.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Fuzzy Logic : Basic definition and terminology of fuzzy set, Set theoretic operations, T-norm, T-conorm, Membership function formulation and parameterization, Extension principle, Fuzzy relations, Linguistic variables, Fuzzy if-then rules, Compositional rule of inference, Fuzzy reasoning, Fuzzy inference systems, Mamdani fuzzy models, Defuzzification, Sugeno and Tsukamoto fuzzy models.	10 Hours
Module-2	Genetic Algorithm: Introduction, Working cycle of a GA, Binary Coded GA, GA-parameter setting, Constraint handling GA, Advantages and disadvantages of GA, Some specialized GA (Real Coded GA).	8 Hours
Module-3	Neural Network - I: Introduction, Models of a neuron, Network architecture, Knowledge representation; Learning process - Error correction learning, Memory based learning, Hebbian learning, Competitive learning, Boltzmann learning, Learning with and without a teacher; Single layered learning - Least Mean Square algorithm, Perceptron, ADALINE, MADALINE.	10 Hours
Module-4	Neural Network - II: Multilayer perceptron - Back-propagation algorithm, XOR problem; Self-organizing Maps - Two basic feature mapping models, SOM algorithm, Radial Basis Function Network, Introduction to ART.	8 Hours
Module-5	Hybrid Systems : Combination of Genetic Algorithms with Fuzzy Logic or Neural Networks, Combination of Neural Network and Fuzzy Logic.	6 Hours
	Total	42 Hours

Text Books:

- T1. J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, 1st Edition, Pearson Education, 2015.
- T2. D. K. Pratihar, *Soft Computing*, Revised Edition, Narosa Publishing, 2015.
- T3. S. Haykin, *Neural Networks: A Comprehensive Foundation*, 2nd Edition, Pearson Education, 2006.

Reference Books:

R1. T. Munakata, Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More, 2nd Edition, Springer, 2014.

R2. F. O. Karray and C. De Silva, *Soft Computing and Intelligent Systems Design: Theory, Tools and Applications*, 1st Edition, Pearson Education, 2009.

Online Resources:

- 1. https://cse.iitkgp.ac.in/~dsamanta/courses/sca/resources/slides/GA-01%20Introduction.pdf
- 2. https://nptel.ac.in/courses/117105084/
- 3. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/106105173/lec14.pdf
- 4. https://cse.iitkgp.ac.in/~dsamanta/courses/sca/resources/slides/NN-03%20Training.pdf

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply fuzzy logic and fuzzy inference system concept to design automation system for real life problems.
CO2	Apply the concepts of genetic algorithm to solve engineering optimization problems.
CO3	Train the Artificial Neural Network for decision making in real life environment.
CO4	Use the concepts of Artificial Neural Network (ANN) to solve real life engineering and societal problems.
CO5	Envisage the need of hybridization, and to develop hybrid models for solving complex problems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2									3	1	2
CO2	3	3	3	2									3	1	2
CO3	3	3	3	2									3	1	2
CO4	3	3	3	2									3	2	3
CO5	3	3	3	1									3	1	3

Type	Code	Cyber Security & Forensics	L-T-P	Credits	Marks
PE	BTCS-T-PE-061	Cyber security & rorensies	3-0-0	3	100

Objectives	The objective of this course is to learn about different kinds of threats, vulnerabilities, ethical hacking, and other fundamentals of cyber security & digital forensics to analyze security issues in the cyber world and interventions required.
Pre-Requisites	Basic knowledge of internet technologies and network security is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and latest trends.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Quiz Surprise Test(s) Assignment(s)			End-Term	10tai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Systems Vulnerability Scanning: Overview, Open Port/Service Identification, Banner/Version Check, Traffic Probe, Vulnerability Probe, Vulnerability Examples; Networks Vulnerability Scanning: Network Sniffers and Injection tools – Network Defense tools, Firewalls and Packet Filters, Network Address Translation (NAT) and Port Forwarding.	9 Hours
Module-2	Cyber Crime and Laws: Types of Cybercrime, Hacking, Attack Vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Realms of the Cyber world, Recognizing and Defining Computer Crime, Contemporary Crimes, Contaminants and Destruction of Data.	9 Hours
Module-3	Cyber Crime Investigation: Keyloggers and Spyware, Virus and Warms, Trojan and Backdoors, Steganography, DoS and DDoS attacks, SQL injection, Buffer Overflow, Attacks on Wireless Networks.	8 Hours
Module-4	Digital Forensics: Digital Evidence, Increasing Awareness of Digital Evidence, Digital Forensics – Past, Present, and Future, Principles of Digital Forensics, Challenging Aspects of Digital Evidence, Following the Cyber Trail, Digital Forensics Research.	8 Hours
Module-5	Computer Crime Investigation: The Role of Computers in Crime, Digital Evidence in the Courtroom, Duty of Experts, Admissibility, Levels of Certainty in Digital Forensics, Direct vs. Circumstantial Evidence, Scientific Evidence, Presenting Digital Evidence, Digital Investigation Process Models, Handling a Digital Crime Scene, Preparing to Handle Digital Crime Scenes.	8 Hours
	Total	42 Hours

Text Books:

- T1. N. Godbole, *Information Systems Security: Security Management, Metrics, Frameworks and Best Practices*, 2nd Edition, John Wiley & Sons, 2008.
- T2. E. Casey, *Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet*, 3rd Edition, Academic Press, 2011.

Reference Books:

- R1. N. Godbole and S. Belapure, *Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives*, 1st Edition, John Wiley & Sons, 2011.
- R2. J. R. Vacca, *Computer Forensics: Computer Crime Scene Investigation (Networking Series)*, Charles River Media, Inc., 2005.
- R3. M. Britz, *Computer Forensics and Cyber Crime: An Introduction*, 2nd Edition, Pearson Education, 2009.
- R4. A. Fadia, An Unofficial Guide to Ethical Hacking, 2nd Edition, Macmillan Laxmi Publications, 2006.

Online Resources:

- 1. https://onlinecourses.swayam2.ac.in/nou19_cs08/preview: by Dr. J. Pande, Uttarakhand Open University
- 2. https://onlinecourses.swayam2.ac.in/cec20_lb06/preview: by Dr. N. K. Kanwal, DHG Vishwavidyalaya, Sagar
- 3. https://www.nist.gov/itl/applied-cybersecurity/nice/resources/online-learning-content: by Dr. R. Misra, IIT Kanpur
- 4. http://web.mit.edu/6.897/www/readings.html: by Prof. H. Balakrishnan, MIT

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain different security threats & vulnerabilities and apply relevant tools for scanning.
CO2	Visualize the extent of attacks in cyber space, cyber crime laws, cyber criminal behaviour.
CO3	Explore various types of cyber attacks and their implications in various domains.
CO4	Collect cyber crime evidences and analyze & validate the same for forensic & legal use.
CO5	Perform systematic forensic investigations on cyber crimes and present evidences in the court.

Program Outcomes Relevant to the Course:

_	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

Cont'd...

PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		3	3	3	1		2	1	1		1	2	1	2
CO2	2		3	2	2	1		3	1	1		1	3	1	2
CO3	1		3	3	2	1		2	1	1		1	3	2	2
CO4	1		2	3	1	1		2	1	1		1	2	1	2
CO5	1		2	3	2	2		3	1	1		1	2	2	2

Type	Code	Cryptography & Network Security Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-028	Cryptography & Network Security Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to provide practical exposure to understanding the concepts of cryptography by implementation of various crypto algorithms along with exposure to different network security tools & simulation of some related attacks.
Pre-Requisites	Knowledge of Linux OS, algorithms, and proficiency in a programming languages like C/Java/Python are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Implementation of Caesar, Multiplicative, Affine ciphers.
2	Implementation of Playfair, Vigenere, Hill ciphers.
3	Implementation of DES algorithm.
4	Implementation of AES algorithm.
5	Implementation of RSA and El-Gamal cryptosystems.
6	Implementation of cryptographic Hash functions.
7	Implementation of Digital Signature Algorithm(DSA).
8	Study the use of network reconnaissance tools like WHOIS, dig, traceroute, nslookup to gather information about networks.
9	Study of packet sniffer tools like wireshark, ethereal, tcpdump etc.
10	Scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, etc. by using nmap tool.
11	Simulation of Buffer overflow attacks.
12	Simulation of Phising attacks.
13	Demo of TCP/IP Attacks.
14	Demo of IDS using Snort tool.

Text Books:

- T1. W. Stallings, *Cryptography and Network Security: Principle and Practice*, 7th Edition, Pearson Education, 2017.
- T2. B. Schneier, *Applied Cryptography*, 2nd Edition, Wiley, 2001.

Reference Books:

- R1. M. Gregg, *The Network Security Test Lab: A Step-by-Step Guide*, 1st Edition, Wiley, 2015.
- R2. M. D. Ciampa, *Lab Manual for Security + Guide to Network Security Fundamentals*, 5th Edition, Cengage Learning, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/106105162
- 2. https://online.stanford.edu/courses/xacs255-network-security
- 3. https://www.csa.iisc.ac.in/~cris/e0_235.html
- 4. https://www.coursera.org/specializations/cyber-security

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Implement various classical ciphers with emphasis on their security issues.					
CO2	Implement and explore the modern symmetric key ciphers.					
CO3	Implement and explore the asymmetric key cryptosystems.					
CO4	Explore various tools used for network vulnerability testing.					
CO5	Simulate different network security attacks.					

Program Outcomes Relevant to the Course:

- 0	Successive Relevant to the Course.
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

TYTE P P	(i. 20 v) 2. Mediani, 6. 1161)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1			1				1	3	2	1
CO2	3	3	3	1	1			1				1	3	2	1
CO3	3	3	3	1	1			1				1	3	2	1
CO4	3	3	3	1	1			1				1	3	2	1
CO5	3	3	3	1	2	2		1				1	3	2	1

r	Туре	Code	Software Engineering Lab	L-T-P	Credits	Marks
	PC	BTCS-P-PC-027	Software Engineering Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to impart hands on exposure on different phases of end-to-end software development including technical writing, architectural design & documentation. The experiments shall go hand-in-hand with the topics taught in the theory class.				
Pre-Requisites	Knowledge of object-oriented concepts and skill on MS office is required.				
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of analysis, designing, and documentation.				

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Problem Statement for a suggested system of relevance.
2	Requirement analysis for the suggested system.
3	Development of SRS for the suggested system.
4	Structured Analysis & Design using DFD, Structure Charts & Data Dictionary.
5	Object Oriented Analysis & Design – Use Case Diagram.
6	Develop the structural view for the system: Class diagram, Object diagram.
7	Construct the behavioral view diagram : State-chart diagram, Activity diagram.
8	Behavioral view diagram : Sequence.
9	Behavioral view diagram : Collaboration.
10	Develop test cases for various types of testing for a sample code of a suggested system.
11	Perform Estimation of effort/cost using FP/COCOMO estimation for chosen system.
12	Prepare time line chart/Gantt Chart/PERT Chart/Activity Diagram for the suggested system.

Text Books:

- T1. R. S. Pressman, Software Engineering: A Practitioners Approach, 7th Edition, McGraw Hill, 2010.
- T2. I. Sommerville, *Software Engineering*, 9th Edition, Pearson Education, 2011.

Reference Books:

R1. R. Mall, Fundamentals of Software Engineering, 4th Edition, PHI, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/106/101/106101061/: by Prof. N. L. Sarda, Prof. U. Bellur, and Prof. R. K. Joshi, IIT Bombay
- 2. https://nptel.ac.in/courses/106/105/106105087/: by Prof. R. Mall, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106/101/106101163/: by Prof. M. D'souza, IIIT Bangalore
- 4. https://nptel.ac.in/courses/106/105/106105218/: by Prof. D. P. Mohapatra, NIT Rourkela and Prof. R. Mall, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the characteristics of different applications and evaluate the suitability of life cycle models to such applications.
CO2	Develop the SRS document as per internationally accepted industrial standards.
CO3	Apply the different design artifacts and develop an architectural solution for different applications.
CO4	Describe the different testing strategies and develop test cases for testing of a software.
CO5	Use a project management tool for scheduling & estimation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

	0				`	,		,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1		1					2	1		3	1	3
CO2	2	1	2		2					2	1		3	2	3
CO3	1	1	3		2					1	1		3	2	3
CO4	1	1	1		3					1	1		3	2	3
CO5	1	1	2		3					1	3		3	2	3

Type	Code	Emerging Technologies Lab	L-T-P	Credits	Marks
PE	BTCS-P-PE-023	Emerging recimologies Lab	0-0-4	2	100

Objectives	The objective of this laboratory course is to provide practical exposure to emerging technologies in building modern enterprise level rich interactive web application development using various latest frameworks, languages, and databases.
Pre-Requisites	Knowledge of programming, basic concepts of internet technology, database design and query languages is required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments involving different platforms & technologies.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Review of HTML - Basic tags, lists, tables, form, div & span
2	CSS & Bootstrap – Use of CSS3, CDN, Bootstrap 5.
3	JS – ES6 Features, Functions, Arrow Function, Callback Function.
4	JS – Array and higher-order array methods.
5	JS - Asynchronous JS, Class, Object.
6 - 7	JSON, JSON Server, AXIOS, REST API, HTTP Methods, Status Code.
8	Node.js – NPM, Path Module, File System, OS Module, URL Module.
9	Node.js - HTTP Module, Create Server using Node.js Render HTML pages.
10	Express.js – Installation, and setup, creating routes, rendering HTML and static files.
11	Express.js - Build REST API using express, middleware.
12	MongoDB – BSON, NoSQL Database, MongoDB Queries.
13	Installation of Mongoose for NodeJS, Connect Express with MongoDB, Fetching data and displaying to the user.
14	Define routes and perform CRUD operation.
15 - 16	API Authentication and Middleware.
17	React.js – Introduction to React.js, Hello Word in React, JSX, Rendering Elements.
18	React.js - Component, and props, functional and class-based components, conditional rendering.
19	React.js – Event handling, Lifecycle Methods.
20 - 22	React.js – Hooks, Router, Form Handling.
23	React.js – Project using React.js, AXIOS, JSON Server.
24 – 26	Build End-to-End application with MongoDB, Express.js, React.js, Node.js.
27 - 28	Demonstration of the working project, presentation, viva, and evaluation.

Text Books:

- T1. G. Lim, *Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App*, 1st Edition, Independently Published, 2020.
- T2. E. Brown, *Web Development with Node and Express*, 2nd Edition, O'Reilly Media, 2019.

Reference Books:

- R1. D. Crockford, *JavaScript: The Good Parts*, 1st Edition, Yahoo Press, 2008.
- R2. S. Bradshaw, E. Brazil, and K. Chodorow, *MongoDB: Powerful and Scalable Data Storage*, 3rd Edition, O'Reilly Media, 2019.

Online Resources:

- 1. https://developer.mozilla.org/en-US/docs/Web/JavaScript
- 2. https://nodejs.org/en/docs/
- 3. https://expressjs.com/
- 4. https://docs.mongodb.com/manual/tutorial/query-documents/
- 5. https://www.mongodb.com/developer/quickstart/node-crud-tutorial/
- 6. https://reactjs.org/docs/getting-started.html

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explore the Setup and installation process of MongoDB NoSQL database server.
CO2	Develop rich interactive applications using Node and NPM.
CO3	Develop applications with REST API using Express JS.
CO4	Develop interactive front-end applications using React JS.
CO5	Integrate NoSQL database, REST API, and Front-end application.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	3				1			2	1	1	1
CO2	3	3	3	3	3				3			3	3	2	2
CO3	3	3	3	3	3				3			3	3	1	2
CO4	3	3	3	3	3				3			3	3	2	2
CO5	3	2	3	3	3				3			3	3	2	2

Part IV 4th Year B. Tech. (CST)

Curriculum Structure (Regular)

	Semester VII									
Type	Code	Course Title	WCH		I	Credits				
Type	Code	Course Title	L-T-P]	L-T-F	,		
		THEORY								
HS	BTBS-T-HS-022	Fundamentals of Management	3	0	0	3	0	0		
PC	BTCS-T-PC-056	Internet of Things	3	0	0	3	0	0		
00		MOOC - I	0 0 0 3		0	0				
		PRACTICAL								
PC	BTCS-P-PC-056	Internet of Things Lab	0	0	2	0	0	1		
PJ	BTII-P-PJ-002	Summer Internship - III	0	0	0	0	0	1		
		SUB-TOTAL	6	0	2	9	0	2		
		TOTAL	8 11							

	Semester VIII									
Type	Code	Course Title	WCH L-T-P			Credits L-T-P				
		THEORY								
OE		Open Elective - I	3	0	0	3	0	0		
OE		3	0	0	3	0	0			
00	MOOC - II				0	3	0	0		
		PRACTICAL								
PJ	BTCS-P-PJ-035	Presentation Skills & Technical Seminar	0	0	4	0	0	2		
PJ	BTCS-P-PJ-036	Project - II	0	0	16	0	0	8		
VV	BTCS-P-VV-033	Comprehensive Viva	0	0	0	0	0	1		
		SUB-TOTAL	6	0	20	9	0	11		
		TOTAL	26 20							

	GRAND TOTAL (8 SEMESTERS)	201	162

Note:

- 1. Approved list of courses for MOOC-I & II (self study) shall be published by the department.
- 2. Courses offered under each elective are given in "List of Electives" on Page 189.

Curriculum Structure (PS-7) (For Students opting for Practice School in the 7th Semester)

	Semester VII									
Type	Code	Course Title		WCH		Credits		ts		
Туре	Code	Course Title	L-T-P]	L-T-I	,		
	THEORY									
00		0	0	0	3	0	0			
		PRACTICAL								
PS	BTII-P-PS-004	Practice School / Industry Internship	0	0	0	0	0	16		
PJ	BTII-P-PJ-003	Summer Internship - III	0	0	0	0	0	1		
		SUB-TOTAL	0	0	0	3	0	17		
		TOTAL	0 20							

	Semester VIII									
Туре	Code	Course Title	WCH		I	Credits				
Туре	Code	Course Title	-	L-T-F)	L-T-P		•		
		THEORY								
HS	BTBS-T-HS-022	Fundamentals of Management	undamentals of Management 3				0	0		
PC	BTCS-T-PC-056	Internet of Things	3	0	0	3	0	0		
00		MOOC - II	0 0 0		3	0	0			
		PRACTICAL				•				
PC	BTCS-P-PC-056	Internet of Things Lab	0	0	2	0	0	1		
VV	BTII-P-PJ-002	Comprehensive Viva	0	0	0	0	0	1		
		SUB-TOTAL	6	0	2	9	0	2		
		TOTAL	8			11				
	•									

GRAND TOTAL (8 SEMESTERS)

175

162

Note:

- 1. Approved list of courses for MOOC-I & II (self study) shall be published by the department.
- 2. Courses offered under each elective are given in "List of Electives" on Page 189.

Curriculum Structure (PS-8) (For Students opting for Practice School / Industry Internship in the 8th Semester)

	Semester VII									
Type	Code	Course Title	WCH		I	Credits				
Type	Code	Course Title	L-T-P			L-T-P				
	THEORY									
HS	BTBS-T-HS-022	Fundamentals of Management	fundamentals of Management 3 0 0				0	0		
PC	BTCS-T-PC-056	Internet of Things	3	0	0	3	0	0		
00		MOOC - I	0 0 0 3		0	0				
		PRACTICAL								
PC	BTCS-P-PC-056	Internet of Things Lab	0	0	2	0	0	1		
PJ	BTII-P-PJ-002	Summer Internship - III		0	0	0	0	1		
		SUB-TOTAL	6	0	2	9	0	2		
		TOTAL	8 11							

	Semester VIII									
Type	Code	Course Title		WCH			Credits			
Type	Code	Course Title	L-T-P		L-T-P		,			
	THEORY									
OO	MOOC - II				0	3	0	0		
		PRACTICAL					•			
PS	BTII-P-PS-004	Practice School / Industry Internship	0	0	0	0	0	16		
VV	BTII-P-PJ-002	Comprehensive Viva	0	0	0	0	0	1		
		SUB-TOTAL	0	0	0	3	0	17		
		TOTAL	0		20					
		•	•							

	GRAND TOTAL (8 SEMESTERS)	175	162

Note:

- 1. Approved list of courses for MOOC-I & II (self study) shall be published by the department.
- 2. Courses offered under each elective are given in "List of Electives" on Page 189.

List of Electives

Code	Elective # and Subjects
Oper	ı Elective - I
BTEE-T-OE-037	[EEE] Electrical Circuits & Safety
BTBS-T-OE-027	[BSH] Applied Linear Algebra
BTBS-T-OE-032	[BSH] Project Management
BTBS-T-OE-034	[BSH] Entrepreneurship Development
BTEC-T-OE-024	[ECE] Signal & Systems
BTEI-T-OE-027	[EIE] Sensors & Circuit Analysis
Oper	ı Elective - II
BTEE-T-OE-038	[EEE] Energy Conversion Devices
BTBS-T-OE-031	[BSH] Stochastic Processes
BTBS-T-OE-030	[BSH] Organizational Behaviour
BTEC-T-OE-039	[ECE] Communication Systems Engineering
BTEI-T-OE-020	[EIE] Biomedical Instrumentation & Signal Processing

Note: Open Electives are choice-based courses offered by other departments as indicated within brackets.

Type	Code	Fundamentals of Management	L-T-P	Credits	Marks
HS	BTBS-T-HS-022	i undamentals of Wanagement	3-0-0	3	100

Objectives	The objective of this course is to provide basic knowledge on management of business, finance, marketing, and human resources, which will help the students to grow from a team player to a good manager in an enterprise.
Pre-Requisites	General knowledge of any organization and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples.

T	eacher's Assessme	nt	Written A	ssessment	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10141	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Concepts of Management: Management as an art or science, the process of management, managerial skills, good managers are born, not made, management is concerned with ideas, things and people, inducing workers to put in their best, levels and types of management, evolution of management thought, managerial environment.	8 Hours
Module-2	Functions of Management : Planning and its features and process, types of plan, effective planning, Organizing and its process, formal and informal organization, directing and its elements, staffing and functions, controlling & its features and process, tools of controlling.	6 Hours
Module-3	Marketing Function: Modern concepts of marketing, marketing vs. selling, functional classification of marketing, functions of marketing management, marketing process; Marketing Mix: product and types of product, product life cycle, development of a new product, price, factors affecting price, pricing strategies; Distribution channel: role and functions, selection of a distribution channel, promotion and types of promotion, developing an advertising campaign, promotional strategies.	12 Hours
Module-4	Financial Function : Scope and objectives, financial functions, sources of finance, project appraisal, tools of financial decisions making, overview of working capital.	6 Hours
Module-5	HRM Function : Human Resource Management, Human Resource Development, importance of HRM, overview of job Analysis, job description, job specification, labour turnover; Manpower planning, recruitment, selection, induction, training and development, placement, wage and salary administration, performance appraisal, grievance handling, welfare aspects.	10 Hours
	Total	42 Hours

Text Books:

T1. S. A. Sherlekar and V. S. Sherlekar, *Modern Business Organization & Management*, 4th Edition, Himalaya Publishing House, 2018.

Reference Books:

- R1. C. R. Basu, Business Organization & Management, 4th Edition, TMH, 2010.
- R2. P. C. Tulsian and V. Pandey, Business Organization & Management, 1st Edition, Pearson, 2002.
- R3. P. Kotler, K. L. Keller, A. Koshy, and M Jha, *Marketing Management*, 14th Edition, Pearson, 2012.
- R4. I. M. Pandey, *Financial Management*, 11th Edition, Vikas Publishing, 2015.
- R5. K. Aswasthapa, Human Resource Management: Text and Cases, 7th Edition, TMH, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/122108038/
- 2. https://iedunote.com/marketing-concept
- 3. https://www.tutorsonnet.com/functions-of-distribution-channel-homework-help.php
- 4. https://www.managementstudyhq.com/financial-function-types-importance-objectives.html

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the basic concepts of management and organization.
CO2	Explain fundamental management functions such as planning, directing, organizing, leading and controlling.
CO3	Adopt marketing policy by applying modern concept of marketing and select appropriate distribution channels.
CO4	Apply knowledge of financial functions in management for decision making.
CO5	Utilize the concepts of HRM functions to manage & develop human resources in an organization.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1	1		2		3	1		2	1
CO2									1		3	2		2	2
CO3						1	1		1		2	2		1	1
CO4											3	2		1	2
CO5						1	1		3		3	1		1	1

Type	Code	Internet of Things	L-T-P	Credits	Marks
PC	BTCS-T-PC-056	internet of Things	3-0-0	3	100

Objectives	The objective of this course is to study the concepts, technologies, design principles, communication protocols, challenges, application areas, and develop IoT applications for the real world.
Pre-Requisites	Basic knowledge of programming, computer networks, sensors, micro-processor and micro-controllers is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies, and latest trends.

T	eacher's Assessme	nt	Written Assessment				
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total		
05	05	05	25	60	100		

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction & Concepts: Internet of Things, Definition and Characteristics, Physical Design of IoT, Things in IoT, IoT Protocol, Logical Design of IoT, IoT Functional Blocks, IoT Communication Models, IoT Communication APIs, IoT Enabling Technologies, IoT Levels and Development Templates.	10 Hours
Module-2	Domain Specific IoTs: Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health & Life Style, Challenges and Issues; Study of relevant sensors for the above domains.	6 Hours
Module-3	M2M & System Management with NETCONF-YANG: M2M, Difference between IoT and M2M, SDN and NFV for IoT, Software Defined Networking, Network Function Virtualization, Need for IoT Systems Management, Simple Network Management Protocol, Limitations of SNMP.	8 Hours
Module-4	Internet of Things: Review of Networking and the Internet, Designing the Architecture of an IP-based Internet of Things, Physical/Link Layer, IEEE 802.15.4 and ZigBee, Low-power Wi-Fi, Bluetooth and BLE, Powerline Communications, Network Layer, The 6LoWPAN Adaptation Layer, Transport Layer, Application Layer, MQTT, REST API, CoAP, CoSIP Protocol Specification.	10 Hours
Module-5	IoT Application Development: IoT Applications in Home, Infrastructures Security, Industries, IoT Electronic Equipment, Sensors and Sensor Node Interfacing using Raspberry Pi/Arduino, Web Enabled Constrained Devices, Use of Data Analytics, Big Data and Visualization in IoT, Industrial IoT and Industry 4.0 concepts.	8 Hours
	Total	42 Hours

Text Books:

- T1. A. Bahga and V. Madisetti, *Internet of Things: A Hands-on Approach*, 1st Edition, University Press, 2018.
- T2. R. Kamal, *Internet of Things: Architecture and Design Principles*, 1st Edition, McGraw-Hill Education, 2017.

Reference Books:

- R1. H. Zhou, The Internet of Things in the Cloud: A Middleware Perspective, CRC Press, 2012.
- R2. O. Hersent, D. Boswarthick, and O. Elloumi, *The Internet of Things: Key Applications and Protocols*, Student Edition, John Wiley & Sons, 2016.
- R3. A. McEwen and H. Cassimally, *Designing the Internet of Things*, Wiley Publishers, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105166/: by Prof. S. Misra, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/108/108108098/: by Prof. T. V. Prabhakar, IISc Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain and explore the basic building blocks of IoT and different design levels.
CO2	Design and develop IoT solutions for different application domains.
CO3	Explore the evolution of IoT from other existing technologies and protocols.
CO4	Design IoT systems using IP-based architecture and different protocol stacks.
CO5	Develop IoT solutions using appropriate H/w components & protocols, and explore recent trends in IoT and Industry 4.0.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					-				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1			1		1				2	2	2	1
CO2	3	3	3			2		2				2	2	1	1
CO3	3	1	3			2		2				2	1	2	1
CO4	3	3	3			2		2				2	2	1	2
CO5	3	3	3			2		2				3	3	3	2

Type	Code	Electrical Circuits & Safety	L-T-P	Credits	Marks
OE	BTEE-T-OE-037	Electrical Circuits & Safety	3-0-0	3	100

Objectives	The objective of the subject is to learn the concepts of electrical networks, various safety measures & Indian electrical safety standards.
Pre-Requisites	Knowledge on basic electrical engineering is required.
Teaching Scheme	Regular classroom lectures with use of ICT as required, sessions are planned to be interactive with focus on examples, case-studies and standards.

To	eacher's Assessme	nt	Written A	ssessment	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10141		
05	05	05	25	60	100		

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Open circuit, Closed circuit, Short circuits, Definitions of node, branch, loop, mesh; Kirchhoff's Laws: Kirchhoff's Voltage and Current Laws (KVL and KCL); Mesh and Nodal analysis of networks, Electrostatic induction, Electric flux, Flux density, Electric field intensity; Capacitance – Effects of dielectrics, Dielectric constant units; Types of capacitors, Capacitors in series and parallel; Energy stored in a capacitor.	8 Hours
Module-2	Electromagnetic Induction; Faraday's law, Lenz's law, Fleming's right hand rule for generators, Fleming's left-hand rule for Motors; Statically and dynamically induced EMF; Inductance: Self and Mutual inductance, Types of Inductor; Energy stored in magnetic field.	6 Hours
Module-3	Primary and secondary hazards - arc, blast, shocks, Causes and effects, Safety equipment, Flash and thermal protection, Head and eye protection, Rubber insulating equipment, Hot sticks, Insulated tools, Barriers and signs, Safety tags, Locking devices, Voltage measuring instruments, Proximity and contact testers, Safety electrical one line diagram, Electrician's safety kit; Importance of earthing in various electrical circuits, Types of earthing.	12 Hours
Module-4	Electrical safety programme structure, Development, Company safety team, Safety policy programme implementation, Employee electrical safety teams, Safety meetings, Safety audit accident prevention, First aid, Rescue techniques, Accident investigation.	8 Hours
Module-5	Safety related case for electrical maintenance, Reliability centered maintenance (RCM), Eight step maintenance programme, Frequency of maintenance, Maintenance requirement for specific equipment and location, Regulatory bodies, National electrical safety code, Standard for electrical safety in work place, Occupational safety and health administration standards, Indian Electricity Acts related to Electrical Safety.	8 Hours
	Total	42 Hours

Text Books:

- T1. T. Singh, Fundamentals of Electrical Engineering, 1st Edition, S. K. Kataria & Sons, 2012.
- T2. J. Cadick, M. Capelli-Schellpfeffer, D. Neitzel, and A. Winfield, *Electrical Safety Handbook*, 5th Edition, McGraw-Hill Education, 2019.

Reference Books:

- R1. B. L.Thereja, *Electrical Technology Vol-1*, 6th Edition, S. Chand & Co., 2011.
- R2. A. J. Maxwell, *Electrical Safety: A Guide to the Causes and Prevention of Electric Hazards*, The Institution of Electric Engineers (IET), 1994.
- R3. R. A. Jones and J. G. Jones, *Electrical Safety in the Workplace*, Jones & Bartlett Learning, 2000.

Online Resources:

- 1. https://nptel.ac.in/courses/108102042/: by Prof. S. C. Dutta Roy, IIT Delhi
- 2. https://nptel.ac.in/courses/108/104/108104139/: by Prof. A. Sharma, IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Comprehend the basic concepts of DC circuits and apply different laws for circuit analysis.
CO2	Explain the basic concepts of AC circuits and different electromagnetic principle.
CO3	Troubleshoot and justify requirements of earthing for electrical safety.
CO4	Analyze the safety policies & audit and take necessary steps during accidents.
CO5	Understand electrical maintenance and Indian electricity act related to safety.

Program Outcomes Relevant to the Course:

	-
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2		1						2	3	1	1
CO2	3	3	2	2		2						2	3	1	
CO3	3	3	2	2		3						2	3		1
CO4	3	3	3	2		3						2	2	2	1
CO5	3	2	2	2		3						2	3	1	1

Type	Code	Applied Linear Algebra		Credits	Marks
OE	BTBS-T-OE-027	Applied Ellical Algebia	3-0-0	3	100

Objectives	The objectives of this course is to gain mathematical maturity by equipping the students to handle computation with matrices, difference equation and similarity transformation for various engineering applications.
Pre-Requisites	Knowledge of complex numbers, matrix algebra, and vector space is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total		
05	05	05	25	60	100		

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Geometry of Linear Equations, Gauss Elimination, Concept of Matrices with Applications, Vector Spaces and Subspaces, Echelon Form, Solution in Matrix Method, L.I, Basis & Dimension, Four Fundamental Subspaces, Linear Transformations.	9 Hours
Module-2	Orthogonal Vectors & Subspaces, Cosines & Projections onto Lines, Projections & Least Squares, Orthogonal Bases and Gram-Schmidt Process.	8 Hours
Module-3	Introduction & Properties of Determinants, Formulas for Determinant, Applications of Determinants, Introduction to Eigenvalues & Eigenvectors, Diagonalization of Matrix, Difference Equations, Complex Matrices, Similarity Transformations.	8 Hours
Module-4	Maxima, Minima & Saddle Points, Tests for Positive Definiteness, Singular Value Decomposition, Minimum Principles.	8 Hours
Module-5	Introduction to Computations with Matrices, Matrix Norm & Condition Number, Computation of Eigenvalues, Iterative Methods.	9 Hours
	Total	42 Hours

Text Books:

T1. G. Strang, *Linear Algebra and Its Applications*, 4th Edition, Cengage Learning, 2007.

Reference Books:

R1. G. Strang, Introduction to Linear Algebra, 3rd Edition, Wellesley-Cambridge, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/111/106/111106051/: by Dr. K. C. Sivakumar, IIT Madras
- 2. https://nptel.ac.in/courses/111/102/111102011/: by Dr. R. K. Sharma and Dr. W. Shukla, IIT Delhi
- 3. https://nptel.ac.in/courses/111/108/111108066/: by Prof. V. Rao, IISc Bangalore
- 4. https://nptel.ac.in/courses/111/107/111107106/: by Prof. P. N. Agrawal and Prof. D. N. Pandey, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain and apply matrix methods for solving a system of linear equations.
CO2	Describe orthogonal & projection in vector space and apply it to least square solution.
CO3	Identify and apply Eigen values and Eigen vectors to diagonalization.
CO4	Explain and apply Singular Value Decomposition and to obtain pseudo inverse of a matrix.
CO5	Develop algorithms and write programs to solve linear algebra problems on computers.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2								2	1	1
CO2	3	2	2	3	2								2	1	1
CO3	3	3	2	2	2								2	1	1
CO4	3	3	3	3	3								2	1	1
CO5	3	3	3	3	3								2	1	1

Type	Code	Project Management	L-T-P	Credits	Marks
OE	BTBS-T-OE-032	1 Toject Management	3-0-0	3	100

Objectives	The objective of this course is to study the fundamental tools and behavioral skills necessary to successfully launch, lead, and realize benefits, develop the skills for planning and controlling, and understanding key factors to drive successful project outcomes.
Pre-Requisites	General knowledge of any organization and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10141	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Objective of Project Management, Types of Projects, Project Life Cycle, project Initiation, project planning, Project Execution, Project closure; Analysis of a project: Market demand analysis, Technical analysis and financial estimation.	9 Hours
Module-2	Commonly used techniques for Project Management, Network techniques - PERT, CPM, Crashing of a project network, Line of balance (LOB): Application area of LOB, Input of LOB, Steps of LOB, Line balancing: Rank Positional weight method. Project Resource Management: Allocation, Leveling and Smoothing methods.	9 Hours
Module-3	Project Selection technique, Investment criteria (NPV, IRR, Benefit Cost Ratio), Project cash flows, Cost of capital, Risk analysis, Sources, Measures and perspectives of risk, Sensitivity analysis, Scenario analysis, Break-even analysis, Simulation analysis, Decision tree analysis, Managing risk, Project selection under risk.	8 Hours
Module-4	Project Financing, Capital structure, Sources of finance, internal accrual, securities, term loans, working capital, Equity and Debt, Venture capital and private equity.	8 Hours
Module-5	Social Cost Benefit Analysis (SCBA): Rationale for SCBA,UNIDO Approach, Net Benefit In terms of Economics (efficiency) Prices. Project Audit: Project failure & reasons for Audit, Phases of Project Audit.	8 Hours
	Total	42 Hours

Text Books:

- T1. P. Chandra, *Projects Planning, Analysis, Selection, Financing, Implementation and Review*, 9th Edition, McGraw-Hill Education, 2019.
- T2. R. Paneerselvam and P. Senthilkumar, *Project Management*, 1st Edition, PHI Learning, 2009.

P.T.O

Reference Books:

- R1. C. Gray, E. Larson, and G. Desai, *Project Management The Managerial Process*, 7th Edition, McGraw Hill, 2013.
- R2. B. Punmia and K. Khandelwal, *Project Planning and Control with PERT and CPM*, 4th Edition, Laxmi Publications, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/110/104/110104073/: by Prof. R. Sengupta, IIT Kanpur
- 2. https://nptel.ac.in/courses/110/107/110107081/: by Prof. S. K. Gupta & Prof. M. K. Barua, IIT Roorkee

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the fundamental project management tools and behavioral skills.
CO2	Explain the basic concept of various network techniques for project management.
CO3	Optimally utilize the resources for successful completion of a project.
CO4	Perform cost-benefit analysis of a project considering various factors involved.
CO5	Plan, monitor, control, and administer projects using computerized PMIS tools.

Program Outcomes Relevant to the Course:

PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1			1		3	1	1		1
CO2					2				1		3		1	1	1
CO3					2	1	1	1	1		3	1	1	1	1
CO4					2		1	1	1		3	1	1	2	1
CO5					3	1	1	1	1		3	1	1	1	1

Type	Code	Entrepreneurship Development	L-T-P	Credits	Marks
OE	BTBS-T-OE-034	Entrepreneursing Development	3-0-0	3	100

Objectives	The objective of this course is to learn various aspects of becoming an entrepreneur by starting own business and making it successful so as to adopt entrepreneurship as a career option for graduating engineers.
Pre-Requisites	General knowledge of any business and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples & case studies.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10141	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Concept of Entrepreneurship, Characteristics of successful entrepreneur, Growth of entrepreneurship in India. Role of Entrepreneurship in Economic Development, The Entrepreneurial Process, Entrepreneurial Motivation. Entrepreneurial Competencies. Developing Entrepreneurial Competencies.	8 Hours
Module-2	Ideas to Reality, creativity, innovation and Entrepreneurship, Identifying and recognizing Opportunities, Techniques for generating Ideas, Encouraging and Protecting the new ideas and selecting the right project, Ensuring your market, Market survey and Research.	8 Hours
Module-3	Business Plan - Meaning, Contents and significance, Formulation, Presentation to the investors, Techno-economic Feasibility Assessment - A preliminary Project Report, Details Project Report, Project Appraisal, Methods of Project Appraisal.	9 Hours
Module-4	Creating a successful financial plan, Basic financial statements, Ratio Analysis, Break-even Analysis; Marketing Management of SMEs, Problems of HRM – Relevant Labour – laws, Forms of Business ownership, Institutional Finance to entrepreneurs, Source of financing, Institutional support to entrepreneurs.	9 Hours
Module-5	The importance of Intellectual Property, Patents, Trade Mark, Copyrights, Trade secrets, Intellectual property audit, Start up Policy of Centre, State, and MSME sectors, Problems of MSME, Sickness in small scale enterprises, Govt. policies on revival of sickness and remedial measures.	8 Hours
	Total	42 Hours

Text Books:

- T1. B. R. Barringer and R. D. Ireland, *Entrepreneurship*, 2nd Edition, Pearson Education, 2008.
- T2. Z. Thomas and S. Norman, *Essentials of Entrepreneurship and Small Business Management*, 5th Edition, PHI Learning, 2009.
- T3. S. S. Khanka, *Entrepreneurial Development*, 4th Edition, S. Chand & Co., 2010.

Reference Books:

- R1. P. Chavantimath, *Entrepreneurship Development and Small Business Enterprises*, 3rd Edition, Pearson Education, 2018.
- R2. H. D. Robert and P. M. Shephard, *Entrepreneurship*, 6th Edition, McGraw-Hill Education, 2007.
- R3. P. C. Jain, *Hand Book for New Entrepreneurs*, 4th Edition, Oxford University Press, 2004.
- R4. J. A. Timmons and S. Spinelli Jr., *New Venture Creation: Entrepreneurship for the 21st Century*, 8th Rev. Edition, Tata McGraw-Hill, 2009.
- R5. R. Roy, Entrepreneurship Management, 1st Edition, Oxford University Press, 2008.

Online Resources:

- 1. https://nptel.ac.in/courses/110/106/110106141/: by Prof. C. B. Rao, IIT Madras
- 2. https://nptel.ac.in/courses/127/105/127105007/: by Prof. M. K. Mondal, IIT Kharagpur
- 3. https://nptel.ac.in/courses/110/107/110107094/: by Prof. V. Sharma & Prof. R. Agrawal, IIT Roorkee

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the importance of entrepreneurship as a tool for development and discern distinct entrepreneurial traits.
CO2	Analyse the business environment to identify business opportunities and understand the systematic process to select and screen a business idea.
CO3	Prepare a proper business plan and project report.
CO4	Apply the tools necessary to create sustainable and viable businesses.
CO5	File and obtain patents for their innovative ideas to protect the rights of their business.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						2			2		3	1		2	1
CO2						1			2		3	1		2	3
CO3						1	2		2		3	1		1	2
CO4						2	2		2		3	1		1	2
CO5						2	2		2		3	1		3	3

Type	Code	Signals & Systems	L-T-P	Credits	Marks
OE	BTEC-T-OE-024	orginals & Systems	3-0-0	3	100

Objectives	The objective of this course is to study the presentation of various signals in time and spectrum domains, and stability & causality of LSI systems.		
Pre-Requisites Fundamental knowledge of basic mathematics is required.			
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.		

To	eacher's Assessme	nt	Written A	Total	
Quiz	Quiz Surprise Test(s) Assignment(s			End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Signals : Introduction, Classification: continuous/ discrete-time, commonly used continuous-time signals and discrete-time Signals, Analog/ digital signal, Periodic/ aperiodic, Even/ odd, Energy/ power, Deterministic/ random, Operation on Continuous-time and Discrete time signals: Addition, Multiplication, Differentiation/Difference, Integration/Accumulation, Shifting, Scaling, Folding and Convolution (graphical and analytical), Correlation of Discrete-Time signals & its properties.	8 Hours
Module-2	System and LTI/LSI System: Introduction, Classification for both continuous time and discrete time - Linear/ Non-linear, Time varying/ time invariant, Causal/ non-causal, Dynamic/ static, Stable/ unstable and Invertible/ Non-invertible, Continuous time and Discrete time LSI system, System representation through differential equations and difference equations, Response of LSI system and convolution Integral/convolution Sum, Characterization of causality and stability of linear shift invariant(LSI).	8 Hours
Module-3	Analysis by Fourier series and Fourier Transform: Orthogonal and Ortho-normal signal set, Fourier series, convergence of the Fourier series, Trigonometric Fourier series and exponential Fourier series, Continuous time Fourier Transform, convergence of the Fourier transform, Fourier transform of some useful signals, properties of the Fourier transform, the notion of a frequency response and its relation to the impulse response, Parseval's theorem: Energy spectral density, Power spectral density.	9 Hours
Module-4	Analysis by Laplace Transform: Introduction, Region of Convergence for Laplace transform, and properties of ROC, Laplace transform of some useful signals, properties of the Laplace transform, the inverse Laplace transform and Unilateral Laplace Transform and their properties, Initial value and final value theorem, solution of differential equation using Laplace transform.	9 Hours
Module-5	Analysis by Z-Transform : Discrete-time system analysis using the Z-transform, Mapping from S-plane to Z-plane, Z-transform, The Region of Convergence, Z-transform of some useful sequences, Properties of Z-transform, Inverse Z-transform, Unilateral Z-Transform and its properties.	8 Hours
	Total	42 Hours

Text Books:

- T1. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, *Signals and Systems*, 2nd Edition, Prentice Hall India, 1992.
- T2. S. Haykin and B. V. Veen, Signals and Systems, 2nd Edition, John Wiley & Sons, 2002.
- T3. B. P. Lathi, *Principles of Signal Processing and Linear Systems*, 2nd Edition, Oxford University Press, 2009.

Reference Books:

- R1. A. Ambardar, *Analog and Digital Signal Processing*, 2nd Edition, Brooks/Cole Publishing, 1999.
- R2. H. P. Hsu, Signal and System Schaum's Outlines, 2nd Edition, McGraw Hill, 2011.
- R3. M. J. Roberts, *Signals and Systems Analysis using Transform methods and MATLAB*, 2nd Edition, McGraw Hill, 2003.
- R4. A. N. Kani, *Signals and System*, 2nd Edition, McGraw Hill Education, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/117104074/: by Prof. K.S. Venkatesh, IIT Kanpur
- 2. https://nptel.ac.in/courses/108105065/: by Prof. T.K. Basu, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108104100/: by Prof. A. K. Jagannatham, IIT Kanpur
- 4. https://nptel.ac.in/courses/108105059/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 5. https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/
- 6. https://engineering.purdue.edu/~mikedz/ee301/ee301.html
- 7. https://stanford.edu/~boyd/ee102/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe different types of signals and systems.
CO2	Analyze various types of LSI systems responses.
CO3	Represent continuous and discrete systems in time & frequency domains using different transforms.
CO4	Investigate the system stability and causality using Laplace Transform and Z-Transform.
CO5	Analyze discrete time signals and systems using Z-transform.

Program Outcomes Relevant to the Course:

_	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Cont'd...

PO6

The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	3	3							2	2	
CO2	2		1	2	1	2							1	1	
CO3	3	2	1	1	2	2							2	1	
CO4	3	2	1	1	2	1							2	1	
CO5	3	2	2	1	1	2							3	1	

Type	Code	Sensors & Circuit Analysis	L-T-P	Credits	Marks
OE	BTEI-T-OE-027	Schools & Circuit Analysis	3-0-0	3	100

Objectives	The objective of this course is to study the characteristics of different types of measurement systems and principles & applications of various sensing elements.
Pre-Requisites	Basic knowledge of physics, mathematics, electrical, and electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real world examples & case studies.

T	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	Iotai	
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Basics and functional elements of measurement systems, Types of instruments and applications; Active/passive transducers, Analog/digital mode of operation; Static Characteristics: Systematic characteristics, Statistical characteristics, Calibration; Resistive Sensors: Potentiometers, RTD, Thermistor, Strain Gauge.	8 Hours
Module-2	Capacitive Sensing Elements: Variable separation, Area and dielectric, Sensors for pressure, humidity, and level measurement; Inductive Sensing Elements: Variable reluctance and LVDT; Hall effect sensors, Temperature Sensors: Thermocouples, IC temperature sensors, Radiation pyrometer (Narrow Band & Broad Band), Optical pyrometer.	8 Hours
Module-3	Motion Sensor : Types of motion, Principles & types of accelerometers; Circuit Analysis and Applications: Steady-state acceleration, Vibration and shock; Piezoelectric accelerometers and signal conditioning; Optical Detectors: Photodiodes, Circuit analysis; Miscellaneous Sensors: Ultrasonic, IR, PIR, Microwave radar.	8 Hours
Module-4	Analog Circuit Analysis: Introduction, Principle of analog signal conditioning, Linearization, Conversions, Zero, and span adjustment, Level changing, AC/DC power supply, Filtering and impedance matching, Passive circuits, Divider circuit, Bridge circuits, Operational Amplifier Circuits: Voltage follower, Inverting & non-inverting circuits, Differential amplifier, Integrator, Differentiator, Instrumentation amplifier; Case study: Relay driver circuits, Voltage-to-current converter, Current-to-voltage converter, AC carrier system.	10 Hours
Module-5	Digital Circuit Analysis : Comparators, DAC (bipolar, resolution, characteristics), ADC (bipolar, characteristics, Conversion time, Samplehold, Microprocessor compatible), Frequency-based converters; Data Presentation Elements: Light-emitting diode (LED) displays, Liquid crystal displays (LCDs); Case study: Digital pH meter, Digital tachometer, Fully automatic digital instrument, Digital capacitance meter, Microprocessor-based instruments, IEEE 488 bus.	8 Hours
	Total	42 Hours

Text Books:

- T1. C. D. Johnson, *Process Control Instrumentation Technology*, 8th Edition, Pearson Education, 2014.
- T2. J. P. Bentley, *Principles of Measurement Systems*, 4th Edition, Pearson Education, 2005.
- T3. H. S. Kalsi, *Electronics Instrumentation & Measurements*, 4th Edition, McGraw-Hill Education, 2019.

Reference Books:

- R1. A. K. Sawhney, *A Course in Electrical and Electronics Measurements & Instrumentation*, 1st Edition, Dhanpat Rai & Co., 2015.
- R2. E. O. Doeblin, *Measurement Systems Applications and Design*, 6th Edition, McGraw Hill, 2007.
- R3. C. Rangan, G. Sarma, and V. S. V. Mani, *Instrumentation: Devices and Systems*, 2nd Edition, McGraw Hill, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/108/108/108108147/: By Prof. H. J. Pandya, IISc Bangalore
- 2. https://nptel.ac.in/courses/115107122/: By Prof. S. K. Srivastava, IIT Roorkee
- 3. https://nptel.ac.in/courses/117108038/: By Prof. M. K. Gunasekaran, IISc Bangalore

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the performance characteristics of measuring instruments and correlate them with resistive-type sensors.
CO2	Explain the principles of capacitive, inductive, and optical sensing elements.
CO3	Identify and utilize various motion sensors used in industrial applications.
CO4	Investigate the design of analog signal conversion circuits in various sensing systems using case studies.
CO5	Investigate the design of digital signal conversion circuits in various sensing systems using case studies.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1								2	1	1
CO2	3	2	2	2	1								3	1	2
CO3	3	2	2	2	1								3	1	2
CO4	3	3	3	2	1								3	1	3
CO5	3	3	3	2	1								3	1	3

Type	Code	Energy Conversion Devices	L-T-P	Credits	Marks
OE	BTEE-T-OE-038	Energy Conversion Devices	3-0-0	3	100

Objectives	The objective of the course is to study various types of electrical machines, their performance, control mechanisms, and industrial applications.
Pre-Requisites	Knowledge of basic electrical engineering, basic mathematics like calculus, and differential equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	iotai	
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	DC Machines: Basics of rotating machines, Constructional Features, Methods of Excitation, Expression for EMF Induced and Torque Developed; DC Generators: No Load Characteristics for Separately Excited DC Generator and DC Shunt Generator, Conditions for Self Excitation, Critical Resistance and Critical Speed, Losses and Efficiency; DC Motors: Types of DC motors, Speed control of DC shunt motors, Starting of DC motors.	10 Hours
Module-2	Transformers : Constructional Features, EMF Equation, Equivalent Circuit, Determination of Parameters From Tests (Open Circuit Test and Short Circuit Test), Losses and Efficiency, Basics of 3-phase transformer, Introduction to Auto Transformer.	8 Hours
Module-3	3-Phase Induction Motors : Constructional Features of Squirrel Cage Rotor type and Slip Ring/Wound Rotor type induction motors, Principles of Operation, Concept of Slip, Slip vs. Torque Characteristics, Starting and Speed Control of Induction Motors.	10 Hours
Module-4	Synchronous Machines : Constructional Features, Types and Principles of operation as Alternator, EMF equation of alternator and phasor diagram, Voltage regulation by EMF method, Starting of Synchronous Motors.	8 Hours
Module-5	Single Phase Motors : Principles of Single phase Induction motors, Stepper motor, AC & DC Servo motors and their applications, BLDC motors.	6 Hours
	Total	42 Hours

Text Books:

- T1. A. E. Fitzgerald, C. Kingsley Jr., and S. D. Umans, *Electric Machinery*, 6th Edition, McGraw-Hill Education, 2017.
- T2. S. J. Chapman, *Electric Machinery and Fundamentals*, 4th Edition, McGraw-Hill Education, 2017.

Reference Books:

- R1. P. S. Bimbhra, *Electrical Machinery*, 7th Edition, Khanna Publishers, 2009.
 R2. D. P. Kothari and I. J. Nagrath, *Electric Machines*, 4th Edition, Tata McGraw-Hill, 2010.
 R3. A. Husain and H. Ashfaq, *Electrical Machines*, 3rd Edition, Dhanpat Rai & Co., 2016.

R4. J. B. Gupta, *Theory & Performance of Electrical Machine*, 14th New Edition, S. K. Kataria & Sons Publication, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/108105017/: by Dr. D. Kastha, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108106072/: by Prof. K. Vasudevan, Prof. G. S. Rao, Prof. P. S. Rao, IIT Madras
- 3. https://nptel.ac.in/courses/108/102/108102146/: by Prof. G.Bhuvaneshwari, IIT Delhi
- 4. https://nptel.ac.in/courses/108/105/108105155/: by Prof. T. K. Bhattacharya, IIT Kharagpur
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electricmachines-fall-2013/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain the construction and operation of DC machines and analyze their performance characteristics.
CO2	Describe the operating principles of transformers and determine their circuit parameters & efficiency.
CO3	Describe the construction, operation, performance, starting and speed control of 3-phase induction machines.
CO4	Describe the construction and analyze performance of synchronous generators and motors.
CO5	Explain the construction, operation and performance of single phase induction motors and special machines.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	1						1	3	1	
CO2	3	3	2	1	2	2						1	2		
CO3	3	3	3	2	2	3						1	2	1	1
CO4	3	2	3	1	1	3						2	3		
CO5	3	3	2	2	1	3						1	3	1	1

T	ype	Code	Stochastic Processes	L-T-P	Credits	Marks
(OE	BTBS-T-OE-031	Stochastic Processes	3-0-0	3	100

Objectives The objectives of this course is to gain mathematical maturity by equippi students to handle computing probability in different conditions and stuthe concepts of Markov chain & Queuing theory.					
Pre-Requisites Knowledge of Sets, Probability, and Linear Algebra is required.					
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.				

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Review of basics of Probability - Probability of an event, Conditional probability, Independent event and Bayes' formula, Random variables, Discrete and Continuous, Distribution functions, Joint distribution & independent random variables, Expectation, Variance and covariance, Variance of a sum, Conditional distribution & conditional expectation (discrete case), Conditional distribution & conditional expectation (continuous case), Computing expectation & variance by conditioning, Computing probabilities by conditioning.	8 Hours
Module-2	Stochastic Processes, Markov Chain - Introduction and definition, Chapman-Kolmogorov equations, Classification of states, Limiting probabilities, Some application problems, Mean time spent in transient state, Branching processes, Time reversible Markov chains.	11 Hours
Module-3	Markov decision process, Hidden Markov chain, Exponential distribution and its properties, Counting process & definition of Poisson process, Inter arrival & waiting time distribution, Further properties of Poisson process, Non-homogeneous Poisson process.	8 Hours
Module-4	Continuous-time Markov chain, Birth & death process, The transition probability function, Limiting probabilities, Time reversibility, Computing the transition probabilities.	7 Hours
Module-5	Terms & notations in Queuing Theory, Steady state probabilities, A single server exponential queuing system $(M/M/1)$, $M/M/1$ system with finite capacity, An application problem, The system $M/G/1$, Multiserver queues.	8 Hours
	Total	42 Hours

Text Books:

T1. S. M. Ross, *Introduction to Probability Models*, 10th Edition, Academic Press, 2009.

Reference Books:

R1. J. Medhi, *Stochastic Processes*, 4th Edition, New Age International, 2019.

Online Resources:

- $1.\ https://nptel.ac.in/courses/110/101/110101141/:\ by\ Prof.\ M.\ Hanawal,\ IIT\ Bombay$
- 2. https://nptel.ac.in/courses/111/102/111102111/: by Dr. S. Dharmaraja, IIT Delhi
- 3. https://nptel.ac.in/courses/115/106/115106089/: by Prof. V. Balakrishnan, IIT Madras
- 4. https://nptel.ac.in/courses/111/102/111102098/: by Dr. S. Dharmaraja, IIT Delhi

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply probability models to real life engineering problems.						
CO2	CO2 Explain Markov chain and classification of states.						
CO3	Solve problems using the concepts of hidden Markov chain and Poisson process.						
CO4 Apply Markov chain in problems of different field of engineering.							
CO5	Apply Queuing theory in engineering and daily life situations.						

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

11	0				`	,		,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1								2	1	1
CO2	3	3	2	2	2								2	1	1
CO3	3	2	2	2	2								2	1	1
CO4	3	3	2	2	3								2	1	1
CO5	3	3	3	3	3								2	1	1

T	уре	Code	Organizational Behaviour	L-T-P	Credits	Marks
	OE	BTBS-T-OE-030	Organizational Denavious	3-0-0	3	100

Objectives The objective of this course is to understand the human interaction organization and develop the skills for leadership, conflict resolution a rational decisions to attain business goals.				
Pre-Requisites	General knowledge of any organization and its operations is sufficient.			
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples.			

To	eacher's Assessme	Written A	Total			
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Organizational Behaviour (OB): Definition & Meaning, Importance; Learning: Nature, Learning Cycle, Components, Theories; Personality: Meaning & Definition, Determinants of Personality, Personality Traits, Personality and OB.	9 Hours
Module-2	Perception: Meaning & Definition, Perceptual Process, Importance of Perception in OB; Motivation: Nature & Importance, Herzberg's Two Factor Theory, Maslow's Need Hierarchy Theory, Alderfer's ERG Theory.	8 Hours
Module-3	Organizational Behaviour Process: Communication - Importance, Types, Gateways, Barriers, Communication as a tool for improving Interpersonal Effectiveness; Groups in Organizations: Nature, Types, Group Cohesiveness, Group Decision-making, Managerial Implications, Effective Team Building; Leadership: Leadership & Management, Theories of Leadership; Conflict: Nature of Conflict and Conflict Resolution.	9 Hours
Module-4	Organizational Culture: Meaning & Definition, Culture and Organizational Effectiveness; Introduction to Human Resource Management: Selection, Orientation, Training and Development, Performance Appraisal.	8 Hours
Module-5	Organizational Change: Importance of Change, Planned Change and OB techniques; International Organizational Behavior: Trends in International Business, Cultural Differences and Similarities, Individual and Interpersonal Behavior in Global Perspective.	8 Hours
	Total	42 Hours

Text Books:

- T1. K. Davis, *Organisational Behaviour*, 9th Edition, McGraw-Hill, 1992.
 T2. K. Aswathappa, *Organisational Behaviour*, 12th Revised Edition, Himalaya Publishing House, 2016.

Reference Books:

- R1. S. P. Robbins, *Organisational Behaviour*, 8th Edition, Prentice Hall of India, 2018.
 R2. K. B. L. Srivastava and A. K. Samantaray, *Organizational Behaviour*, 1st Edition, India Tech, 2009.
 R3. K. Singh, *Organizational Behaviour*, 3rd Edition, Pearson, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/110/105/110105033/: by Dr. S. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/110/105/110105120/: by Prof. K. B. L. Srivastava, IIT Kharagpur
- 3. https://www.studocu.com/en/search/organizational-behaviour: by different universities

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the developments in the field of OB and the micro & macro approaches inside organizations.
CO2	Analyze and compare different models used to explain individual behaviour related to motivation, learning, perception and personality.
CO3	Identify the processes used in developing communication, interpersonal relations and resolving conflicts.
CO4	Explain the role of group dynamics, demonstrate skills required for working in groups, team building and various leadership styles.
CO5	Explain the need of organizational culture and identify the process and barriers for implementing organizational change.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1	1	1	1			1		1	1
CO2						1	1	2	1	1		1		2	1
CO3						1		2	3	3		1		2	2
CO4						1	2	1	3	1		1		3	2
CO5						2	1	1	1	1		1		2	1

Type	Code	Communication Systems Engineering	L-T-P	Credits	Marks
OE	BTEC-T-OE-039	Communication bystems Engineering	3-0-0	3	100

Objectives	The objective of this course is to study electronic communication systems, modulation techniques, digital transmission of analog signals, random variables, and sources & filtering of noise.
Pre-Requisites	Knowledge of signals & systems and probability theory is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Signals and Spectra : An Overview of Electronic Communication Systems, Types of Signal, Fourier Series, Fourier Transform, Properties of Fourier Transform, Orthogonal Signal.	8 Hours
Module-2	Amplitude Modulation Systems: Need for frequency translation, Double Side Band with Carrier (DSB-C), Double Side Band with Suppressed Carrier (DSB-SC), Modulators - Square-law, Switching, Balanced; Detectors: Square-law, Envelope, Synchronous; Single Side Band with Suppressed Carrier (SSB-SC), Frequency & Phase discrimination methods, Coherent detection, Modulation & demodulation of Vestigial Side Band modulation (VSB), Frequency Division Multiplexing, Radio Transmitter & Receiver (super heterodyne receiver).	9 Hours
Module-3	Angle Modulation: Angle Modulation, Narrow band FM, Wide band FM; FM Modulators: Direct method (Varactor diode method), Indirect method (Armstrong method), Simple slope detector, Balanced slope detector, Phase Locked Loop (PLL). Analog Pulse Modulation: Analog to Digital - The need, Sampling Theorem, Natural and Flat-top sampling, Quantization of signals, Quantization error, Pulse Amplitude Modulation, Pulse Width Modulation and Pulse Position Modulation.	9 Hours
Module-4	Digital Pulse Modulation: The PCM system, Bandwidth of PCM system, Delta Modulation (DM), Limitation of DM, Adaptive Delta Modulation, Differential PCM (DPCM), Comparison between PCM, DM, and DPCM. Digital Transmission of Analog Signal: Digital representation of analog signal, Line codes, Companding, Concept of Time Division Multiplexing, Multiplexing of PCM signals.	8 Hours
Module-5	Random Variables and Processes: Probability, Random variables, Useful probability density functions, Useful properties and certain application issues. Mathematical Representation of Noise: Sources of noise, Frequency-domain representation of noise, Superposition of noises, Linear filtering of noise, Noise bandwidth.	8 Hours
	Total	42 Hours

Text Books:

- T1. H. Taub, D. L. Schilling, and G. Saha, *Principles of Communication System*, 4th Edition, Tata McGraw Hill, 2013.
- T2. R. P. Singh and S. D. Sapre, *Communication Systems : Analog and Digital*, 3rd Edition, McGraw Hill Education, 2012.

Reference Books:

- R1. J. G. Proakis and M. Salehi, *Communication System Engineering*, 2nd Edition, PHI, 2002.
- R2. S. Haykin and M. Moher, *Communication Systems*, 5th Edition, John Wiley & Sons, 2009.
- R3. B. P. Lathi, Z. Ding, and H. M. Gupta, *Modern Digital and Analog Communication Systems*, 4th Edition, Oxford University Press, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/117105143/: by Prof. G. Das, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/104/108104091/: by Prof. A. Jagannathan, IIT Kanpur
- 3. https://nptel.ac.in/courses/117/105/117105144/: by Prof. S. S. Das, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain different types of signals and their characteristics using Fourier analysis tools.
CO2	Describe the fundamentals of amplitude modulation and demodulation techniques.
CO3	Articulate performance of angle modulation techniques and various analog pulse modulation schemes.
CO4	Explain different types of digital pulse modulation schemes and digital transmission of analog signals.
CO5	Visualize the behavior of random variables, noise signal in frequency domain, and linear filtering of noise.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	2		1
CO2	3	3	3	2	2							1	3		1
CO3	3	3	2	2	2							1	3		1
CO4	3	3	3	2	2							1	3		1
CO5	3	3	2	2	2							1	2		1

Type	Code	Biomedical Instrumentation & Signal	L-T-P	Credits	Marks
OE	BTEI-T-OE-020	Processing	3-0-0	3	100

Objectives	The objective of this course is to study various biomedical instruments, sensors and signal processing techniques, and their applications in diagnosis, therapeutic and surgical procedures.
Pre-Requisites	Knowledge of basic electronics, sensors, and transducers is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-world applications.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Bioengineering : Sources and examples of biomedical signals, Basic medical Instrumentation system, use of microprocessors, general design constraints; Transducers: Classification, Transducers for Biomedical Applications; Sources of Bio-electric Potentials: Resting and Action Potentials; Anatomy of heart, Different types of Biomedical Signals: ECG, PCG, EEG, EMG.	9 Hours
Module-2	Biomedical Electrodes and Recorders : Electrode theory, Recording electrodes, Bio-potential Electrodes for ECG, EEG and EMG, Microelectrodes, ECG recorder, Sources of Artifacts in ECG and their removal methods, EEG & EMG recorder.	8 Hours
Module-3	Patient Care Monitoring: System concepts, Measurement of heart rate, Measurement of pulse rate, Blood pressure and blood flow measurement, Pacemakers and Defibrillators, Electric shock hazards, Leakage currents.	8 Hours
Module-4	X-Ray and Radioisotope Instrumentation: Generation of Ionizing Radiation, Nature and production of X-Rays, Computed Tomography, Magnetic Resonance Imaging System, Ultrasonic Imaging Systems.	8 Hours
Module-5	Adaptive Filters: Principle, the steepest descent algorithm, adaptive noise canceller, cancellation of interference in electrocardiography, applications; Canceling Donor heart Adaptive filters, HF noise in ECG, motion artifact in ECG, maternal interference in Fetal ECG, cancellation of maternal ECG, cancellation of ECG signal from electrical activity of chest muscles, cancellation of HF noise in Electro-surgery.	9 Hours
	Total	42 Hours

Text Books:

- T1. R. S. Khandpur, *Handbook of Biomedical Instrumentation*, 2nd Edition, McGraw-Hill, 2002.
 T2. D. C. Reddy, *Biomedical Signal processing Principles & Techniques*, 1st Edition, McGraw-Hill, 2005.
 T3. R. M. Rangayyan, *Biomedical Signal Analysis A Case Study Approach*, 2nd Edition, John Willey & Sons, 2002.

Reference Books:

- R1. J. L. Cromwell, F. J. Weibell, and E. A. Pfeiffer, *Biomedical Instrumentation and Measurement*, 2nd Edition, Prentice Hall of India, 2017.
- R2. J. J. Carr and J. M. Brown, *Introduction to Biomedical Equipment Technology*, 4th Edition, Pearson Education, 2000.
- R3. H. E. Thomas, *Handbook of Biomedical Instrumentation and Measurement*, 1st Edition, Reston Publishing Company, 1974.

Online Resources:

- 1. https://nptel.ac.in/courses/102101068/: by Prof. S. Srivastava, IIT Bombay
- 2. https://nptel.ac.in/courses/108105101/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 3. https://ocw.mit.edu/courses/biological-engineering/20-010j-introduction-tobioengineering-be-010j-spring-2006/videos/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the principles and design of biomedical instruments and applications of biomedical
CO1	engineering.
CO2	Explain design considerations for medical equipment with respect to the human physiological
CO2	system.
CO3	Describe the principle of operation of various medical recording and imaging systems.
CO4	Identify the elements of risk for different instrumentation methods and basic electrical safety.
CO5	Explain different adaptive methods for biomedical signal processing and noise cancellation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

Cont'd...

PO11

Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1			1	3			1		2	1	2
CO2	1	1	2	3	1			2					2	1	1
CO3	2	2	1	2		1	2	2					1		1
CO4	2	1	2	2		1		3					2		2
CO5	3	2	1	2		2		1					1		

Type	Code	Internet of Things Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-056	internet of Things Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to provide practical exposure to interfacing sensors & actuators with IoT controllers, learn UART, I2C, SPI & MQTT protocols and apply them in diverse domains.
Pre-Requisites	Basic knowledge of digital electronics and programming is required.
Teaching Scheme	Regular Laboratory classes with the use of ICT whenever required; experiments shall comprise of developing end-to-end IoT systems for specific applications.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Installation and configuration of Raspberry Pi, blinking LED program, creating different LED patterns using loops and functions.
2	Interfacing Sensors & Actuators: Digital I/O.
3	Interfacing Sensors & Actuators: Analog I/O.
4	Interfacing Sensors & Actuators: DHT11 and LCD/OLED.
5	Protocol: UART.
6	Protocol: I2C.
7	Protocol: SPI.
8	Protocol: MQTT, Connect to cloud server and create an IoT solution.
9	Protocol: LoRa.
10	Project: Healthcare (Pulse rate monitoring).
11	Project: Environment (Ambient air quality monitoring).
12	Project: Agriculture (Soil quality monitoring).
13	Project: Energy (Energy monitoring System).
14	Project: Smart Home (appliances control and security system).

Text Books:

- T1. S. Monk, *Raspberry Pi Cookbook*, 3rd Edition, O'Reilly Media, 2019.
- T2. A. Bahga and V. Madisetti, *Internet of Things: A Hands-on-Approach*, University Press, 2014.

Reference Books:

- R1. M. Margolis, B. Jepson, and N. R. Weldin, *Arduino Cookbook*, 3rd Edition, O'Reilly Media, 2020.
- R2. A. Kurniawan, *Internet of Things Projects with ESP32*, Packt Publishing, 2019.

Online Resources:

- 1. http://www.digimat.in/nptel/courses/video/106105166/L29.html
- 2. https://www.instructables.com/Raspberry-Pi-Class/
- 3. https://www.raspberrypi.org/learn/
- 4. https://www.coursera.org/learn/raspberry-pi-platform
- 5. http://esp32.net/#Info

Course Outcomes: At the end of this course, the students will be able to:

CO1	Setup and configure Raspberry Pi and create basic programs for LED patterns.
CO2	Interface digital/analog sensors to read data from the physical world and control actuators.
CO3	Explore and utilize various communication protocols for specific applications.
CO4	Control GPIO outputs using a web interface.
CO5	Design and develop IoT-based solutions for diverse domain or verticals.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1			1				1	1	2	1
CO2	3	3	3	1	1			1				1	1	3	1
CO3	3	3	3	1	1			1				1	2	3	2
CO4	3	3	3	1	1			1				1	2	2	1
CO5	3	3	3	1	2	2		1				1	2	2	2

Department of Computer Science & Engineering Silicon Institute of Technology Silicon Hills, Patia, Bhubaneswar - 751024