

Curriculum Structure & Detailed Syllabus Bachelor of Technology

in

Electronics & Instrumentation Engineering

(Four-Year Under-Graduate Program)

Silicon University, Odisha

Silicon Hills, Patia, Bhubaneswar - 751024 https://silicon.ac.in

Effective From Academic Year 2024-25

Version: 1.0.1 (Build: 23-04-2025) This document has been typeset using $\mathbb{M}_{F}X2_{\varepsilon}$

Approval History

ACM#	Date	Resolutions
SU-1	27/04/2024	The curriculum structure of B. Tech. (EIE) was approved in principle by the Academic Council.
SU-2	17/08/2024	The curriculum structure of B. Tech. (EIE) and detailed syllabus of 1st Year was approved by the Academic Council.
SU-3	19/04/2025	The amendments to the curriculum structure of B. Tech. (EIE) and the detailed syllabus up to 2nd Year was approved by the Academic Council.

Knowledge and Attitude Profile (WK's)

Knowledge and Attitude Profile (WK's) are linked to the Graduates Attributes (GAs) which indicate a graduate's potential to acquire competence at the appropriate level. NBA has defined 9 (nine) Knowledge and Attitude Profile (WK's) aligned with the Washington Accord for UG Engineering programs.

- WK1. A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- WK2. Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- WK3. A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- WK4. Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- WK5. Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- WK6. Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- WK7. Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- WK8. Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- WK9. Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Program Outcomes (PO's)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programs as defined by NBA are:

- PO1. **Engineering Knowledge**: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
- PO2. **Problem Analysis**: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
- PO3. **Design/Development of Solutions**: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
- PO4. **Conduct Investigations of Complex Problems**: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
- PO5. **Engineering Tool Usage**: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
- PO6. **The Engineer and The World**: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
- PO7. **Ethics**: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- PO8. Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- PO9. **Communication**: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
- PO10. **Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11. **Life-Long Learning**: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Program Specific Outcomes (PSOs)

- PSO1. Understand, analyze, formulate, and solve various complex engineering problems related to sensors, process instrumentation, VLSI, Biomedical and Real-time Embedded Systems by applying fundamental concepts of electronics and instrumentation.
- PSO2. Imbibe the skills in modern technologies, tools & platforms to become a successful professional or entrepreneur, develop a passion for innovation & higher studies, and contribute as a responsible citizen with effective communication, strong moral values & professional ethics.
- PSO3. Appreciate and adapt to emerging technologies in electronics and related domains to design and create efficient systems for process automation in the real world using appropriate sensors, instruments, tools, and platforms to meet the challenges of the future.

Program Educational Objectives (PEOs)

- PEO1. *Fundamental Knowledge & Core Competence*: To apply the knowledge of science, mathematics and principles of electronics & instrumentation engineering essential for a successful professional and inculcate competent problem-solving ability.
- PEO2. *Proficiency for the Real World*: To inculcate the skills required to analyze, formulate, design, develop, test and optimize efficient and cost-effective electronics and instrumentation systems useful in various real world scenarios.
- PEO3. *Leadership & Social Responsibility*: To exhibit leadership capability with professional, ethical, interpersonal skills, social & economic commitment with a sense of responsibility towards public policies, community services, humanity and environment.
- PEO4. *Life-long Learning*: To grow professionally through continued education & training of technical and management skills, pursue higher studies, and engage in life-long learning.

L	Lecture
Т	Tutorial
Р	Practical / Laboratory / Sessional
WCH	Weekly Contact Hours
UCR	University Core Course
UMC	University Mandatory Course (0-Credit)
PCR	Program Core Course
PEL	Program Elective Course
OEL	Open Elective Course
HNS	Honours (Choice-based) Course
MNR	Minor (Choice-based) Course
000	Open Online Course (on NPTEL / Swayam / Other)
INT	Summer Internship
PSI	Practice School / Industry Internship
PRJ	Project Work
SEC	Skill Enhancement Course
VAC	Value Addition Course

Course Categories & Definitions

Contents

Ι	Curriculum Structure	1
	Induction Program	2
	1st Year B.Tech.(Common)	3
	Semester I	3
	Semester II	4
	2nd Year B.Tech.(EIE)	5
	Semester III	5
	Semester IV	5
	3rd Year B.Tech.(EIE)	6
	Semester V	6
	Semester VI	6
	4th Year B.Tech.(EIE)	7
	Semester VII	7
	Semester VIII	7
	4th Year B.Tech.(EIE) - [PS-7]	8
	Semester VII	8
	Semester VIII	8
	4th Year B.Tech.(EIE) - [PS-8]	9
	Semester VII	9
	Semester VIII	9
	List of Electives	10
	List of Tracks for Honours / Minor	11
		11
п	Detailed Syllabus	12
1s	t Year B.Tech. (Common)	13
	Semesters I & II	13
	Theory	13
	ODE & Matrix Algebra	13

ODE & Matrix Algebra	. 13
Engineering Chemistry	
Engineering Physics	
Basic Electronics Engineering	
Basic Electrical Engineering	
Engineering Mechanics	
Engineering Thermodynamics	
Computer Programming	
Constitution of India & Professional Ethics	. 31
Environmental Science & Engineering	. 33
Probability & Statistics	
Data Structures & Algorithms	
Practical	. 39
Basic Electronics Engineering Lab	. 40
Basic Electrical Engineering Lab	. 42
Computer Programming Lab	
Communicative & Technical English	. 46
Workbench Practices	
Engineering Graphics	
Data Structures & Algorithms Lab	. 54

Corp	oorate Communication Skills	56
2nd Year B.Tech. (E	IE)	59
Semester III		59
Theory		59
Vecto	or Calculus & Fourier Analysis	59
OOP	Using Java	61
Mana	agement & Economics for Engineers	63
Biolo	bgy for Engineers	65
Basic	cs of Instrumentation	67
Circu	uit Theory	69
Anal	og Electronic Circuits	72
Practical .		74
OOP	Using Java Lab	75
Anal	og Electronic Circuits Lab	77
Basic	cs of Instrumentation Lab	79
Semester III		80
Theory		80
Com	plex Analysis & Numerical Methods	81
Prog	ramming in Python	83
Trans	sducers & Measurement Systems	86
Digit	tal Electronic Circuits	89
Solid	l State Devices	92
Embo	edded C Programming	94
Soft	Computing Techniques	96
Adva	anced Electronic Circuits	98
Powe	er Electronic Devices	01
Oper	rating Systems	03
Data	Mining & Data Warehousing	06
Mark	keting Management	08
Practical .		.09
Prog	ramming in Python Lab	10
U U	tal Electronic Circuits Lab	
	sducers & Measurement Systems Lab	
Simu	ılation & Design Lab	.17

Part I Curriculum Structure

Induction Program

It is necessary for a newly admitted student to acclimatize to the environment of a college, create a bonding between the teacher and students, equip the students with communication skills, and get them acquainted with the academic & disciplined culture of institution & human values.

All students admitted to B.Tech. programs shall undergo a mandatory induction program after joining the institute and before the commencement of classes. Regular classes of the engineering programs shall begin only after the students have completed the induction program.

The induction program shall comprise of familiarization to the rules & regulations of the institute, examinations & evaluation system, departments/branches, campus facilities, official processes & important officials, curricular/ co-curricular/ extra-curricular activity clubs, innovation & research activities, etc. The program shall also comprise of lectures by eminent persons on adopting a disciplined & healthy life-style, career planning & emerging technologies, social awareness, human values & ethics to sensitize & motivate the students to become not only a successful engineer, but also a socially responsible citizen and contribute their part for social development and nation building.

Interaction with faculty advisors, mentors, senior students, individual/group physical activities, learning or exhibiting an art form/ literature, social service initiatives, and visits to important places of the city, and any other events/ activities deemed to be necessary, may also be included in the induction program.

Every new student must diligently attend & participate in all the activities of the induction program. Attendance in the activities shall be recorded. Students have to submit a daily report in prescribed format to the concerned faculty advisor on the next day. There will be a computer-based test with multiple-choice questions on a suitable date about a week after completion of the induction program.

Evaluation of Induction Program shall be done out of 100 marks, comprising of 3 components, namely: (i) 25 marks for attendance, (ii) 25 marks for the daily reports, and (iii) 50 marks for the computer-based multiple-choice test. A student has to score at least 50 marks in total to pass the induction program.

In case of failure, the student has to attend the induction program in the next academic year along with the newly admitted students, submit daily reports, and appear the computer-based test to score a pass mark.

Curriculum Structure

1st Year B.Tech. (Common)

Semester I									
Category	Code	Course Title	WCH L-T-P			Credits L-T-P			
	1	THEORY	1						
UCR	MT1001	ODE & Matrix Algebra	3	0	0	3	0	0	
UCR	CH1001 / PH1001	Engineering Chemistry / Engineering Physics	3	0	0	3	0	0	
UCR	EC1001 / EE1001	Basic Electronics Engineering / Basic Electrical Engineering	3	0	0	3	0	0	
UCR	ME1001 / ME1002	Engineering Mechanics / Engineering Thermodynamics	2	0	0	2	0	0	
UCR	CS1001	Computer Programming	3	0	0	3	0	0	
UMC	HS0001 / CH0001	Constitution of India & Professional Ethics / Environmental Science & Engineering	3	0	0	0	0	0	
	•	PRACTICAL	•		•				
UCR	EC1002 / EE1002	Basic Electronics Engineering Lab / Basic Electrical Engineering Lab	0	0	2	0	0	1	
UCR	CS1002	Computer Programming Lab	0	0	4	0	0	2	
SEC	HS1001	Communicative & Technical English	0	0	4	0	0	2	
UCR	EE1003 / ME1003	Workbench Practices / Engineering Graphics	0	0	2	0	0	1	
		SUB-TOTAL	17	0	12	14	0	6	
		TOTAL		29			20		

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated *Engineering Chemistry* in Semester-I, then he/she will be allocated *Engineering Physics* in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

Semester II									
Category	Code	Course Title	WCH L-T-P			Credits L-T-P			
		THEORY							
UCR	MT1002	Probability & Statistics	3	0	0	3	0	0	
UCR	PH1001 / CH1001	Engineering Physics / Engineering Chemistry	3	0	0	3	0	0	
UCR	EE1001 / EC1001	Basic Electrical Engineering / Basic Electronics Engineering	3	0	0	3	0	0	
UCR	ME1002 / ME1001	Engineering Thermodynamics / Engineering Mechanics	2	0	0	2	0	0	
UCR	CS1003	Data Structures & Algorithms	3	0	0	3	0	0	
UMC	CH0001 / HS0001	Environmental Science & Engineering / Constitution of India & Professional Ethics	3	0	0	0	0	0	
		PRACTICAL							
UCR	EE1002 / EC1002	Basic Electrical Engineering Lab / Basic Electronics Engineering Lab	0	0	2	0	0	1	
UCR	CS1004	Data Structures & Algorithms Lab	0	0	4	0	0	2	
SEC	HS1002	Corporate Communication Skills	0	0	4	0	0	2	
UCR	ME1003 / EE1003	Engineering Graphics / Workbench Practices	0	0	2	0	0	1	
		SUB-TOTAL	17	0	12	14	0	6	
		TOTAL		29		20			

1st Year B.Tech.	(Common)
------------------	----------

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated *Engineering Chemistry* in Semester-I, then he/she will be allocated *Engineering Physics* in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

	Semester III										
Category	Code	Course Title		WCH Credits							
				L-T-P	L-T-P)			
		THEORY									
PCR	MT2003	Vector Calculus & Fourier Analysis	3	0	0	3	0	0			
UCR	CS2001	OOP Using Java	3	0	0	3	0	0			
UCR	MG2001 /	Management & Economics for Engineers /	3	3	0	0	3	0	0		
UCI	BL2001	Biology for Engineers				0	5	0	0		
PCR	EC2019	Basics of Instrumentation	3	0	0	3	0	0			
PCR	EE2010	Circuit Theory	3	0	0	3	0	0			
PCR	EC2004	Analog Electronic Circuits	3	1	0	3	1	0			
	•	PRACTICAL									
UCR	CS2004	OOP Using Java Lab	0	0	2	0	0	1			
PCR	EC2023	Basics of Instrumentation Lab	0	0	2	0	0	1			
PCR	EC2005	Analog Electronic Circuits Lab	0	0	4	0	0	2			
INT		Summer Internship - I	0	0	0	0	0	1			
		TOTAL	27				24				

2nd Year B.Tech.(EIE)

Semester IV									
Category	Code	Course Title	WCH L-T-P						
		THEORY							
PCR	MT2004	Complex Analysis & Numerical Methods	3	0	0	3	0	0	
UCR	CS2007	Programming in Python	3	0	0	3	0	0	
UCR	MG2001 / BL2001	Management & Economics for Engineers / Biology for Engineers	3	0	0	3	0	0	
PCR	EC2020	Transducers & Measurement Systems	3	0	0	3	0	0	
PCR	EC2007	Digital Electronic Circuits	3	1	0	3	1	0	
PEL		Program Elective - I	3	0	0	3	0	0	
HNS/MNR		Honours / Minor - I	3	0	0	3	0	0	
		PRACTICAL							
UCR	CS2010	Programming in Python Lab	0	0	2	0	0	1	
PCR	EC2021	Transducers & Measurement Systems Lab	0	0	2	0	0	1	
PCR	EC2008	Digital Electronic Circuits Lab	0	0	4	0	0	2	
PCR	EC2022	Simulation & Design Lab	0	0	2	0	0	1	
		TOTAL	29			24			
		TOTAL (with Honours/Minor)		32			27		

	Semester V									
Category	Code	Course Title	WCH L-T-P			Credits L-T-P				
		THEORY				1				
PCR		Introduction to Digital Signal Processing	3	0	0	3	0	0		
PCR		Digital VLSI Design	3	1	0	3	1	0		
PCR		Instrumentation Devices & Systems	3	1	0	3	1	0		
PCR		Communication Systems Engineering	3	0	0	3	0	0		
PEL		Program Elective - I	3	0	0	3	0	0		
PEL		Program Elective - II	3	0	0	3	0	0		
HNS/MNR		Honours / Minor - II	3	0	0	3	0	0		
		PRACTICAL								
PCR		Introduction to Digital Signal Processing Lab	0	0	2	0	0	1		
PCR		Digital VLSI Design Lab	0	0	2	0	0	1		
PCR		Instrumentation Devices & Systems Lab	0	0	2	0	0	1		
SEC		Soft Skills & Interpersonal Skills	0	0	2	0	0	1		
INT		Summer Internship - II	0	0	0	0	0	1		
		TOTAL	28			25				
		TOTAL (with Honours/Minor)	31				28			

3rd Year B.Tech.(EIE)

	Semester VI									
Category	Code	Course Title	WCH L-T-P			Credits L-T-P				
	<u> </u>	THEORY	1			I				
PCR		Industrial Automation & Control	3	0	0	3	0	0		
PCR		Microprocessors & Microcontrollers	3	0	0	3	0	0		
PCR		Control Systems Engineering	3	0	0	3	0	0		
PEL		Program Elective - IV	3	0	0	3	0	0		
PEL		Program Elective - V	3	0	0	3	0	0		
PEL		Program Elective - VI	3	0	0	3	0	0		
HNS/MNR		Honours / Minor - III	3	1	0	3	1	0		
		PRACTICAL	•							
PCR		Industrial Automation & Control Lab	0	0	2	0	0	1		
PCR		Microprocessors & Microcontrollers Lab	0	0	2	0	0	1		
SEC	/	Emerging Technologies Lab / Entrepreneurship & Innovation	0	0	4	0	0	2		
SEC		Professional & Technical Writing	0	0	2	0	0	1		
VAC		Yoga / NSS / NCC / PES / CPA *	0	0	2	0	0	0		
		TOTAL	30		23					
		TOTAL (with Honours/Minor)		34			27			

*Value Addition Courses: Yoga - Yoga & Meditation, NSS - National Service Scheme, NCC - National Cadet Corps, PES - Physical Education & Sports, CPA - Creative & Performing Arts. Every student must invest at least 2 hours per week in the chosen course in one semester.

4th Year B.Tech.(EIE)

(Without Practice School Option)

	Semester VII									
Category	Code	Course Title		WCH			Credits			
85				L-T-P		L-T-P				
		THEORY								
OEL		Open Elective - I	3	0	0	3	0	0		
OOC		MOOC - I	0	0	0	3	0	0		
HNS/MNR		Honours / Minor - IV	3	1	0	3	1	0		
HNS/MNR		Honours / Minor - V	3	1	0	3	1	0		
		PRACTICAL								
PRJ		Skill Lab & Project - I	0	0	4	0	0	2		
INT		Summer Internship - III	0	0	0	0	0	1		
		TOTAL		7			9			
		TOTAL (with Honours/Minor)	15			17				

	Semester VIII									
Category	Code	Course Title	WCH			Credits				
Gutegory	Goue		L-T-P			L-T-P				
	THEORY									
OEL		Open Elective - II	3	0	0	3	0	0		
OOC		MOOC - II	0	0 0 0		3	0	0		
		PRACTICAL	•		•		•			
UCR		Presentation Skills & Technical Seminar	0	0	2	0	0	1		
PRJ		Project - II	0	0 0 16		0	0	8		
		TOTAL	21 15			15				

	GRAND TOTAL	200	160
	GRAND TOTAL (with Honours/Minor)	220	178

- 1. Courses offered under each elective are given in "List of Electives" on Page 10.
- 2. Courses for Honours and Minor are given in "List of Tracks for Honours and Minor" on Page 11.
- 3. MOOC Massive Open Online Course (on NPTEL / Swayam / Other).
- 4. Approved list of courses for MOOC (self study) shall be published by the department. Students are advised to complete them before the end of 8th semester.
- 5. The Value Addition Course (Yoga / NSS / NCC) may be assigned in a different semester depending on available capacity.

4th Year B.Tech.(EIE)

(With Practice School Option in 7th Semester)

	Semester VII										
Category	Code	Course Title	WCH		[Credits					
Category	Code			L-T-P		L-T-P					
	PRACTICAL										
PSI		Practice School / Industry Internship	0	0	0	0	0	15			
INT		Summer Internship - III	0 0 0 0 0 1				1				
		TOTAL		0 16							

	Semester VIII									
Category	Code	Course Title		WCH		Credits		ts		
Category	Code		L-T-P				L-T-P	•		
	THEORY									
OEL		Open Elective - II	3	0	0	3	0	0		
OOC		MOOC - II	0	0	0	3	0	0		
HNS/MNR		Honours / Minor - IV	3	1	0	3	1	0		
HNS/MNR		Honours / Minor - V	3	1	0	3	1	0		
		PRACTICAL								
PRJ		Skill Lab & Project - I	0	0	4	0	0	2		
		TOTAL	7		8					
		TOTAL (with Honours/Minor)	15			16				

	GRAND TOTAL	179	160
	GRAND TOTAL (with Honours/Minor)	197	178

- 1. Courses offered under each elective are given in "List of Electives" on Page 10.
- 2. Courses for Honours and Minor are given in "List of Tracks for Honours and Minor" on Page 11.
- 3. MOOC Massive Open Online Course (on NPTEL / Swayam / Other).
- 4. Approved list of courses for MOOC (self study) shall be published by the department. Students are advised to complete them before the end of 8th semester.
- 5. The Value Addition Course (Yoga / NSS / NCC) may be assigned in a different semester depending on available capacity.

4th Year B.Tech.(EIE)

(With Practice School Option in 8th Semester)

	Semester VII									
Category	Code	Course Title		WCH		Credits				
Category	Code		L-T-P			L-T-P				
		THEORY								
OEL		Open Elective - I	3	0	0	3	0	0		
OOC		MOOC - I	0	0	0	3	0	0		
HNS/MNR		Honours / Minor - IV	3	1	0	3	1	0		
HNS/MNR		Honours / Minor - V	3	1	0	3	1	0		
		PRACTICAL								
PRJ		Skill Lab & Project - I	0	0	4	0	0	2		
INT		Summer Internship - III	0	0	0	0	0	1		
		TOTAL	7 9							
		TOTAL (with Honours/Minor)	15 1			17				

	Semester VIII										
Category	tegory Code Course Title		Course Title					Credits			
Category	Code	Course The	L-T-P			L-T-P					
	PRACTICAL										
PSI		Practice School / Industry Internship		0	0	0	0	0	15		
			TOTAL		0			15			

	GRAND TOTAL	179	160
	GRAND TOTAL (with Honours/Minor)	197	178

- 1. Courses offered under each elective are given in "List of Electives" on Page 10.
- 2. Courses for Honours and Minor are given in "List of Tracks for Honours and Minor" on Page 11.
- 3. MOOC Massive Open Online Course (on NPTEL / Swayam / Other).
- 4. Approved list of courses for MOOC (self study) shall be published by the department. Students are advised to complete them before the end of 8th semester.
- 5. The Value Addition Course (Yoga / NSS / NCC) may be assigned in a different semester depending on available capacity.

Code	Elective # and Subjects
Prog	ram Elective - I
EC2010	Solid State Devices
EC2011	Embedded C Programming
EE2007	Soft Computing Techniques
Prog	ram Elective - II
	IC Fabrication Technology
	IoT & Applications
	PLC, SCADA, VFD & DCS
Prog	ram Elective - III
	VLSI System Design & Verification
	Embedded System Design
	Introduction to Machine Learning
Prog	ram Elective - IV
	Analog VLSI Design
	Real Time Embedded Systems
	Virtual Instrumentation & DAQ
Prog	ram Elective - V
	Low Power VLSI Design
	Smart Sensors for IoT
	Industrial Instrumentation
Prog	ram Elective - VI
	Design of Semiconductor Memories
	Industrial IoT
	MEMS & Sensor Design
Oper	n Elective - I & II (Basket)
	Applied Linear Algebra
	Stochastic Processes
	Numerical Optimization
	Simulation & Modelling
	Fluid Mechanics
	Power Plant Engineering
	Project Management
	Organizational Behaviour
	Entrepreneurship Development
	Securities Analysis, Investment & Trading
	Circular Economy

List of Electives

Code	Honours / Minor # and Subjects
Но	nours in Electronics & Instrumentation Engineering
EC2018	Advanced Electronic Circuits
	Mechatronics
	Biomedical Instrumentation & Signal Processing
	Advanced Sensor Technology
	Analytical Instrumentation
Mi	nor in "Sustainable Energy & E-Mobility"
EC2024	Power Electronic Devices
	Renewable Energy Systems
	Basics of Power Systems
	Smart Power Systems
	Electric & Hybrid Vehicles
Mi	nor in "Information Technology"
CS2003	Operating Systems
	Computer Organization & Architecture
	Algorithm Design & Analysis
	Fundamentals of DBMS
	Internet Technology & Applications
Mi	nor in "Artificial Intelligence & Machine Learning"
CS3013	Data Mining & Data Warehousing
	Artificial Intelligence
	Machine Learning
	Natural Language Processing
	Advanced Machine Learning
Mi	nor in "Business Management"
MG2002	Marketing Management
	Human Resources Management
	Production and Operation Management
	Financial Management
	Business & Corporate Law

List of Tracks for Honours / Minor

- 1. Choice for Honours or Minor must be submitted before the end of 3rd Semester.
- 2. A student can opt for either Honours or Minor, but not both.
- 3. Once opted for Honours or Minor, the same cannot be changed or converted.
- 4. Unless adequate number of students opt for Honours or Minor, it shall not be offered for the batch.

Part II Detailed Syllabus

Category	Code	ODE & Matrix Algebra	L-T-P	Credits	Marks
UCR	MT1001	ODE & Matrix Algebra	3-0-0	3	100

Objectives	The objective of this course is to study the concepts of solution of system of linear equations using matrix methods, Eigen values & Eigen vectors of matrices with application, ordinary differential equations with applications, and Laplace transform & its applications to ordinary differential and integral equations.
Pre-Requisites	Knowledge of elementary calculus, coordinate geometry of two & three dimensions and matrix algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Matrix algebra, System of linear equations, Rank, Vector space, Existence and uniqueness of solution of a system of linear equations.	8 Hours
Module-2	Eigen values and Eigen vectors, Complex matrices, Diagonalization of matrices, Positive definite matrix, Singular Value Decomposition (SVD) and pseudo inverse.	8 Hours
Module-3	Separable ordinary differential equation and modeling, Exact ODE and Integrating factor, Linear ODE, Bernoulli's Equation, Modeling electrical circuits, Homogeneous linear ODE of second order, Second order Linear ODE with constant coefficients.	8 Hours
Module-4	Non-homogeneous linear ODE, Solution of Non-homogeneous linear ODE using undetermined coefficients, Euler-Cauchy ODE and applications to electrical circuits, Laplace transform, Inverse Laplace transform.	8 Hours
Module-5	Shifting theorems, Transform of derivatives and integrals, Unit step function and Dirac delta function, Applications to derivatives, Differentiation and integration of transforms, Convolution, Integral equation, Solution of system of differential equations.	10 Hours
	Total	42 Hours

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, 8th Ed., Wiley India, 2015.

T2. G. Strang, *Linear Algebra and Its Applications*, 4th *Ed.*, Cengage Learning, 2015.

Reference Books:

- R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Ed., Oxford University Press, 2015.
- R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Ed., McGraw Hill, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/111105035: by Prof. P. D. Srivastava, IIT Kharagpur
- 2. https://nptel.ac.in/courses/122104017: by Prof. S. K. Ray, IIT Kanpur
- 3. https://nptel.ac.in/courses/122102009: by Prof. S. R. K. Iyengar, IIT Delhi
- 4. https://nptel.ac.in/courses/111107063: by Dr. S. Gakkhar, IIT Roorkee
- 5. https://www.coursera.org/learn/linearalgebra2

- 6. https://www.coursera.org/learn/differentiation-calculus
- 7. https://www.coursera.org/learn/single-variable-calculus
- 8. https://alison.com/courses/Algebra-Functions-Expressions-and-Equations

Course Outcomes: At the end of this course, the students will be able to:

CO1	Solve a system of linear equations by applying the appropriate method.
CO2	Apply Eigen values and Eigen vector techniques to find SVD and pseudo inverse of a matrix.
CO3	Apply first order ordinary differential equations to solve real-world problems.
CO4	Apply second order ordinary differential equations to solve problems of electrical circuits.
CO5	Apply the concept of Laplace transforms to solve differential and integral equations.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	2							2	1	1
CO2	3	2	1	2	2							2	1	1
CO3	3	3	2	2	3							2	1	1
CO4	3	3	2	2	3							2	1	1
CO5	3	3	2	2	3							2	1	1

Category	Code	Engineering Chemistry	L-T-P	Credits	Marks		
UCR	CH1001	Engineering chemistry	3-0-0	3	100		
Objectives The purpose of this course is to understand the fundamentals and applications							
		emical sciences in the field of engineering. The course addresses the princip					

	of general and engineering chemistry, so that the students can apply the knowledge in their areas of expertise.
Pre-Requisites	Preliminary knowledge of mole concept, oxidation and reduction, combustion, electromagnetic wave, and nano-materials is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on examples and applications.

Attendance	Teacher's Assessment Mid-Term		End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Water Treatments : Types of hardness-Units, Alkalinity of water and its significance, Softening methods and Numerical problems based on these methods, Membrane-based processes, Dissolved Oxygen, Problems with Boiler feed water and its treatments.	9 Hours
Module-2	Corrosion Science : Definition and scope of corrosion, Dry and wet corrosion, Direct chemical corrosion, Electro-chemical corrosion and its mechanisms, Types of electro-chemical corrosion (Differential aeration, Galvanic, Concentration cell), Typical Electro-chemical corrosion like Pitting, Soil, Waterline, Factors affecting corrosion, Protection from corrosion.	8 Hours
Module-3	Instrumental Techniques : Fundamentals of Spectroscopy, Principles and applications of molecular spectroscopy such as UV-visible, IR, Elementary idea about XRD, SEM & TEM.	8 Hours
Module-4	Energy Sciences : Types of fuels, Calorific value, Determination of calorific value, Combustion and its calculations, Solid fuel – Coal analysis (Proximate and ultimate analysis), Liquidfuels – Concept of knocking, Anti-knocking, Octane and Cetane Nos, Battery Technology — Fundamentals of primary & secondary cells, Rechargeable batteries – Lead acid storage battery, Lithium ion battery, Fuel cells – Principles, Applications, Solar PV Cells.	9 Hours
Module-5	Nanochemistry : Nanomaterials, Classification of nanomaterials, Synthesis and characterization of noble metal nanoparticles (Gold and oxide-based nanoparticles) using Green Synthetic route, Stabilization of nanoparticles using capping agents, Applications of nanomaterials, Carbon based nanomaterials and their applications, Brief on Graphene and Fullerene.	8 Hours
	Total	42 Hours

Text Books:

- T1. Jain & Jain, *Engineering Chemistry*, 16th *Ed.*, Dhanpat Rai Publishing Company, 2015.
 T2. Wiley-India Editorial Team, *Engineering Chemistry*, 2nd *Ed.*, Wiley India, 2011.
 T3. C. N. Banwell, *Fundamentals of Molecular Spectroscopy*, 4th *Ed.*, McGraw-Hill Education, 2017.

Reference Books:

- R1. S. S. Dara, *Engineering Chemistry*, 12th Ed., S. Chand Publisher, 2014.
- R2. G. A. Ozin & A. C Arsenault, *Nanochemistry A Chemical Approach to Nanomaterials*, 2nd *Ed.*, RSC Publishing, 2008.
- R3. J. M. Lehn, L. Cademartiri, *Concepts of Nanochemistry*, 1st Ed., Wiley-VCH, 2009.
- R4. Y. R. Sharma, *Elementary Organic Spectroscopy*, S Chand & Co Ltd., 2013.

Online Resources:

- 1. http://nptel.ac.in/courses/103105110/ Fuel & Combustion
- 2. http://nptel.ac.in/courses/105104102/hardness.htm
- 3. http://nptel.ac.in/courses/105106112/1_introduction/5_corrosion.pdf
- 4. https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Exemplars/Corrosion/ Corrosion_Basics
- 5. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm
- 6. https://alison.com Spectroscopic Technique, Colorimetry

Course Outcomes: At the end of this course, the students will be able to:

CO1	Determine the hardness of water and apply difference processes to soften hard water.
CO2	Utilize the knowledge of electro-chemistry and corrosion science for prevention of corrosion.
CO3	Apply molecular spectroscopy to analyze organic compounds using spectrophotometer.
CO4	Classify various fuels based on combustion parameters and understand the working principles of various batteries and solar photovoltaic cells.
CO5	Explore synthesis & characterization of nanoparticles through green synthetic route.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

Cont'd...

		Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i)
PO	11	independent and life-long learning, (ii) adaptability to new and emerging technologies, and
		(iii) critical thinking in the broadest context of technological change. (WK8)

						-			, .					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	1	1	1	1				1	1	1	1
CO2	2	2	2	1	1	1	1	1			1	2	1	1
CO3	2	2	1	2	1	1	1	1			1	2	1	1
CO4	2	2	2	1	1	1	1	1			1	1	2	2
CO5	2	2	1	1	1	1	1				1	2	1	2

Category	Code	- Engineering Physics	L-T-P	Credits	Marks			
UCR	PH1001		3-0-0	3	100			
Objectives	Objectives The objective of this course is to study various laws of physics and understand							
different phenomena using these principles. This knowledge is necessary for								
engineering students to understand the working of instruments and technologies								

	and also useful to prepare various engineering projects.
Pre-Requisites	Basic knowledge on waves, electrostatics, magnetism and mathematics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Wave Optics: Concept of wave and wave equation, Superposition of waves (two-beam and multiple beam), Huygen's principle, Interference, Theory of Newton's rings and its applications, Diffraction, Fresnel and Fraunhofer diffraction, Fraunhofer's diffraction from a single slit, Plane diffraction grating – theory and its applications.	9 Hours
Module-2	Electromagnetic Waves: Gradient of scalar field, Divergence and curl of vector field, Gauss divergence theorem and Stoke's theorem (statement only), Gauss's law in electromagnetism, Faraday's law of electromagnetic induction, Ampere's circuital law, Displacement current, Maxwell's electromagnetic equations, Electromagnetic waves – Wave equations in free space, Dielectric and conducting medium, Poynting's theorem and Poynting's vector.	9 Hours
Module-3	Quantum Mechanics: Introduction, Need of quantum mechanics, Particle nature of radiation - Black body radiation (no derivation), Photoelectric effect, Compton's effect and pair production, Concept of de-Broglie's matter waves, Heisenberg's uncertainty principle and its applications.	8 Hours
Module-4	Schrödinger's Wave Equation & Applications : Concept of wave function ψ and interpretation of $ \psi ^2$, Schrödinger's time-dependent and time- independent wave equations, Expectation values, Operators in quantum mechanics, Eigenfunctions and Eigenvalues, Applications of Schrödinger's equation – Particle in a one dimensional box, Potential barrier.	8 Hours
Module-5	Laser & Fiber Optics : Radiation-matter interaction, Absorption of light, Spontaneous and stimulated emission of light, Population inversion, Types of Laser – Solid State Laser (Ruby), Gas Laser (He-Ne), Properties and applications of Laser; Optical Fiber – Structure and Principle, Types of optical fiber, Numerical aperture, Applications of optical fiber.	8 Hours
	Total	42 Hours

Text Books:

T1. D. R. Joshi, *Engineering Physics*, 1st Ed., Tata McGraw-Hill Publication, 2017.

T2. Md. M. Khan and S. Panigrahi, *Principle of Physics*, Vol. I & II, Cambridge Univ. Press.

P.T.O

- R1. A. Ghatak, *Optics*, 7th *Ed.*, McGraw-Hill Education, 2020.
- R2. D. J. Griffith, *Introduction to Electrodynamics*, 4th *Ed.*, Pearson Education, 2015.
- R3. A. Beiser, *Concept of Modern Physics*, 6th *Ed.*, McGraw-Hill Education, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/115102026/: by Prof. M. R. Shenoy, IIT Delhi
- 2. https://nptel.ac.in/courses/113104012/: by Prof. M. Katiyar and Prof. D. Gupta, IIT Kanpur
- 3. https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/
- 4. http://www.ilectureonline.com/lectures/subject/PHYSICS
- 5. https://ocw.mit.edu/courses/physics

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze wave properties of light like interference and diffraction and apply them in communications.
CO2	Develop Maxwell's equations from basic laws of electromagnetism and apply them to understand the properties of electromagnetic waves.
CO3	Analyze wave-particle duality to understand radiation-matter interaction.
CO4	Develop and apply Schrödinger's equations to fields like bound particle, potential barrier etc.
CO5	Investigate the basic principle, properties, operations and applications of laser & optical fiber in different fields like communication, industry, medicine, research etc.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	1	1						1	3	1	1
CO2	3	3	2	2	2						2	3	1	2
CO3	2	2	3	3	2						1	3	2	1
CO4	3	2	2	2	2						1	2	1	1
CO5	3	3	3	3	3						2	3	2	2

Category	Code		Basic Electronics Engineering	L-T-P	Credits	Marks			
UCR	EC1002	1	Dasic Electronics Engineering	3-0-0	3	100			
Objectives			objectives of this course is to study the conce						
		electronic devices, tools and instruments, general specifications and deployability							
		of the electronic devices, and assemblies in engineering applications.							
Pre-Requisi	tes	Knowledge of physics, chemistry, and introductory idea of semiconductors studied							
		at the higher secondary level is required.							
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, and planned							
		lectures to make the sessions interactive with problem solving activities.							

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Semiconductor & Diodes : Types of semiconductors, Majority and minority charge carriers, Energy Band diagram, Transport phenomena, Law of Mass Action, Drift and Diffusion Current; Semiconductor Diode – Ideal vs. Practical, Diode equivalent circuits, Diode Applications – Rectifiers, Clipper, Clamper, and Switch, Zener Diode – Operation and Applications.	9 Hours
Module-2	Transistors : Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying action, CB, CE, and CC configurations, Load line analysis, Fundamentals of biasing, Fixed biasing; Field Effect Transistor (FET) – Construction, Working principles, Characteristics of JFET & MOSFET.	9 Hours
Module-3	Op-Amps, Oscillators, and Measuring Instruments : Introduction, Characteristics of ideal Op-Amp, Virtual Ground Concept, Pin Configuration, Applications of Op-Amp – Inverting & Non Inverting Amplifier, Summing Amplifier, Differentiator, Integrator; Oscillators – Barkhausen's Criteria, RC phase shift oscillator, Wien bridge oscillator; Measuring Instruments – Construction & working of CRO, DSO, and Multimeter.	8 Hours
Module-4	Digital Logic : Number systems and its conversion, Signed & unsigned numbers, Binary arithmetic, 1's and 2's complement arithmetic, Basic & universal Logic gates, Boolean algebra and identities, Algebraic reduction using postulates of boolean algebra, Realization of boolean functions using universal logic gates.	8 Hours
Module-5	Signals & Communication Systems : Signals – Continuous & Discrete-time, Analog & Digital, Energy & Power, Spectrum of a signal, Fourier Transform (Exponential, Sine and Cosine); Communication Systems – Block diagram, Modulation, Time & Frequency domain representation of AM, Carrier & side- band power calculation, Generation (Square law modulator), Demodulation (Synchronous demodulator).	8 Hours
	Total	42 Hours

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th *Ed.*, Pearson Education, 2015.

- T2. A. Agarwal and J. Lang, Foundations of Analog and Digital Electronic Circuits, 1st Ed., Morgan Kaufmann, 2005.
- T3. R. P. Singh and S. D. Sapre, Communication Systems: Analog and Digital, 3rd Ed., McGraw-Hill Education, 2014.

Reference Books:

- R1. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th *Ed.*, Oxford University Press, 2009.
 R2. V. K. Mehta and R. Mehta, *Principles of Electronics*, 10th *Rev. Ed.*, S. Chand Publishing, 2006.
- R3. A. Kumar, Fundamentals of Digital Circuits, 3rd Ed., PHI Learning, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/117103063/: by Prof. G. Barua, IIT Guwahati
- 2. https://nptel.ac.in/courses/108101091/: By Prof. M. B. Patil, IIT Bombay
- 3. https://nptel.ac.in/courses/122106025/: By Prof. T. S. Natarajan, IIT Madras
- 4. https://nptel.ac.in/courses/117107095/: Web Content by IIT Roorkee
- 5. https://nptel.ac.in/courses/122104013/: Web Content by IIT Kanpur
- 6. https://nptel.ac.in/courses/117106086/: By Prof S.Srinivasan, IIT Madras
- 7. https://nptel.ac.in/courses/117103064/: By Prof A. Mahanta, IIT Guwahati

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand basic principles of semiconductor diodes and their applications.
CO2	Understand the construction, characteristics, configurations, and applications of transistors.
CO3	Analyze the characteristics of Op-Amps & use them to design circuits for various applications.
CO4	Convert numbers using different number systems and apply boolean algebra on them.
CO5	Explain different types of signals and their characteristics using Fourier analysis tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

	0					,		, c	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	2						2	2	2	2
CO2	3	3	3	2	3						2	3	3	2
CO3	3	3	3	3	3						3	2	3	2
CO4	2	2	2	2	2						2	3	2	1
CO5	3	3	2	2	3						2	2	2	1

Category	Code		Basic Electrical Engineering	L-T-P	Credits	Marks			
UCR	EE100	1	Dasie Electrical Engineering	3-0-0	3	100			
			The objective of this course is to introduce the basic concepts of electricity and magnetism, DC & AC networks, principles of different electrical machines and measuring instruments, protection systems and safety requirements.						
Pre-Requisi	tes	Basic knowledge of intermediate physics and mathematics such as calculus, ordinary differential equations, matrices etc. is required.							
Teaching So	cheme	Reg	Regular classroom lectures with use of ICT as and when required, sessions are						

planned to be interactive with focus on problem solving activities.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Electric Circuits: Charge & current, Ideal & practical sources, Source conversion, Characteristics of circuit elements, Kirchhoff's current and voltage laws, Current & voltage division rule; Resistive Network Analysis – Node voltage & Mesh current (controlled & uncontrolled sources), Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem; Transient Analysis – Introduction, Differential equations, Timedomain analysis of first-order RL & RC circuits, Time constant.	12 Hours
Module-2	Single-phase AC Circuit Analysis : Representation of sinusoidal waveforms, Peak and RMS values, Phasor representation, AC power analysis, Power factor, Improvement of power factor, Analysis of series & parallel AC circuits (R, L, C, RL, RC, RLC circuits), Series resonance, Q-factor.	8 Hours
Module-3	Three-phase AC Circuit Analysis : Representation of 3-phase AC voltage, Phase sequence, Balanced load and source, Voltage and current relationship in star and delta connections, AC power analysis; Introduction to generation, transmission, and distribution of power system network, Residential wiring, Earthing, Electrical safety.	7 Hours
Module-4	Electromagnetism : Magnetic flux, Reluctance, Series & parallel magnetic circuits, Magnetic materials, Hysteresis loop; Single-phase Transformer – Construction & working, Ideal and practical transformer, EMF equation, Equivalent circuit & phasor diagram of transformer on load and no-load, Shifting of impedances.	8 Hours
Module-5	DC Machine : Construction, Working of generator and motor, EMF equation of generator, Back EMF of Motor, Classification based on excitation system; AC Machine : Construction and working of a 3-phase induction motor, Synchronous speed, Concept of slip, Construction, working, and types of single-phase induction motor.	7 Hours
	Total	42 Hours

Text Books:

- T2. E. Hughes, *Electrical & Electronic Technology*, 9th Ed., Pearson, 2004.
- T3. G. Rizzoni, *Principles and Applications of Electrical Engineering*, 5th *Ed.*, McGraw Hill, 2006.

T1. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 6th *Ed.*, McGraw-Hill, 2017.

Reference Books:

- R1. A. E. Fitzgerald, D. E. Higginbotham, and A. Grabel, *Basic Electrical Engineering*, 5th *Ed.*, Tata McGraw Hill.
- R2. B. L. Theraja and A. K. Theraja, *Textbook of Electrical Technology (Vol-I)*, 23rd *Ed.*, S. Chand & Co.Ltd., 2002.
- R3. L. S. Bobrow, *Foundations of Electrical Engineering*, Asian Edition, Oxford Univ. Press, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105053/: by Prof. G. D. Roy, Prof. N. K. De, and Prof. T. K. Bhattacharya, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/108/108108076/: By Prof. L. Umanand, IISc Bangalore
- 3. https://www.electrical4u.com/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and analyze basic electrical network with direct current source.
CO2	Measure current, voltage, and power of series RLC circuit excited by single-phase AC circuit.
CO3	Analyze 3-phase electrical systems and explore the engineering of practical power systems.
CO4	Explain different concepts of magnetic fields and apply them to single-phase transformers.
CO5	Describe the working principles of rotating electrical machines.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

	-							-						
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2	1						2	2	2
CO2	3	3	2	3	3	1						3	3	2
CO3	3	2	1	1	3	2						2	3	2
CO4	3	2	2	1	3	1						3	2	1
CO5	3	3	2	1	1	1						2	2	1

Category	Code	Engineering Mechanics	L-T-P	Credits	Marks			
UCR	ME100		2-0-0	2	100			
Objectives		The objective of this course is to introduce engin	•					
		knowledge of statics, force equilibrium and free body diagrams, analysis of						
		structures, beams and associated stresses along with elementary ideas on						
		kinematics, dynamics, and mass moment of inertia.						
Pre-Requisites Knowledge of physics & mathematics and basic analytical skills is required					ed.			
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are						
		planned to be interactive with focus on problem solving activities.						

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Basic concepts of vector analysis, Equilibrium of forces in two and three dimensions, Rectangular components of a force and its application, Varignon's theorem; Motion of a particle – Equation of motion, D'Alembert's principle, Planar cartesian & polar coordinates, Motion with constraints.	8 Hours
Module-2	 Virtual Work and Energy: Virtual displacements, Principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom; Analysis of Structures: Trusses, Assumptions, Simple plane truss, Analysis by method of joints and method of sections. 	6 Hours
Module-3	Center of Gravity & Moments of Inertia : Centroid and Centre of Gravity, Centroid of simple and composite sections, Theorems of Pappus and Guldinus, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Area moment of inertia of standard sections and composite sections, Mass moment inertia of circular plate, Cylinder, Cone, Sphere, parallelepiped.	7 Hours
Module-4	Stress & Strain : Normal stress, Shear stress, State of stress at a point, Ultimate strength, Allowable stress, Factor of safety; Relationship between elastic constants, Mechanical properties of materials, Stress-Strain behaviour; Flexural Loading – Shear force and bending moment in beams, Shear force and bending Moment Diagrams, Bending and shear stresses.	7 Hours
	Total	28 Hours

Text Books:

T1. M. K. Harbola, *Engineering Mechanics*, 2nd *Ed.*, Cengage Learning, 2018.
T2. G. H. Ryder, *Strength of Materials*, 3rd *Ed.*, Macmillan Press, 1969.

Reference Books:

- R1. J. L. Meriam and L. G. Kraige, *Engineering Mechanics: Statics*, 8th Ed., Wiley India, 2014.
- R2. R. K. Rajput, Strength of Materials: Mechanics of Solids, 7th Ed., S. Chand Publications, 2018.
- R3. S. Timoshenko, D. H. Young, S. Pati, and J. V. Rao, *Engineering Mechanics*, 5th Ed., McGraw-Hill Education, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/122104015/: by Prof. M. Harbola, IIT Kanpur.
- 2. https://nptel.ac.in/courses/105105108/: by Prof. S. Bhatacharya, IIT Kharagpur)

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and analyze using the principles of mechanics to solve problems in statics.
CO2	Articulate virtual work and investigate the nature of forces in the members of simple trusses.
CO3	Explain area and mass moments of inertia and their application in structural design.
CO4	Describe the mechanics of deformable bodies and mechanical properties of materials.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	1	2	3							1	2	1
CO2	3	2	1	2	3							1	2	1
CO3	2	2	1	2	3							1	2	1
CO4	2	2	1	2	3							1	2	1

Category	Code	Engineering Thermodynamics	L-T-P	Credits	Marks			
UCR	ME1002		2-0-0	2	100			
ObjectivesThe objective of this course is to introduce laws of thermodynamics with on various equilibrium processes and their applications in practical dom power plants, refrigerators and internal combustion engines.					-			
Pre-Requisi	tes	Knowledge of physics & mathematics and basic analytical skills is required.						
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are						

planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Basic concepts, System, Control volume, Surrounding, Boundaries, Universe, Types of systems, Macroscopic and microscopic viewpoints, Concept of continuum, Thermodynamic equilibrium, State, Property, Process, Exact & inexact differentials, Point & path functions, Cycle, Quasi-static process, Reversibility and irreversibility, Pressure measurement, Zeroth law of thermodynamics, Temperature, Principles of thermometry, Constant volume gas thermometer, Temperature scale.	7 Hours
Module-2	Pure Substances, p-v, T-v, T-s and h-s diagrams, Phase Transformations, Triple point and critical state, properties during change of phase, Dryness Fraction, Property tables. Brief discussionon the First law for cycle, closed system and open system (steady flow energy equation, SFEE), Perpetual Motion Machines, PMM1.	7 Hours
Module-3	Introduction to Second Law of Thermodynamics, Kelvin-Planck and Clausius' Statements and their Equivalence, Corollaries, PMM2, Carnot's Principle and Cycle, Entropy, Clausius' Inequality, Principle of Entropy and its application, T-s plot.	7 Hours
Module-4	Applications of Thermodynamics, Brief description and working principles of Steam Power Plant, Refrigerators and Heat pump, I.C. Engines (two-stroke and four-stroke, petrol and diesel) and Aircraft Propulsion Engines, Brayton Cycle, Rankine Cycle, Comparison.	7 Hours
	Total	28 Hours

Text Books:

- T1. R. E. Sonntag and C. Borgnakke, *Fundamentals of Thermodynamics*, 7th *Ed.*, John Wiley, 2014.
- T2. Y. A. Cengel and M. A. Boles, *Thermodynamics An Engineering Approach*, 7th *Ed.*, McGraw-Hill Education,2011.

Reference Books:

R1. P. K. Nag, *Engineering Thermodynamics*, 5th *Ed.*, McGraw-Hill Education, 2013.

R2. Y. V. C. Rao, An Introduction to Thermodynamics, 2nd Ed., University Press, 2004.

P.T.O

Online Resources:

- 1. https://nptel.ac.in/courses/112105123/: by Prof. S. Chakraborty, IIT Kharagpur
- 2. https://www3.nd.edu/~powers/ame.20231/notes.pdf
- 3. https://ocw.mit.edu/courses/chemistry/5-60-thermodynamics-kinetics-spring-2008/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Articulate the concepts of thermodynamic properties, equilibrium, temperature and pressure.
CO2	Apply first laws of thermodynamics to analyze turbine, compressors, heat exchangers and nozzles by using steam table and ideal gas equation.
CO3	Analyze the limitations of the First law and evaluate the available energy and irreversibility.
CO4	Analyze power cycles and refrigeration cycles and their applications in the real world.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

		0				-			, C	, .					
		PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CC	D1	3	2	2	1	2						2	2	2	2
CC	02	3	3	2	2	1						2	3	3	2
CC)3	3	3	3	3	2						3	2	3	2
CC	04	3	3	3	2	2						2	3	2	1

Category	Code	Computer Programming	L-T-P	Credits	Marks
UCR	CS1001	Computer Programming	3-0-0	3	100
			•	·	

Objectives	The objective of this course is to introduce fundamentals of computer programming using the C programming language starting with simple programs to advanced topics like structures, pointers, file processing and pre-processor directives for solving various engineering problems through computer programming.				
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other programming language will be beneficial.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.				

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to computers and programming, operating system, compilers, interpreters, algorithm, flowchart, pseudocode etc., structure of C program, character set, identifier, keywords, constants, variables, data types, operators, expressions, statements, operator precedence and associativity, type conversion, input/output statements.	8 Hours
Module-2	Decision making and branching: if, if-else, nested if-else, else-if ladder and switch constructs, iterative execution of code using loops: while, for, do- while, nested loops, controlling loop behavior using jump statements (break, continue, goto) and exit statements.	8 Hours
Module-3	Arrays (1-D & 2-D), declaration and initialization of arrays, accessing array elements, operations on arrays - insertion, deletion, searching, sorting (selection sort), merging etc., character arrays and strings, initialization, input & output of strings, operations on strings, array of strings, string handling functions.	9 Hours
Module-4	User-defined functions, declaration and definition, parameter passing by value, functions returning values, idea on call by reference, passing arrays to functions, recursion, storage classes - auto, register, static, extern, Structures and Unions - definition, initialization, accessing members, array of structures, arrays within structures, structures and functions, self-referential structures.	9 Hours
Module-5	Understanding pointers, declaration, initialization, accessing variables using pointers, pointer expressions, scale factor, chain of pointers, using pointers with arrays, strings, functions and structures, dynamic memory management, pre-processor directives, command line arguments, basics of file handling.	8 Hours
	Total	42 Hours

Text Books:

- T1. E. Balagurusamy, *Programming in ANSI C*, 7th *Ed.*, McGraw-Hill Education, 2017.
 T2. Y. Kanetker, *Let Us C*, 16th *Ed.*, BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd *Ed.*, Pearson Education, 2015.
- R2. H. Schildt, C: The Complete Reference, 4th Ed., McGraw-Hill, 2017.
- R3. A. Kelley and I. Pohl, A Book on C, 4th Ed., Pearson Education, 2008.
- R4. B. Gottfried, Schaum's Outline of Programming with C, 3rd Ed., McGraw-Hill, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/106104128: by Prof. S. Nandakumar, IIT Kanpur
- 2. https://nptel.ac.in/courses/106105171: Prof. A. Basu, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106106210: by Prof. J. Viraraghavan, IIT Madras
- 4. http://www.stat.cmu.edu/~hseltman/c/CTips.html
- 5. http://www.c-faq.com/
- 6. https://www.learn-c.org/
- 7. http://www2.its.strath.ac.uk/courses/c/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Formulate logic of a problem and write C programs using variables, expressions and I/O.
CO2	Develop structured C programs involving decision making using different control constructs.
CO3	Solve problems involving similar set of data items and write C programs using arrays.
CO4	Design modular C programs and handle heterogeneous data items using structures & unions.
CO5	Develop complex C programs with file processing using advanced features of C programming.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

mappi	mapping of dob to rob and roob (1. how, 2. meaning, 0. mgn)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2							2	3	2	2
CO2	3	3	3	2							2	3	2	2
CO3	3	3	1	2							2	3	2	2
CO4	3	2	1	2							2	3	2	2
CO5	3	3	1	2							2	3	2	2

UMC HS0001 Ethics 3-0-0 0 100	Category	Code	Constitution of India & Professional	L-T-P	Credits	Marks
	UMC	HS0001	Ethics	3-0-0	0	100

Objectives	The objective of this mandatory course is to provide understanding of basic concepts of Indian Constitution and various organs created by the constitution including their functions. This course also introduces a holistic perspective towards life by understanding of the human reality and the rest of existence.
Pre-Requisites	Basic knowledge of Indian history, overall idea on India's political system, a positive bent of mind, zeal to know the essence of human existence and nature.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Preamble, Salient Features, Fundamental Rights, Fundamental Duties, Features of Federal Structure, The Union Legislature – The Parliament, The Lok Sabha and Rajya Sabha, Composition, Powers and Functions.	9 Hours
Module-2	Union Executive, President of India (with powers and functions), Vice- President, The Council of Ministers and the Prime Minister – Powers and Functions; State Government, The State Legislature – Composition, Powers and Functions, State Executive – Governor, Chief Minister, and State Council of Ministers.	9 Hours
Module-3	Professional Ethics, Basic terms – Moral, Ethics, Ethical Dilemma, Emotional Intelligence, View on Ethics by Aristotle, Governing Factors of an Individual's Value System, Personal and Professional Ethics.	7 Hours
Module-4	Profession, Professional, Professionalism, Professional Accountability, Professional Risks, Profession and Craftsmanship, Conflict of Interest, Ethics in Engineering – Purpose and Concept of Engineering Ethics, Engineering as Social Experimentation, Issues in Engineering Ethics, Engineers' Responsibility – Safety & Risk, Risk-Benefit Analysis, Causes of an Accident, Preventive Measures.	9 Hours
Module-5	Value Education, Self-exploration as the Process for Value Education, Basic Human Aspirations – Continuous Happiness and Prosperity, Current Scenario, Method to Fulfill the Basic Human Aspirations, Harmony in the Human Being, Family, Society and Nature or Existence.	8 Hours
	Total	42 Hours

Text Books:

- T1. D. D. Basu, *Introduction of Constitution of India*, 22nd Ed., LexisNexis, 2015.
 T2. R. Subramanian, *Professional Ethics*, 2nd Ed., Oxford University Press, 2017.
- T3. R. R. Gaur, R. Asthana, and G. P. Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Ed., Excel Books, 2019..

Reference Books:

R1. M. Laxmikanth, *Indian Polity*, 5th *Ed.*, McGraw Hill, 2011.

- R2. K. Subas, *An Introduction to India's Constitution and Constitutional Law*, 5th *Ed.*, National Book Trust India, 2011.
- R3. C. E. Harris, M. S. Pritchard, and M. J. Robins, *Engineering Ethics Concepts and Cases*, 4th *Ed.*, Cengage Learning, 2012.
- R4. A. N. Tripathi, *Human Values*, 3rd *Ed.*, New Age International, 2019.

Online Resources:

- 1. https://nptel.ac.in/courses/129106411: by Prof. S. Bhat, IIT Madras
- 2. https://www.india.gov.in/sites/upload_files/npi/files/coi_part_full.pdf
- 3. https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe basics of Indian constitution, fundamental laws and rights of Indian citizen.
CO2	Articulate the union executive system and constitutional institutions of center and state.
CO3	Understand basic purpose of profession, professional ethics and various moral and social issues.
CO4	Realize the rights, responsibilities, and ethical principles of an Engineer at various levels.
CO5	Understand importance of human values and live with harmony in family, society, and nature.

Program Outcomes Relevant to the Course:

•	
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

11	0				<u> </u>			<u> </u>	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						2	1	1	1	1	1		1	
CO2						2	2	3	2	1	2		1	
CO3						3	3	3	2	1	2		2	
CO4						2	3	3	2	2	2		2	
CO5						3	3	3	2	1	3		2	

Category	Code	Environmental Science & Engineering	L-T-P	Credits	Marks			
UMC	CH0002	Environmental Science & Engineering	3-0-0	0	100			
Objectives Th		he objective of this course is to introduce essential aspects of environmental						
		ence for engineering students. The course covers ecology, ecosystems, air and						

	water pollution, management of municipal solid wastes, hazardous wastes and e-waste, along with environmental laws and UN conferences.
Pre-Requisites	Basic knowledge of physics, chemistry and biology is required for this course.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required with focus on
	importance of environment, examples and case studies.

Attendance	Attendance Teacher's Assessment		End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Ecology, Ecosystems and Biogeochemical Cycles: Introduction to environmental science and engineering, Ecological perspective, Ecosystems and processes, Trophic pyramids, Biodiversity of species, Water, Oxygen, Nitrogen and Carbon cycle, Environmental gradient and tolerance levels of environmental factors.	9 Hours
Module-2	Water and Wastewater Treatment: Water quality standards and parameters, water table, aquifer, pre-treatment, conventional treatment processes of water, DO, BOD, COD and microbial wastewater treatment.	9 Hours
Module-3	Atmospheric Chemistry, Soil Chemistry and Noise Abatement: Atmospheric chemistry, air pollution and associated control equipment, climate change, soil chemistry, noise standards, noise measurement and noise abatement.	8 Hours
Module-4	Waste Management: Types and management of MSW (Municipal Solid Waste), hazardous waste and e-waste, Introduction to LCA (Life Cycle Assessment).	8 Hours
Module-5	EIA, EIS, Environmental Laws and Human Health: Environmental Audit, EIA (Environmental Impact Assessment), EIS (Environmental Impact Statement), Indian environmental laws, UN Conferences, Human population and the environment.	8 Hours
	Total	42 Hours

Text Books:

- T1. G. M. Masters and W. P. Ela, *An Introduction to Environmental Engineering and Science*, 3rd *Ed.*, PHI Learning, 2015.
- T2. G. Kiely, *Environmental Engineering*, Spl. Indian Edition, McGraw Hill, 2007.

Reference Books:

- R1. M. L. Davis and S. J. Masten, *Principles of Environmental Engineering and Science*, 2nd *Ed.*, McGraw-Hill, 2017.
- R2. H. D. Kumar and U. N. Dash, *Environmental Studies*, 2nd Ed., IndiaTech Publishers, 2017.

Online Resources:

- 1. http://nptel.ac.in/courses/120108002/: Aquatic Biodiversity and Environmental Pollution.
- 2. http://nptel.ac.in/courses/120108004/: Environment Management.

- 3. http://nptel.ac.in/courses/120108005/: Municipal Solid Waste Management.
- 4. https://www.epa.gov/environmental-topics/: All Current Environmental Issues.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the concepts of ecology, ecosystems, and biogeochemical cycles in the environment.
CO2	Explain the process of water and wastewater treatment for prevention of water pollution.
CO3	Understand the pollutants in the environment and explore the principles for their eradication.
CO4	Explore waste minimization and management of different types of wastes generated.
CO5	Understand EIA, EIS, and other environmental laws for prevention of pollution.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	0								, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	2	1	3	1	2		1	2		1	
CO2	2	2	3	2	1	3	1	2		1	2		1	
CO3	2	2	3	2	1	3	1	1		1	2		1	
CO4	2	2	3	2	1	3	2	2		1	2		1	
CO5	2	2	3	2	1	3	3	2		1	2		1	

Category	Code		Probability & Statistics	L-T-P	Credits	Marks				
UCR	MT100	2	riobability & Statistics	3-0-0	3	100				
Objectives The objective of this course is to familiarize the perspective engineers with knowledge and concepts of probability and statistics which are essential to s non-deterministic systems.										
Pre-Requisites Basics of sets, counting techniques, differential and integral calculus of one var and coordinate geometry of two and three dimensions.										
Teaching So	cheme		Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.							

Attendance	Attendance Teacher's Assessment		End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Measures of central tendencies, Elementary probability, Conditional probability, Bayes' Rule (related problems only), Random variable, Binomial & Hypergeometric distribution, Mean and variance.	8 Hours
Module-2	The Poisson approximation to Binomial Distribution, Poisson Process, Geometric Distribution & Multinomial Distribution, Continuous random variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Uniform Distribution, Exponential Distribution, Joint Discrete Distribution.	9 Hours
Module-3	Populations and Samples, Sampling Distribution of Mean (σ known), Sampling Distribution of Mean (σ unknown) & Sampling Distribution of Variance; Point Estimation of mean, Interval Estimation of mean, Tests of hypotheses and errors involved, Hypotheses concerning one mean, Inference concerning two mean, Estimation of variance, Hypotheses concerning one variance, Hypotheses concerning two variances.	10 Hours
Module-4	Estimation of Proportions, Hypotheses Concerning proportion (one & several), Analysis of $r \times c$ table (Contingency table), Goodness of fit.	7 Hours
Module-5	The method of least squares, Inferences based on the least square estimation, Curvilinear Regression, Checking the adequacy of the model, Correlation, Analysis of Variance, General principle, Completely Randomized Design, Randomized Block Design.	8 Hours
	Total	42 Hours

Text Books:

T1. R. A. Johnson, *Miller & Freund's - Probability and Statistics for Engineers*, 8th *Ed.*, PHI Learning, 2011.

Reference Books:

- R1. W. Mendenhall, R. J. Beaver, and B. M. Beaver, *Probability and Statistics*, 14th *Ed.*, Cengage Learning, 2014.
- R2. R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, *Probability & Statistics for Engineers & Scientists*, 9th *Ed.*, PHI Learning, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/111/105/111105041/: by Prof. S. Kumar, IIT Kharagpur
- 2. https://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-spring-2014/lecture-notes/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply the concepts of probability and random variables to evaluate probabilities of events.
CO2	Apply different discrete and continuous probability models to solve real life problems.
CO3	Apply the concepts of sampling to estimate population parameters and test hypothesis.
CO4	Test the goodness of a model and apply it to real life problems.
CO5	Apply regression model and ANOVA to study the characteristics of data sets.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	2						2	2	1	1
CO2	3	3	3	3	3						2	2	1	1
CO3	3	2	3	2	2						2	2	1	1
CO4	3	3	3	3	3						2	3	2	1
CO5	3	3	3	3	3						2	3	2	1

Category	Code	Data Structures & Algorithms	L-T-P	Credits	Marks				
UCR	CS1003		3-0-0	3	100				
			·						
Objectives		To understand the abstract data types and to solve problems using data structures such as stacks, queues, linked lists, hash tables, binary trees, heaps, binary search trees, graphs and writing programs for these solutions.							
Pre-Requisites Knowledge of programming in C, specifically on structures, pointers, f recursion etc., are required.									
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.							

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

3.6 1 1 //	m •	
Module-#	Topics	Hours
Module-1	Introduction to data structures, classification of data structures, algorithmic notation, complexity of algorithms, asymptotic notations, abstract data types. Arrays - introduction, representation of arrays (row and column major representation), basic operations on array (traverse, insert, delete, search), sparse matrix, representation of sparse matrix using triplet form, operations on sparse matrix (addition, transpose)	8 Hours
Module-2	ADT Stack - stack model, representation of stack using array, basic operations with analysis, applications- recursion, and conversion of infix to post fix expression, evaluation of postfix expression. ADT Queue - queue model, representation using array, basic operations with analysis, circular queue, introduction to priority queue and double ended queue.	8 Hours
Module-3	Linked list - introduction, types of linked list (single, double, circular), representation in memory, operations on linked list (traverse, search, insert, delete, sort, merge) in each type with analysis. Representation of polynomial and its operations (addition, multiplication), implementation of stack and queue using linked list.	9 Hours
Module-4	Tree - terminology, representation, binary tree - tree traversal algorithms with and without recursion. Binary search tree, Operations on Binary Search Tree with analysis, threaded binary tree, general tree, Height balanced tree (AVL tree), m-way search trees, B-trees. Graph - terminology, representation (adjacency matrix, incidence matrix, path matrix, linked representation), graph traversal (BFS, DFS), Dijkstra's single source shortest path algorithm, Warshall's all pair shortest path algorithm, topological sort.	9 Hours
Module-5	Sorting algorithms - bubble sort, selection sort, insertion sort, quick sort, merge sort, radix sort, heap sort. Hashing- hash functions and hashing techniques. collision resolution techniques- linear probing, quadratic probing, chaining.	8 Hours
	Total	42 Hours

Text Books:

T1. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd *Ed.*, Pearson Education, 2002.
T2. E. Horowitz, S. Sahni, S. A-Freed, *Fundamentals of Data Structures in C*, 2nd *Ed.*, Univ. Press, 2008.

Reference Books:

- R1. A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, *Data Structures Using C*, 3rd *Ed.*, Pearson Education, 2007.
- R2. J. P. Tremblay and P. G. Sorenson, *An Introduction to Data Structures with Applications*, 2nd *Ed.*, McGraw Education, 2017.
- R3. S. Lipschutz, *Data Structures*, 1st *Revised Ed.*, McGraw Education, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106127/: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
- 2. https://nptel.ac.in/courses/106/102/106102064/: By Prof. N. Garg, IIT Delhi
- 3. https://nptel.ac.in/courses/106/106/106106130/: By Dr. N. S. Narayanaswamy, IIT Madras
- 4. https://www.geeksforgeeks.org/data-structures/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze performance of algorithms and implement operations on arrays and sparse matrices.
CO2	Apply the basic operations of stacks and queues to solve real world problems.
CO3	Implement different types of linked list operations and their applications.
CO4	Represent data using trees & graphs to use them in various real life applications.
CO5	Analyze various sorting algorithms and explore different hashing techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

11	·····································													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	1					1	2	2	1
CO2	3	3	3	2	2	2					1	2	1	1
CO3	3	3	2	2	2	1					1	2	1	1
CO4	3	3	3	3	2	2					1	2	2	1
CO5	3	3	3	2	2	2					1	2	3	1

Category	Code	Basic Electronics Engineering Lab	L-T-P	Credits	Marks
UCR	EC1002	Dasie Electronics Engineering Lab	0-0-2	1	100

Objectives	The objective of this practical course if to learn the concepts and functionalities of
	the electronic devices, tools and instruments. Students will understand general
	specifications and deployability of the electronic devices and assemblies, and
	also develop confidence in handling and usage of electronic devices, tools and
	instruments in engineering applications.
Pre-Requisites	Knowledge on intrinsic and extrinsic Semiconductors, Physics and Chemistry of
	Higher Secondary Science level.
Teaching Scheme	Regular laboratory experiments to be conducted under the supervision of teachers
	and demonstrators with the help of ICT, as and when required along with pre-lab
	session and demonstration for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Experiment-# Assignment/Experiment Identification of electronic components and devices (Testing of semiconductor diodes 1 and transistors using digital multi-meter). Understand and use oscilloscope, signal generator to view waveforms and measure 2 amplitude and frequency of a given waveform. Generate V-I characteristics of semiconductor diode and determine its DC and AC 3 resistances. Implement clipper circuits (positive clipper and negative clippers) and observe its 4 output waveforms and compare them with theoretically analyzed results. Design half-wave and full-wave rectifier circuits without and with capacitor filter, 5 record the waveforms and measure average & RMS values of the rectified output. 6 Generate and analyze the static characteristics of BJT in CE configuration. Design the DC biasing (Fixed) circuit of transistor in CE configuration and determine 7 its operating point. Analyze the static characteristics of FET in CS configuration. 8 Apply Op-Amp in inverting, non-inverting, integrating and differentiating 9 configurations & record their input-output waveforms. 10 Understand and verify truth tables of various logic gates. 11 Apply NAND and NOR as Universal logic gates. 12 Analyze and implement of R.C phase shift Oscillator using Op-AMP. 13 Design and simulate BJT and FET I/O characteristics using OrCAD PSpice/ Multisim. 14 Design and analysis of AM modulator and demodulator.

Detailed Syllabus

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th *Ed.*, Pearson Education. T2. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th *Ed.*, Oxford University Press.

Reference Books:

R1. V. K. Mehta and R. Mehta, *Principles of Electronics*, 3rd *Ed.*, S. Chand Publishing, 1980.

Online Resources:

- 1. http://vlab.co.in/ba_labs_all.php?id=1
- 2. http://iitg.vlab.co.in/?sub=59&brch=165

Course Outcomes: At the end of this course, the students will be able to:

CO1	Recognize electronic components, measuring instruments, semiconductor diodes and their use.
CO2	Determine the characteristics of transistors and use them in various electronic circuits.
CO3	Explore design and testing of Op-Amp and design circuits for various applications using them.
CO4	Design and test digital circuits using logic gates for different applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	0					,		<u>ر</u>	, ,					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1									2	2	2
CO2	3	3	2	1								3	3	2
CO3	2	2	2	1							2	3	2	2
CO4	2	2	3								2	3	3	2

Category	Code	Basic Electrical Engineering Lab	L-T-P	Credits	Marks			
UCR	EE1002	Basic Electrical Engineering Lab	0-0-2	1	100			
				•				
Objectives		The objective of this practical course is to expose the st components and basic safety rules and regulations, g different measuring and protection equipment and the and verify the concept of electrical & magnetic circuit	ive hands ir operati	on practio	e about lerstand			
Pre-Requisi	tes	Basic knowledge of different electrical component techniques of electrical and magnetic circuits. Topic Engineering theory class are essential to conduct the	s taught	in Basic E	5			
Teaching So	cheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.						

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Measurement of power consumption & power factor of a fluorescent lamp and its
1	power factor improvement.
2	Measurement of winding resistances of a DC compound machine.
3	Power & power factor measurement of three-phase load by two-wattmeter method.
4	Connection and testing of a single-phase energy meter.
5	Determination of open circuit characteristics (OCC) of a DC shunt generator.
6	Calculation of power & power factor in series R-L-C circuit excited by single-phase
0	supply.
7	Determination of no-load parameters through OC Test of single-phase transformer.
8	Study of capacitor start and run single-phase induction motor/fan motor.
9	Study and verification of Thevenin's Theorem and Norton's Theorem.
10	Draw the B-H curve of a magnetic Specimen.
11	Starting of three-phase induction motor.
12	Voltage Regulation & efficiency of single-phase transformer by direct loading.

Text Books:

T1. A. Husain, *Fundamentals of Electrical Engineering*, 4th *Ed.*, Dhanpat Rai & Co., 2016.

T2. B. L. Thereja & A. K. Thereja, A Textbook of Electrical Technology, 23rd Ed., S. Chand & Co.

Reference Books:

- R1. J. B. Gupta, A Textbook of Electrical Science, S. K. Kataria & Sons, 2013.
- R2. B. R. Gupta and V. Singhal, *Electrical Science*, S. Chand & Co, 2005.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105053/: by Prof. G. D. Roy, Prof. N. K. De, and Prof. T. K. Bhattacharya, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/108/108108076/: By Prof. L. Umanand, IISc Bangalore
- 3. https://www.electrical4u.com/
- 4. www.electronics-tutorials.ws/dc-circuits

Course Outcomes: At the end of this course, the students will be able to:

CO1	Get an exposure to common electrical components and their ratings.
CO2	Develop electrical circuits and measure its characteristics using different measuring instruments and deploy different protective devices of appropriate ratings.
CO3	Understand the usage of common electrical measuring instruments.
CO4	Understand the basic characteristics of transformers and electrical machines.
CO5	Verify different network theorems and magnetic properties.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1			2		1		1	1	1	1	1	1	2
CO2	2			2		1		2	1	1	2	1	1	1
CO3	1			3		2		2	1	1	1	2	1	2
CO4	1			2		2		1	1	2	2	2	1	2
CO5	1			1		1		1	1	1	1	2	1	2

Category	Code		Computer Programming Lab	L-T-P	Credits	Marks			
UCR	CS1002	2	Computer Programming Lab	0-0-4	2	100			
Objectives		To enable the students to analyze problems, formulate and implement solutions using the C programming language. The students will write C programs using proper logic to solve a problem and execute them on a computer.							
Pre-Requisi	tes	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course.							
	-			-					

Teaching Scheme Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to computers and Linux operating system.
2, 3	Get acquainted with the programming environment - Linux commands and VI-editor.
4	Editing, compiling, executing, and debugging of simple C programs.
5	Programs using operators and formatted input/output statements.
6	Decision making using if, if-else, else-if ladder, nested if.
7	Decision making using switch-case construct.
8, 9	Loop control structure (while, do-while, for) with jump statements.
10	Nested loops (printing various formats)
11, 12	1-D arrays including operation like searching, sorting, merging etc.
13	Handling 2-D arrays such as matrix operations.
14, 15	Programs on strings using various string handling functions (library functions)
16, 17	Designing user-defined functions.
18, 19	Programs on recursion.
20	Designing user defined functions for string manipulation.
21	Passing arrays (both 1D and 2D) to functions.
22, 23	Structure, array of structure, nested structure.
24	Dynamic memory management.
25	Self-referential structure (create and display operation of single linked list)
26, 27	File handling - reading from and writing to files.
28	Command-line argument, pre-processor directives.

Text Books:

- T1. E. Balagurusamy, *Programming in ANSI C*, 7th *Ed.*, McGraw-Hill Education, 2017.
- T2. Y. Kanetker, Let Us C, 16th Ed., BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd *Ed.*, Pearson Education, 2015.
- R2. H. Schildt, *C: The Complete Reference*, 4th *Ed.*, McGraw-Hill, 2017.
 R3. A. Kelley and I. Pohl, *A Book on C*, 4th *Ed.*, Pearson Education, 2008.

R4. B. Gottfried, *Schaum's Outline of Programming with C*, 3rd *Ed.*, McGraw-Hill, 2017.

Online Resources:

- 1. https://www.w3resource.com/c-programming-exercises/
- 2. https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx
- 3. https://www.onlinegdb.com/online_c_compiler
- 4. https://www.tutorialspoint.com/compile_c_online.php

Course Outcomes: At the end of this course, the students will be able to:

CO1	Construct C programs for mathematical operations using control statements.
CO2	Develop C programs for Array and String manipulation.
CO3	Construct modular programs for better maintenance and reusability.
CO4	Manipulate heterogeneous data using structure and union.
CO5	Create and manipulate files using C programs.

Program Outcomes Relevant to the Course:

-	
PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	II I I I I I I I I I													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	2							2	3	2	3
CO2	3	3	1	2							2	3	2	3
CO3	3	3	3	2							2	3	2	3
CO4	3	3	1	2							2	3	2	3
CO5	3	3	1	2							2	2	1	1

Category	Code	Communicative & Technical English	L-T-P	Credits	Marks
SEC	HS1001		0-0-4	2	100
				•	

Objectives	The objectives of this laboratory course are to provide practice sessions to enhance students' communication ability in the four language skills with focus on technical communication.
Pre-Requisites	Basic knowledge of general communication skills in english is required.
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate technical communication through pair and/or team activities with regular assessments, presentations, discussions, role-playing, audio-visual supplements, writing activities, business writing practices and vocabulary enhancement.

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to the course and diagnostic test.
2	JAM: content development, structuring and delivery.
3	Group presentation.
4	Effective Verbal Communication exercises: plain English, bias-free language, formal and informal style, usage etc.
5	Activities on non-verbal communication.
6	Sounds of English: Vowels and consonants.
7	Sounds of English: Transcription.
8	Sounds of English: Syllable and stress.
9	Sounds of English: Rhythm.
10	Sounds of English: Intonation I.
11	Sounds of English: Intonation II.
12	Role play on simulated business contexts considering different channels of business communication.
13	Listening comprehension.
14	Practice on elements of business writing.
15	Composing effective paragraphs with unity, coherence, cohesion, progression.
16	Process writing.
17	Writing memos.
18	Emails and email etiquette.
19	Business letter I.
20	Business letter II.
21	Error correction: usage and grammar.
22	Reading Comprehension I: Essay – skimming, scanning, inferential comprehension, critical reading.
23	Reading Comprehension II: Short story – Analysing the tone of the author.

Cont'd...

Experiment-#	Assignment/Experiment
24	Reading Comprehension III: News editorial – Differentiating facts from opinion.
25	Reading Comprehension IV: Texts on Science and Technology – Identifying discourse markers.
26	Reading Comprehension V: Texts on Science and Technology – Intensive reading and note-taking.
27	Note-making and summary writing.
28	Verbal Advantage: vocabulary exercises.

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd *Ed.*, Tata McGraw Hill, 2017.
- T2. M. Raman and S. Sharma, *Technical Communication: Principles and Practices*, 3rd *Ed.*, Oxford University Press, 2015.
- T3. B. K. Das, K. Samantray, R. Nayak, S. Pani, and S. Mohaty, *An Introduction to Professional English & Soft Skills*, Cambridge Univ. Press, 2009.

Reference Books:

- R1. J. Seeley, *The Oxford Guide to Effective Writing and Speaking: How to Communicate Clearly*, 3rd *Ed.*, Oxford University Press, 2013.
- R2. S. Kumar and P. Lata, Communication Skils, Oxford University Press, 2011.
- R3. T. Panigrahi, *Communicative Competence*, 1st *Ed.*, Notion Press, 2024.

Online Resources:

- 1. https://nptel.ac.in/courses/109/106/109106094/: by Prof. A. Iqbal, IIT Madras
- 2. https://nptel.ac.in/courses/109/104/109104031/: by Dr. T. Ravichandran, IIT Kanpur
- https://ocw.mit.edu/courses/comparative-media-studies-writing/21w-732-5-introduction-totechnical-communication-explorations-in-scientific-and-technical-writing-fall-2006/downloadcourse-materials/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Communicate with clarity, fluency and impact.
CO2	Develop comprehensive understanding of communication concepts, its importance, types, barriers and principles.
CO3	Communicate effectively in business set-ups.
CO4	Compose coherent, clear and impactful business correspondences.
CO5	Practice sub-skills of reading and become adept readers.

Program Outcomes Relevant to the Course:

PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

Cont'd...

PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	0				-			, c	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						1	3	3	3	3	3	1	1	1
CO2						1	3	3	3	3	2	1	1	1
CO3						2	3	3	3	3	2	1	1	1
CO4						1	3	3	3	3	2	1	1	1
CO5						2	2	3	3	3	2	1	1	1

Category	Code	Workbench Practices	L-T-P	Credits	Marks				
UCR	EE1003	- workbench Practices	0-0-2	1	100				
Objectives	Objectives The objective of this practical course is to provide hands-on exposure on tool								
	f	fasteners, computers, electrical wiring, electronic components & instruments,							
	soldering & desoldering, making of PCB, and using other advanced tools necessar								
	f	for creating working models and prototypes for engineers of circuit branches							

	for creating working models and prototypes for engineers of circuit branches.	
Pre-Requisites Familiarity with some hand tools used in home is desired.		
Teaching Scheme	Regular experiments and jobs using tools and instruments under supervision of	
	the teacher. Demonstration will be given for each experiment.	

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	General introduction & familiarity with tools (measuring, marking, holding, and cutting tools), Fitting (Limit, Fit, Tolerance) and Fastening (different types of screws, rivets, nuts & bolts).
2	Disassembling and assembling of Desktop Computer System and recognize its parts.
3	Study of cables, wires, switches, fuses, MCB, and fuse carriers in an electrical network.
4	Study of earthing and electrical safety, demonstration of the precautionary steps in case of electrical shocks.
5	Calculation of current and power for series and parallel connected lamp load.
6	Study and design of house wiring.
7	Study of digital measuring equipment and calculation of energy consumption in an electrical system.
8	Study of basic electronic & electrical components (such as Resistor, Capacitor, Inductor, Potentiometer, Diode, Transistor, Sensors, ICs, etc.) for circuit design.
9	Study of PCB assembling tools (such as Soldering iron, De-soldering pump, Pliers, Cutters, Wire strippers, Crimping tool, Micro-soldering, Hot air soldering and de-soldering station etc.)
10	Study of different measuring and testing tools such as Multimeter, Digital Storage Oscilloscope (DSO), Clamp meter, and Function generator etc.
11	Familiarization with EDA tools (such as Eagle or XCircuit) with general purpose components for designing PCB of simple circuits.
12	Fabrication & testing of single-sided and double-sided PCB for selected applications using general purpose instruments.

Text Books:

- T1. B. H. Deshmukh, *Electrical Materials and Wiring Practices*, Nirali Prakashan, 2018.
- T2. G. Haldar, *Electronics Course Book: Basic Components, IC boards, SMD, Logic Gates, Transistors, Resistors, Capacitors, Diodes, Audio Circuit and More*, GRPV Arts and Office Supplies, 2024.
- T3. R. S. Khandpur, *Printed Circuit Boards: Design, Fabrication, Assembly and Testing*, 1st *Ed.*, McGraw Hill, 2006.

Reference Books:

- R1. H. Joshi, *Residential, Commercial and Industrial Electrical Systems: Protection, Testing and Commissioning, Vol-3*, McGraw-Hill Education, 2008.
- R2. S. Monk, *Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards*, 1st Ed.. McGraw-Hill, 2014.
- R3. J. Varterisian, *Fabricating Printed Circuit Boards*, 1st Ed., Newnes, 2002.
- R4. A. Kemp, *The Makerspace Workbench: Tools, Technologies and Techniques for Making*, O'Reilly Media, 2013.

Online Resources:

- 1. https://bharatskills.gov.in/pdf/E_Books/Electrcian_SEM1_TP.pdf
- 2. https://bharatskills.gov.in/pdf/E_Books/Electrician_SEM2_TP.pdf
- 3. https://bharatskills.gov.in/Home/StudyMaterial?var=WSdYV6aWadK8jUuNKxoBWg==
- 4. https://onlinecourses.swayam2.ac.in/nou20_cs08/preview
- 5. https://www.lanl.gov/safety/electrical/docs/arc_flash_safety.pdf
- 6. https://www.ee.iitb.ac.in/~pcpandey/courses/ee616/pcblayout_c_aug07.pdf
- 7. https://nptel.ac.in/courses/108/108/108108157/
- 8. https://nptel.ac.in/courses/122/106/122106025/
- 9. https://nptel.ac.in/courses/108/101/108101091/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Utilize appropriate tools for various workbench jobs within their limits, fits, and tolerance.
CO2	Disassemble and reassemble a computer System and replace its components.
CO3	Identify and utilize common electrical components with propery safety mechanisms.
CO4	Design house wiring and measure energy consumption using digital meters.
CO5	Identify and use basic electronic components, PCB assembling, measuring and testing tools.
CO6	Design and fabricate PCBs for different applications and assemble electronic components.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

Cont'd...

PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

1 1	0					-			, .					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1			1	1	1	1	1	
CO2	1	1			3	1		2		1	2			
CO3	1	1	2	1	2	1	1	1	1	1	1			
CO4	2	2	3	1	1	1	1	2	2	2	1			
CO5	2	2	1		1			1		1	1	2		
CO6	1	2	3		3	1		2		1	1	1	2	

Category	Code	Engineering Graphics	L-T-P	Credits	Marks
UCR	ME1003		0-0-2	1	100
	•				
Objectives	0	lrawing sta and use co vings.			
Pre-Requisi	tes	asic understanding of 2D and 3D geometry is require	ed.		
Teaching So	cheme	egular laboratory classes using drawing tools under emonstration will be given for each drawing assignm nd CAD software tools as per requirement.	-		

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment		
1	Principles of Engineering Graphics and their significance (lettering & scale) and usage of Drawing instruments.		
2	Orthographic projections, Principles of orthographic projections, Projections of points and lines.		
3	Projections of different planes.		
4	Projection of solids, 3D to 2D views, Machine component diagrams, Sectional views of simple and compound solid models.		
5 Principles of Isometric projection, Isometric Scale & Views, Isometric views of and solids.			
6	Development of surface and intersection of surfaces.		
7	Engineering curves and conics.		
8	Introduction to AutoCAD, its GUI, toolbars and commands, shortcut keys.		
9	2D AutoCAD drawing using basic tools, Draw & Modify menu commands.		
10	Orthographic projection drawings of various models using AutoCAD.		
11	Isometric drawing & 3D modeling in AutoCAD, different solid editing options.		
12	3D modeling of simple & compound models, and machine components using AutoCAD.		

Text Books:

T1. N. D. Bhat, M. Panchal, *Engineering Drawing*, Charotar Publishing House, 2008.

T2. M. B. Shah, B. C. Rana, Engineering Drawing and Computer Graphics, Pearson Education, 2008.

T3. S. Tickoo, AutoCAD 2020 Work Book, BPB Publications, 2020.

Reference Books:

R1. R. K. Dhawan, *A Text Book of Engineering Drawing*, S. Chand Publications, 2007.
R2. K. Venugopal, *Engineering Drawing and Graphics*, 3rd *Ed.*, New Age International, 1998.

Online Resources:

- 1. http://nptel.ac.in/courses/112103019
- 2. https://nptel.ac.in/courses/112/102/112102101/
- 3. https://freevideolectures.com/course/3420/engineering-drawing

- 4. https://www.autodesk.in/campaigns/autocad-tutorials
- 5. https://help.autodesk.com/view/ACD/2020/ENU/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and apply the concepts of lettering and dimensioning for drafting of machine drawings and building drawings and different conics and curves.
CO2	Recognize and be familiar with the orthographic projections of points, lines, planes and solids.
CO3	Visualize the real product from isometric projections, solid and sectional views.
CO4	Draw 2D engineering drawings using various draw and modify tools of AutoCAD.
CO5	Design various machine components and building structure by using AutoCAD.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	0					,		, ι	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	1	2				2	1	1	1		1
CO2	2	2	2	1	2				2	1	1	1		1
CO3	2	2	3	1	2				2	1	1	1		1
CO4	2	2	3	1	2				2	1	1	2		1
CO5	2	2	3	1	2				2	1	1	2		2

Category	Code		Data Structures & Algorithms Lab	L-T-P	Credits	Marks				
UCR	CS1004	4	Data Structures & Algorithins Lab	0-0-4	2	100				
Objectives		Develop skills to design and analyze simple linear and non linear data structures, strengthening the ability of students to identify and apply the suitable data structure for the given real world problem.								
Pre-Requisites			Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.							
Teaching So	cheme		gular laboratory classes conducted under superv	ision of	the teache	er. The				

experiments shall comprise of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Operations on arrays – insert, delete, merge.
2	Selection Sort, Bubble sort.
3	Linear Search and Binary search.
4	Representation of sparse matrix.
5, 6	Addition and transpose of sparse matrix.
7	Implementation of stack using array.
8	Conversion of infix to postfix expression.
9	Evaluation of postfix expression.
10	Operations of queue using array.
11	Operations of circular queue.
12, 13	Single linked list operations.
14, 15	Double linked list operations.
16	Circular linked list operations.
17	Stack using linked list.
18	Queue using linked list.
19	Polynomial addition using linked-list.
20, 21	Binary Search Tree operations.
22, 23	Graph traversal (BFS, DFS).
24	Warshall's shortest path algorithm.
25, 26	Implementation Insertion Sort and Quick Sort.
27, 28	Implementation of Merge Sort and Heap Sort.

Text Books:

- T1. E. Horowitz, S. Sahni, S. Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd *Ed.*, Universities Press, 2008.
- T2. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Ed., Pearson Education, 2002.

Reference Books:

R1. A. K. Rath and A. K. Jagadev, *Data Structures Using C*, 2nd *Ed.*, Scitech Publication, 2011.

R2. Y. Kanetkar, *Data Structures Through C*, 2nd *Ed.*, BPB Publication, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106127/: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
- 2. https://nptel.ac.in/courses/106/102/106102064/: By Prof. N. Garg, IIT Delhi
- 3. https://nptel.ac.in/courses/106/106/106106130/: By Dr. N. S. Narayanaswamy, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Implement various operations on array and sparse matrix.
CO2	Design functions to implement basic operations on stack & queue and apply them to solve real world problems.
CO3	Implement single, double & circular linked list and apply them in various real life applications.
CO4	Construct binary search tree and perform traversal, insertion, deletion, and search operations on it.
CO5	Perform BFS and DFS traversal operations in a graph and implement various sorting and searching algorithms.

Program Outcomes Relevant to the Course:

10010	outcomes herevant to the course.
PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	2	1	1					1	2	2	1
CO2	2	2	3	2	1	1					1	2	1	1
CO3	2	2	3	2	1	1					1	2	1	1
CO4	2	2	2	3	1	1					1	2	2	1
CO5	2	2	3	3	1	1					1	2	3	1

SEC HS1002 Corporate Communication Skins 0-0-4 2	Category	Code	Corporate Communication Skills	L-T-P	Credits	Marks
	SEC	HS1002	Corporate Communication Skins	0-0-4	2	100

Objectives	The objective of this laboratory course is to give students adequate practice in a simulated professional environment with focus on communication skills with professionalism in a typical corporate set up.
Pre-Requisites	Knowledge of communicative and technical english is required.
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication and soft skills through pair and/or team activities with regular assessments, presentations, discussions, role-playing, audio-visual supplements, writing activities, business writing practices and vocabulary enhancement.

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Aspects of Inter-cultural communication and cultural conditioning.
2	Barriers to cross-cultural communication.
3	Personality test and personality development.
4	Team work and its stages.
5	Team work and leadership: Simulation.
6	Negotiation skills: Role-play.
7	Persuasive presentation I.
8	Persuasive presentation II.
9	Writing a blog.
10	Vlog making and presentation I.
11	Vlog making and presentation II.
12	Emotional Intelligence: its importance in the workplace.
13	Time management.
14	Social media etiquette.
15	Business etiquette.
16	Assertiveness at work: Role-play.
17	Power point presentation I.
18	Power point presentation II.
19	Power point presentation III.
20	Power point presentation IV.
21	Mind mapping.
22	Creative and critical thinking for problem solving.
23	Six thinking hats: Problem solving and decision making in meetings.
24	Verbal Ability I: synonyms and antonyms.
25	Verbal Ability II: One word substitution.

Experiment-#	Assignment/Experiment
26	Verbal Ability III: Error correction.
27	Verbal Ability IV: Odd one out.
28	Verbal Ability V: Analogy.

Text Books:

- T1. S. B. Bachu, *Corporate Communication Skills for Professionals*, 1st *Ed.*, White Falcon Publishing, 2021.
- T2. M. A. Rizvi, *Effective Technical Communication*, 2nd *Ed.*, Tata McGraw-Hill, 2017.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practice*, 3rd *Ed.*, Oxford University Press, 2015.

Reference Books:

- R1. P. A. Argenti and J. Forman, *The Power of Corporate Communication: Crafting the Voice and Image of Your Business*, 1st *Ed.*, Tata McGraw-Hill, 2003.
- R2. J. Seely, The Oxford Guide to Writing and Speaking, 3rd Ed., Oxford University Press, 2013.
- R3. B. K. Mitra, *Effective Technical Communication A Guide for Scientists and Engineers*, 1st Ed., Oxford University Press, 2006.

Online Resources:

- 1. https://archive.nptel.ac.in/courses/109/105/109105144/: by Prof. S. Singh, IIT Kharagpur
- 2. https://archive.nptel.ac.in/courses/109/106/109106129/: by Dr. Ay. I. Viswamohan, IIT Madras
- 3. https://archive.nptel.ac.in/courses/109/104/109104030/: by Dr. T. Ravichandran, IIT Kanpur
- 4. https://www.ef.com/wwen/english-resources/
- 5. https://owl.purdue.edu/owl/purdue_owl.html
- 6. https://www.usingenglish.com/
- 7. http://www.english-test.net

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand aspects of communication at the workplace and check the barriers.
CO2	Hone persuasive communication skills.
CO3	Enhance interpersonal communication at the corporate workplace.
CO4	Make impactful group/solo presentations and communicate with clarity.
CO5	Enhance verbal ability for better communication.

Program Outcomes Relevant to the Course:

PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.

Cont'd...

PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						1	3	3	3	3	3	2	2	2
CO2						1	3	3	3	3	3	2	2	2
CO3						2	3	3	3	3	3	2	2	3
CO4						1	3	3	3	3	3	2	2	3
CO5						2	3	3	3	3	3	2	2	3

15	Silicon

Category	Code	Vector Calculus & Fourier Analys	ic	L-T-P	Credits	Marks		
PCR	MT2003		15	3-0-0	3	100		
Objectives		he objective of this course is to provide the kn		•		· 1		
		differential equations & Fourier Transforms which are essential for study of various						
		electrical systems.						
Pre-Requisi	ites	Knowledge of calculus of single variable, coordinate geometry of two and three						
dimensions and ordinary differential equations is required.								
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are						
planned to be interactive with focus on prob				ng activit	ies.			

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Periodic function and Fourier series, Euler formula, Even and odd functions, Half range expansions.	7 Hours
Module-2	Fourier integrals, Fourier cosine transform, Fourier sine transform, Fourier transform.	7 Hours
Module-3	Vector line integrals, Line integrals independent of path, Double integrals, Green's theorem in plane surfaces, Surface integrals, Triple integrals, Gauss divergence theorem, Stoke's theorem.	10 Hours
Module-4	Partial Derivatives, Chain Rule, Maxima & Minima in several variables; Vector and scalar functions and fields, Derivatives, Directional derivative & gradient of a scalar field, Divergence & Curl of a vector field.	8 Hours
Module-5	Basic Concepts of PDEs, One Dimensional Wave Equation and its solutions, One Dimensional Heat Equation and its solutions, Two dimensional heat equation, Laplace Equation, Solution of Laplace equation in cylindrical and spherical coordinates.	10 Hours
	Total	42 Hours

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, 8th Ed., Wiley India, 2015.

Reference Books:

R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Ed., Oxford University Press, 2015.

R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Ed., McGraw-Hill, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/122104017: by Prof. S. K. Ray, IIT Kanpur
- 2. https://nptel.ac.in/courses/111107063: by Dr. S. Gakkhar, IIT Roorkee
- 3. https://nptel.ac.in/courses/111105093: by Prof S. De, IIT Kharagpur
- 4. https://nptel.ac.in/courses/111107111: by Prof. Agrawal and Pandey, IIT Roorkee
- 5. https://nptel.ac.in/courses/111104519: by Prof. Prof. P. Mohanty, IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Determine the Fourier series of functions.
CO2	Obtain the Fourier integral and Fourier transform of functions.
CO3	Explain the concepts vector integral calculus and their applications.
CO4	Describe the concepts vector differential calculus and their applications.
CO5	Solve partial differential equations and interpret the solution

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

I I 8 - - - - - - - - -														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2						1	2	1	1
CO2	3	3	2	2	3						2	3	1	1
CO3	3	3	2	2	3						1	3	1	1
CO4	3	3	2	3	3						2	2	1	1
CO5	2	2	2	3	3						2	3	1	1

Category	Code	OOP Using Java	L-T-P	Credits	Marks			
UCR	CS2001	- Con Ching Java	3-0-0	3	100			
Objectives		The objective of this course is to introduce the key concepts of object-oriented						
programming (OOP) using Java as the programming language.								
Pre-Requisi		asic analytical and logical understanding including f computers is required for this course. Prior expe anguage will be beneficial.		0	0			

Teaching Scheme Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Object oriented concepts: Object oriented systems development life cycle; Java Overview: Java Virtual Machine, Java buzzwords, Data types, Operators, Control statements, Class fundamentals, Objects, Methods, Constructors, Overloading, Access modifiers.	8 Hours
Module-2	Inheritance: Basics of Inheritance, Using super & final keyword, Method overriding, Abstract classes, Defining & importing packages, Access protection, Interfaces.	8 Hours
Module-3	Exception handling: Exception fundamentals, Types, Understanding different keywords (try, catch, finally, throw, throws), User defined exception handling; Threads: Thread model, Use of Thread class and Runnable interface, Thread synchronization, Multithreading, Inter-thread communication.	9 Hours
Module-4	Input/Output: Files, Stream classes, Reading console input; String manipulation: Basics of String handling, String class, StringBuilder, StringBuffer, String Tokenizer; Collection overview, Collection interfaces, Collection classes – ArrayList, LinkedList, Set, Tree; Accessing a collection using iterator & for-each statement.	8 Hours
Module-5	Basic GUI Programming: Working with windows, Frames, Graphics, Color and font; Swing fundamentals; Event handling: Delegation event model, Event classes, Sources, Listeners; Introduction to JDBC: Architecture of JDBC, JDBC Drivers, Interfaces of JDBC API, Create a simple JDBC application.	9 Hours
	Total	42 Hours

Text Books:

T1. J. Keogh, *J2EE: The Complete Reference*, 11th Ed., McGraw Hill, 2017.

T2. Y. D. Liang, Introduction to Java Programming, 9th Ed., Pearson Education, 2012.

Reference Books:

- R1. B. Bates, K. Sierra, *Head First Java*, 2nd *Ed.*, O'Reilly Media, 2005.
- R2. E. Balaguruswamy, *Programming with Java A Primer*, 4th *Ed.*, McGraw-Hill, 2009.
 R3. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd *Ed.*, Pearson Education, 2009.
- R4. I. Horton, *Beginning Java*, 7th *Ed.*, Wrox Publications, 2011.

- 1. https://nptel.ac.in/courses/106105191/: by D. Samanta, IIT Kharagpur
- 2. https://docs.oracle.com/javase/tutorial/
- 3. http://www.javatpoint.com/java-tutorial
- 4. http://www.w3schools.in/java/
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply object oriented principles to develop Java programs for real life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robust & concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, string classes, and collection framework.
CO5	Design GUI applications using Swing and Database connectivity.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2		2					2	3		3
CO2	3	3	3	2		3					2	3		3
CO3	3	3	3	2		3					2	3		3
CO4	3	2	2	2		2					2	3		3
CO5	3	3	2	2		3					2	3		3

Category	Code	Management & Economics for Engineers	L-T-P	Credits	Marks
UCR	MG2001	Management & Economics for Engineers	3-0-0	3	100

Objectives	The objective of this course is to familiarize the students with elementary principles			
	of management and economics, provide the tools needed for analyzing time value			
	of money in engineering decision making, profit/revenue data, and make economic			
	analysis for projects and alternatives.			
Pre-Requisites	Basic knowledge on interest formula and derivatives is required.			
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to			
	be interactive with focus on real-world problem solving.			

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Engineering Economics, It's meaning & importance, Basic problems of an economy, The concept of time value of money, Concept of Interest, Time value of equivalence, Compound interest factors, Cash flow diagrams, Calculation of time value of equivalence, Present worth comparison, Future worth comparison, Pay-back period comparison.	9 Hours
Module-2	Equivalent annual worth comparison method, Rate of return, Internal rate of return, Incremental IRR analysis, Depreciation Analysis - Methods of depreciation, Straight line method, Declining balance method, SOYD Method & MACRS method; Analysis of public project, Cost-benefit analysis.	9 Hours
Module-3	Theory of demand, Elasticity of demand, Price elasticity of demand, Measurement of elasticity of demand, Income elasticity & cross elasticity of demand, Law of supply, Elasticity of supply, Determination of price, Cost & Revenue concepts, Break-even analysis.	8 Hours
Module-4	Concept of Management, Management - Art or Science, Managerial skills, Levels and types of management, Managerial environment, Functions of Management: Planning and its features & process, Types of plan, Effective planning, Organizing and its process, Formal & informal organization, Directing and its elements, Staffing and functions, Controlling & its features and process, tools of controlling.	8 Hours
Module-5	Marketing Function: Modern concept of marketing, Marketing vs. Selling, Marketing Mix: Product and types of product, Product life cycle, Price, Factors affecting pricing, Pricing strategies, Distribution channel - Role & functions, Selection of a distribution channel, Promotion & types of promotion, Promotional strategies; HRM Function: Human resource management, Manpower planning, Recruitment, Selection, Induction, Training & development, Placement, Wage & Salary administration.	8 Hours
	Total	42 Hours

Text Books:

T1. J. L. Riggs, D. D. Bedworth, and S. U. Randhawa, *Engineering Economics*, 4th *Ed.*, McGraw-Hill, 2004. T2. H. L. Ahuja, *Principles of Micro Economics*, 16th *Ed.*, S. Chand & Co, 2008.

T3. S. A. Sherlekar, *Modern Business Organisation and Management*, Himalaya Publishing House, 2016.

Reference Books:

- R1. C. S. Park, *Contemporary Engineering Economics*, 6th *Ed.*, Pearson Education, 2015.
- R2. A. Koutsoyiannis, *Modern Micro Economics*, 2nd Ed., Palgrave Macmillan UK, 2003.
- R3. P. C. Tulsian and V. Pandey, Business Organization & Management, 1st Ed., Pearson Education, 2002.
- R4. K. Keller and K. Jha, *Marketing Management*, 13th Ed., Pearson Education, 2018.

Online Resources:

- 1. https://nptel.ac.in/courses/112107209: by Dr. P. K. Jha, IIT Roorkee
- 2. https://nptel.ac.in/courses/110107150: by Prof. U. Lenka, IIT Roorkee
- 3. https://nptel.ac.in/courses/110104068: by Prof. J. Chatterjee and Dr. S. S. Mishra, IIT Kanpur
- 4. https://nptel.ac.in/courses/122105020: by Prof. K. Chakravarti, IIT Kharagpur
- 5. https://nptel.ac.in/courses/110105069: by Prof. A. Malik, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts of engineering economics and its applications.
CO2	Solve problems related to engineering economics and analyze decision alternatives.
CO3	Evaluate how changes in demand and supply affect market and production.
CO4	Apply the concepts of management to become a good manager and a team player.
CO5	Adopt appropriate marketing policies and manage human resources in an efficient manner.

Program Outcomes Relevant to the Course:

-	
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

11	<u> </u>					-		<u> </u>	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						2	1	1		3	2		1	2
CO2						3	1	1		3	2		1	3
CO3						2	1	1		3	2		1	2
CO4						2	3	3		3	2		1	3
CO5						2	3	3		3	2		2	2

Category	Code	Biology for Engineers	L-T-P	Credits	Marks		
UCR	BL2001	biology for Engineers		3	100		
Objectives	es The objective of this course is to integrate the knowledge of engineering an modern biology to solve problems encountered in living systems, analyze a problem from engineering and biological perspective, anticipate specific issues in workin with living systems, and evaluate possible solutions.						

 Pre-Requisites
 Basic knowledge of biology, chemistry, and physics is adequate.

Teaching SchemeRegular classroom lectures with use of ICT as and when required; sessions are
planned to be interactive with focus on applications of biology in engineering.

Evaluation Scheme

Attendance	Teacher's Assessment	eacher's Assessment Mid-Term		Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Bioinspired Materials and Mechanisms : Photosynthesis (photovoltaic cells, bionic leaf), Bird flying (GPS and aircrafts), Lotus leaf effect (Super hydrophobic and self-cleaning surfaces), Plant burrs (Velcro), Shark skin (Friction reducing swimsuits), Kingfisher beak (Bullet train), Human Blood substitutes - Haemoglobin-based oxygen carriers (HBOCs).	10 Hours
Module-2	Biomolecules-based Technology : Carbohydrates (transformation of carbohydrates into renewable energy, biodegradable plastics and organic chemicals), Nucleic acids (biochips and biosensors), Forensics - Automated DNA sequencing, Proteins (cellular agriculture to produce tissue mimicking meat), Lipids (biodiesel), Enzymes (AI mediated enzyme engineering).	9 Hours
Module-3	Human Organ Systems and Bio Designs (I): Eye as a camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye), Brain as a CPU system (architecture, signal transmission, brain-machine interactions), Heart as a pump system (reasons for blockages of blood vessels, Nanobots to remove artery blockage, vein detection patches).	8 Hours
Module-4	Human Organ Systems and Bio Designs (II): Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology - COPD, Ventilators, Heart-lung machine); Kidney as a filtration system (architecture, mechanism of filtration, CKD, dialysis systems), Muscular and skeletal systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis).	8 Hours
Module-5	Genetics and Bioinformatics : Mendelian and non-mendelian genetics, Mutation, Central dogma of molecular biology, Genetic disorders, Genetic code; Nucleotide and protein databases - EMBL, DDBJ, GenBank, UniProt, PDB, Tools used in bioinformatics - BLAST, FASTA, Machine learning applications in bioinformatics: Gene sequence analysis, Protein structure analysis, Establish phylogenetic relationship.	7 Hours
	Total	42 Hours

Text Books:

T1. Y. Bar-Cohen, *Biomimetics: Nature-Based Innovation*, 1st Ed., CRC Press, 2012.

T2. S. Fox and K. Rompolski, Human Physiology, 16th Ed., McGraw-Hill eBook, 2022.

- T3. L. Cromwell, F. J. Weibel, and E. A. Pfeiffer, *Biomedical Instrumentation & Measurements*, 2nd *Ed.*, Pearson Education, 2015.
- T4. Any other book(s) and/or study material(s) as advised by the teacher.

Reference Books:

- R1. S. Singh and T. Allen, *Biology for Engineers*, 1st *Ed.*, Vayu Education, 2020.
- R2. V. Sharma, A. Munjal, and A. Shanker, A Textbook of Bioinformatics, 2nd Ed., Rastogi Publications, 2018.

Online Resources:

- 1. https://nptel.ac.in/courses/102106065: by Prof. M. M. Gromiha, IIT Madras
- 2. https://nptel.ac.in/courses/121106008: Dr. M. Dixit and Prof. G. K. Suraishkumar, IIT Madras
- 3. https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009

Course Outcomes: At the end of this course, the students will be able to:

CO1	Correlate the concepts of biology in engineering for innovative materials and products.
CO2	Leverage biomolecules in food, pharma, energy, and other engineering domains.
CO3	Critically analyze organ systems and improve design of bio-medical equipment.
CO4	Design solutions for health challenges like prosthetics, organ regeneration, and medical devices.
CO5	Determine the connection between genetic alterations, diseases, and inheritance pattern.

Program Outcomes Relevant to the Course:

PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

<u> </u>	II													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1		2	3		2	3					2	1	2	2
CO2		1	2		2	3					2	1	1	2
CO3		1	2		2	2					2	1	2	2
CO4		1	2		2	2					2	1	2	2
CO5		3	1		3	3					2	3	2	2

Category	Code		Basics of Instrumentation		Credits	Marks			
PCR	EC2019	9	Basics of Instrumentation	3-0-0	3	100			
Objectives		ele	e objective of this course is to introduce the basic p ectrical & electronic measuring instruments including orage, display and data acquisition systems.						
Pre-Requisi	tes	Basic knowledge of intermediate physics, mathematics, basic electrical and electronics engineering is required.							
Teaching So	cheme		gular classroom lectures with use of ICT as and w anned to be interactive with focus on problem solvin	-	-	ions are			

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Qualities of Measurement: Significance of measurement, Significant figure, Functional elements of generalized measurement systems, Deflection & null type instruments; Static & Dynamic Characteristics: Systematic statistical characteristics, Calibration; Errors in measurement, Concept of calibration and loading effects of series and shunt connected instruments.	9 Hours
Module-2	Bridge Circuits: DC and AC Bridges, Errors in bridge circuits, Quality factor (Q) and dissipation factor(D), General equations for Bridge Balance; Application of DC and AC bridges: Resistance measurement, Insulation resistance measurement, Inductance measurement (Maxwell's, Hay's and Anderson bridge) and Capacitance measurement (Wien's, Owens's and Schering Bridge).	9 Hours
Module-3	Measuring Instruments: DC Galvanometer, DC Potentiometer, PMMC and MI instruments, Voltmeters, Ammeters, Ohmmeters, Extension of the range of instruments; AC Indicating Instruments: EDM Wattmeter (1-phase & 3- phase), Energy meter; Basics of instrument transformer, Digital CRO, DVM, Digital frequency meter and spectrum analyzer.	9 Hours
Module-4	Basic Sensing Elements: Sensors, Transducers, Classification & selection of transducers; Resistive Sensing Elements: Resistive potentiometers, strain gauges, RTD and Thermistor; Inductive Sensing Elements: Principle, inductive displacement sensor, push-pull type, IVDT, RVDT, Hall effect sensors.	8 Hours
Module-5	Capacitive Transducers: Variable separation, Area dielectric displacement transducer, Push-pull type capacitive sensor, Pressure, Humidity and Level measurement.	7 Hours
	Total	42 Hours

Text Books:

- T1. E. W. Golding and F. C. Widdis, *Electrical Measurements and Measuring Instruments*, 5th Ed., Reem Publication, 2015.
- T2. A. K. Ghosh, *Introduction to Measurement and Instrumentation*, 3rd Ed., PHI Learning, 2009.
 T3. H. S. Kalsi, *Electronic Instrumentation and Measurements*, 4th Ed., McGraw-Hill Education, 2019.
- T4. A. K. Sawhney, A Course in Electrical and Electronics Measurements & Instrumentation, Dhanpat Rai & Co, 2015.

Reference Books:

- R1. J. J. Carr, *Elements of Electronics Instrumentation Measurement*, 3rd *Ed.*, Pearson Education, 2003.
- R2. D. A. Bell, *Electronic Instrumentation and Measurements*, 3rd *Ed.*, Oxford University Press, 2013.
- R3. J. P. Bentley, Principles of Measurement Systems, 4th Ed., Pearson Education, 2005.
- R4. D. V. S. Murthy, *Transducers and Instrumentation*, 2nd Ed., PHI Learning, 2008.

Online Resources:

- 1. https://nptel.ac.in/courses/108105153: by Prof. A. Chatterjee, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108105062: by Prof. Mukhopadhyay and Sen, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108105064: by Prof. A. Barua, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108108147: by Prof. H. J. Pandya, IISc Bangalore.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the characteristics, errors, and calibration concepts of different measuring instruments.
CO2	Evaluate the values of R, L, and C using suitable bridges and their applications.
CO3	Analyze the construction, characteristics, and working principles of various measuring instruments.
CO4	Explain the construction, characteristics, and working principles of different sensing elements used in different measuring instruments.
CO5	Explore the concepts of capacitive transducers and their applications in modern industrial instrumentation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

-	I I I I I I I I I I														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
	CO1	3	2	2	2							2	3	2	3
	CO2	3	3	3	2							2	3	3	2
	CO3	3	3	3	3							3	2	2	1
	CO4	2	3	2	3							3	3	2	1
	CO5	2	3	3	3							3	3	2	2

Category	Code	Circuit Theory	L-T-P	Credits	Marks			
PCR	EE2010	- Circuit Theory	3-0-0	3	100			
Objectives		The objective of this course is that the student should be able to analyze any circuit configuration, synthesize circuits with any given specification of network functions, and test and improve the design as required.						
Pre-Requisi	tes	Basics of Circuit analysis, Laplace transform, Fourier transform, and Differential equations are required.						

Teaching Scheme Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Network Theorems: Thevenin's theorem, Norton's theorem, Superposition theorem, Reciprocity theorem, Maximum power transfer theorem, Millman's theorem (AC & DC Networks); Coupled Circuits: Introduction, Dot Convention, Coefficient of coupling, Electrical equivalent of magnetically coupled coils, Series and parallel connection of coupled coils, Transformer as a magnetically coupled circuit; Resonance: Introduction, Series Resonance, Parallel Resonance, Quality factor, Bandwidth and Selectivity for series and parallel resonant circuits, Frequency Response Curve.	11 Hours
Module-2	Laplace Transform & its Application: Fundamentals of Laplace & Inverse Laplace Transform, initial and final value theorem; Fundamentals of Switching behavior of RL, RC & RLC circuits. Application Of Laplace Transform to Transient Analysis: Response of RL, RC & RLC network with step, sinusoidal, impulse, and ramp input.	8 Hours
Module-3	Fourier Series and Fourier Transform: Periodic and Aperiodic functions, Fourier Series Analysis of Continuous Time Signals, Fourier Transform, Properties, Circuit analysis with Fourier Series and Fourier Transform; Filters: Introduction to Filters, Frequency Response Curve, Filter Transfer functions and cut-off frequencies.	7 Hours
Module-4	Two-Port Networks: Introduction, z, y, ABCD and h-parameters, Reciprocity and Symmetry, Interrelation of two-port parameters, Interconnection of two- port networks; Network Functions & Response: Transfer function and driving point function for one & two-port networks, Concept of poles and zeros, Significance & Restriction on location of Poles and Zeros.	9 Hours
Module-5	Network Synthesis: Hurwitz polynomial and its Properties, Positive real functions and their properties, Concepts of network synthesis, Realization of R-L, R-C, and L-C functions in Cauer-I, Cauer-II, Foster-I and Foster-II forms.	7 Hours
	Total	42 Hours

Text Books:

- T1. M. E. Van Valkenburg, *Network Analysis*, 3rd *Ed.*, Pearson Education, 2015.
 T2. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 5th *Ed.*, Tata McGraw-Hill, 2013.

T3. W. H. Hayt, J. Kemmerly, J. D. Phillips, and S. M. Durbin, *Engineering Circuit Analysis*, 9th *Ed.*, McGraw-Hill Education, 2020.

Reference Books:

- R1. S. Ghosh, Network Theory: Analysis And Synthesis, 1st Ed., Prentice Hall of India, 2009.
- R2. P. K. Satpathy, P. Kabisatapathy, S. P. Ghosh, and A. K. Chakraborty, *Network Theory*, 1st *Ed.*, Tata McGraw-Hill, 2009.
- R3. A. Chakrabarti, *Circuit Theory: Analysis and Synthesis*, 7th Ed., Dhanpat Rai & Co., 2013.
- R4. J. D. Irwin and R. M. Nelms, *Basic Engineering Circuit Analysis*, 11th Ed., Wiley, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/108102042/: by Prof. S. C. Dutta Roy, IIT Delhi
- 2. https://nptel.ac.in/courses/108106075/: by Prof. V. G. K. Murti, IIT Madras
- 3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe network theorems, coupled circuits, and resonant circuits and apply them to solve complex network problems.
CO2	Explain the switching phenomena of electrical circuits and evaluate transient and steady-state performance using Laplace Transformation.
CO3	Analyze filter circuits and sinusoidal, and non-sinusoidal signals using the Fourier series and Fourier transform and its application in electrical & electronics circuit analysis.
CO4	Determine two-port network parameters and their practical application to electrical and electronic circuits.
CO5	Identify Network Functions and synthesize one port network using Foster and Cauer forms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

<u>mappi</u>	mapping of cos to ros and roos (1. how, 2. medium, 5. mgn)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2		2	2			1	1		2	2	1	1
CO2	2	2		2	3			1	1		3	2	1	1
CO3	2	2		2	3			1	1		3	2	1	1
CO4	2	2		1	2			1	1		2	2	1	1
CO5	2	2		1	2			1	1		1	2	1	1

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

Category	Code	Analog Electronic Circuits	L-T-P	Credits	Marks			
PCR	EC2004	Analog Electronic Circuits	3-1-0	4	100			
Objectives		The objective of this course is to be familiar with Transistor (BJT, JFET and						
MOSFET) amplifiers, differential amplifiers and their studying their characteristics & applications.				tations ald	ong with			
Pre-Requisites Knowledge of semiconductor diodes and bipolar junction transistors is required.					auired			
Teaching Scheme Regular classroom lectures with use of ICT as and when required, sessions					-			

planned to be interactive with focus on problem solving activities.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Bipolar Junction Transistor(BJT) and its AC Analysis: Introduction to BJT DC Biasing Circuits, Design of different Biasing Circuits, Bias Stability, Introduction to BJT small signal model, r_e and h -models of different configurations (CB, CE, and CC), r_e and h -models of different biasing circuits, Effect of R_S and R_L , Standard ICs.	11 Hours
Module-2	Field Effect Transistor(FET) and its AC Analysis: JFET DC Biasing Circuits(Fixed, Self and Voltage divider), MOSFET DC Biasing Circuits, Introduction to JFET and MOSFET small signal model, Small signal model of different configurations (CG, CD, and CS), Small signal model of different biasing circuits of MOSFET, Effect of R_S and R_L , Standard ICs.	11 Hours
Module-3	Compound Configurations: CMOS and its circuit realization, Darlington pair, Current Mirror, Cascade & Cascode configuration. Frequency Response Analysis: Low Frequency Response of BJT, High Frequency Response of BJT, Low Frequency Response of FET, Miller's Effect, Multistage Frequency Effects, Gain-Bandwidth Relation.	11 Hours
Module-4	Operational Amplifiers: Introduction to OP-AMP, Applications of OP- AMP: Summing, Buffer, Log Differentiator, Schmitt Trigger and Integrator, Introduction to Differential Amplifier, DC and AC Analysis of Differential Amplifier, Instrumentation Amplifier, Active Filters, Standard ICs.	11 Hours
Module-5	Feedback Amplifiers: Introduction, Feedback Topologies, Derivation of different parameters (Z_i , Z_o , A_v , A_i), Practical feedback circuits, Standard ICs; Oscillators: Introduction to Oscillators, High Frequency Oscillators: Hartley and Crystal Oscillators, Standard ICs; Power Amplifiers: Introduction to Power Amplifiers, Classification of Power Amplifiers: Class A, Class B, Class C, Push-Pull Amplifiers.	12 Hours
	Total	56 Hours

Text Books:

- T1. A. S. Sedra and K. C. Smith, *Microelectronic Circuits: Theory and Applications (International Version)*, 7th *Ed.*, Oxford University Press, 2017.
- T2. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Ed., Pearson Education, 2013.

- T3. J. V. Wait, L. P. Huelsman, and G. A. Korn, *Introduction to Operational Amplifier Theory and Applications*, McGraw-Hill USA, 1992.
- T4. J. Millman and A. Grabel, *Microelectronics*, 2nd *Ed.*, McGraw-Hill Education, 2017.

Reference Books:

- R1. J. Millman and C. C. Halkias, *Integrated Electronics: Analog and Digital Circuits and Systems*, 2nd *Ed.*, TMH Publications, 2017.
- R2. A. Malvino and D. J. Bates, *Electronic Principles*, 7th *Ed.*, McGraw-Hill, 2017.
- R3. P. Horowitz and W. Hill, *The Art of Electronics*, 2nd *Ed.*, Cambridge University Press, 1989.
- R4. P. R. Gray, P. J. Hurst, R. G. Meyer, and S. H. Lewis, *Analysis and Design of Analog Integrated Circuits*, 5th *Ed.*, John Wiley & Sons, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/117101106: by Prof A.N.Chandorkar, IIT Bombay
- 2. https://nptel.ac.in/courses/108102095: by Prof S. C. Dutta Roy, IIT Delhi
- 3. http://www.electrical4u.com/circuit-analysis.htm
- 4. http://www.allaboutcircuits.com
- 5. https://www.electronics-tutorials.ws/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design different biasing methods and small signal models of BJT and estimate the performance parameters of different amplifier configurations.
CO2	Analyze the structural behavior, characteristics and different biasing configurations of JFET and MOSFET.
CO3	Understand and analyze the structural configuration of multi-stage amplifier and plot its frequency response.
CO4	Study the construction and characteristics of an Op-Amp and design circuits for various linear applications using Op-Amp.
CO5	Design various industrial circuits such as oscillators & negative feedback amplifiers using transistors and validate their experimental results.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).

Cont'd...

	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i)
PO11	independent and life-long learning, (ii) adaptability to new and emerging technologies, and
	(iii) critical thinking in the broadest context of technological change. (WK8)

I I	0				-	,		, c	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	3	3						1	3	1	1
CO2	3	3	3	3	2						2	3	2	2
CO3	3	3	2	3	2						2	3	2	3
CO4	3	3	3	2	3						1	3	1	2
CO5	3	3	3	3	3						1	3	3	3

Category	Code	OOP Using Java Lab	L-T-P	Credits	Marks	
UCR	CS2004		0-0-2	1	100	
			•			
Objectives		The objective of the course is to apply object oriented p	•	· · ·	ples and	
		mplement object oriented programming using JAVA l	anguage.			
Pre-RequisitesBasic analytical and logical understanding including basic knowledge a of computers is required for this course. Prior experience with any oth oriented programming language will be beneficial.					U	
Teaching So	cheme	gular laboratory classes with the use of ICT whenever required, demonstration				
		through practical simulation of code using IDE.				

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Understanding Java platform, compilation, and execution of a java program.
2	Overview of Eclipse IDE.
3	Use of class, use of control statements, data types, operators.
4	Implement class, object, constructor, methods, and other OOP features.
5	Inheritance Basics, more uses of constructor, method overriding, use of final.
6	Object class, practical use of abstract class.
7	Using Interface for achieving multiple inheritance, implementation of package.
8	Exception handling fundamentals, java built-in exceptions, use of Scanner class for console input, use of own Exception subclass.
9	Java thread life cycle model and implementation approach, thread priority, implementation of synchronization.
10	I/O Basics, byte stream and character streams, reading and writing files, text processing using Java pre-defined StringBuilder and StringBuffer classes.
11	Basics of Java collection framework, implementation of collections in Java with different programs.
12	GUI basics and Window fundamentals, working with different Component, Container and Layout Managers.
13	Event handling for interactive GUI application, working with JDBC.
14	Mini Project.

Text Books:

- T1. J. Keogh, *J2EE: The Complete Reference*, 11th Ed., McGraw Hill, 2017.
- T2. Y. D. Liang, Introduction to Java Programming, 9th Ed., Pearson Education, 2012.

Reference Books:

- R1. B. Bates, K. Sierra, *Head First Java*, 2nd *Ed.*, O'Reilly Media, 2005.
 R2. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd *Ed.*, Pearson Education, 2009.
 R3. I. Horton, *Beginning Java*, 7th *Ed.*, Wrox Publications, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/106105191/: by D. Samanta, IIT Kharagpur
- 2. https://docs.oracle.com/javase/tutorial/
- 3. http://www.javatpoint.com/java-tutorial
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply object oriented programming to develop Java programs for real-life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robus and concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, String classes and collection framework.
CO5	Design GUI applications using Swing and database connectivity.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2		3					3	1		2
CO2	3	3	3	2		3					2	2		2
CO3	3	3	3	2		3					2	2		2
CO4	3	3	2	3		3					3	2		2
CO5	3	3	3	3		3					3	2		2

Category	Code	Analog Electronic Circuits Lab	L-T-P	Credits	Marks			
PCR	EC2005	Analog Electronic Circuits Lab	0-0-4	2	100			
Objectives		The objective of the course is to design, implement and test transistor biasing,						
		amplifying action and frequency response. Also study the linear and nonlinear						
		applications of amplifiers.						
Pre-Requisi	tes	Basic analytical and logical understanding including k	owledge	of basic ele	ectronics			
is required.								
Teaching So	cheme	Regular laboratory experiments to be conducted under supervision of the teacher						
		with focus on implementation in hardware/software tools.						

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Design and simulate BJT bias circuit and compare the results
2	Design and simulate JFET bias circuit and compare the results.
3	Design and simulate MOSFET bias circuit and compare the results.
4	Design and simulate BJT common-emitter circuit and compare DC and AC performance.
5	Design and simulate JFET common-source circuit and compare DC and AC performance
6	Design and simulate MOSFET common-source circuit and compare DC and AC performance
7, 8	Determining the frequency response of a common-emitter amplifier: low frequency, high frequency and mid frequency response and compare with simulated results.
9, 10	Differential amplifier circuits: DC bias & AC operation with & without current source.
11	Analysis of RC Coupled Multi Stage Amplifier. (2 Stages).
12, 13	Study of Darlington Circuit and Current Mirror Circuits.
14	OP-Amp Frequency Response and Compensation.
15	Application of Op-Amp as differentiator, integrator, square wave generator.
16	Obtain the band width of FET/BJT using Square wave testing of an amplifier.
17, 18	Study of Feedback Amplifier (Voltage series, Voltage shunt, Current series, and Current shunt configurations).
19, 20	RC phase shift oscillator/Wien-Bridge Oscillator using Op-Amp, Crystal Oscillator
21, 22	Class A and Class B Power Amplifiers.

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 10th *Ed.*, Pearson Education, 2009.

Reference Books:

- R1. L. K. Maheshwari and M. M. S. Anand, *Laboratory Experiments and PSPICE Simulations in Analog Electronics*, PHI Learning, 2006.
- R2. L. K. Maheshwari and M. M. S. Anand, *Laboratory Manual for Introductory Electronics Experiments*, John Wiley & Sons, 1980.

R3. K. A. Navas, *Electronics Lab Manual, Vol-2*, 6th *Ed.*, PHI Learning, 2018.

Online Resources:

- 1. http://www2.ece.ohio-state.edu/ee327/
- 2. https://wiki.analog.com/university/courses/alm1k/alm_circuits_lab_outline
- 3. https://wiki.analog.com/university/courses/electronics/labs

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design, assemble and test BJT biasing circuits.
CO2	Analyze the DC and AC performance of BJT and FET.
CO3	Understand the frequency response of single & multi-stage BJT and compare the results.
CO4	Study operational amplifier and its various applications.
CO5	Analyze and design various wave shaping circuits.
CO6	Implement different oscillator circuits and analyze power amplifier characteristics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	3	2						2	3	1	1
CO2	3	3	2	3	2						2	3	1	1
CO3	3	3	2	3	3						1	3	2	2
CO4	3	3	3	3	3						1	3	1	2
CO5	3	2	2	3	2						2	3	2	3
CO6	3	2	3	3	3						1	3	3	2

Category	Code		Decise of Instrumentation Lab	L-T-P	Credits	Marks
PCR	EC2023	3	Basics of Instrumentation Lab	0-0-2	1	100
ObjectivesThe objective of this laboratory course is to practically understand the of static characteristics, dynamic characteristics, error analysis tools, p testing & calibration of different measuring instruments.						
Pre-Requisi	Pre-Requisites Basic knowledge of different electrical and magnetic circuits. Topics taught Basics of Instrumentation theory class are essential to conduct the experiment					0
Teaching SchemeRegular laboratory experiments conducted under supervision of the teaDemonstration will be given for each experiment in the pre-lab session.					teacher.	

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study of static and dynamic characteristics of a Measuring Instrument.
2	Statistical analysis of errors in measurement (using standard dataset).
3	Measurement of Low Resistance using Kelvin's Double Bridge.
4	Design & testing of Sinusoidal Oscillator.
5	Measurement of Self Inductance using Anderson's Bridge.
6	Calibration of capacitance sensor using Schering Bridge.
7	Measurement of frequency using Wien's Bridge.
8	Measurement of R, L, and C using Q-meter (bandwidth of a resonance circuit and Q-meter).
9	Study and testing of energy meter and clamp meter.
10	Study of Lissajous pattern and measurement of unknown frequency.
11	Temperature measurement by RTD and Thermistor.
12	Measurement of force using strain gauge.
13	Displacement measurement using LVDT.
14	Level measurement using capacitive transducer & its calibration.

Text Books:

- T1. A. K. Sawhney, A Course in Electrical and Electronics Measurements & Instrumentation, Dhanpat Rai & Co, 2015.
- T2. A. K. Ghosh, Introduction to Measurement and Instrumentation, 4th Ed., PHI Learning, 2009.

Reference Books:

- R1. D. A. Bell, *Electronic Instrumentation and Measurements*, 3rd *Ed.*, Oxford University Press, 2013.
 R2. D. V. S. Murthy, *Transducers and Instrumentation*, 2nd *Ed.*, PHI Learning, 2008.
- R3. E. W. Golding and F. C. Widdis, *Electrical Measurements and Measuring Instruments*, 5th Ed., Reem Publication, 2015.

P.T.O

Online Resources:

- 1. https://nptel.ac.in/courses/108105153: by Prof. A. Chatterjee
- 2. https://nptel.ac.in/courses/108105062: by Prof. Mukhopadhyay and Sen, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108105064: by Prof. A. Barua, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108108147: by Prof. H. J. Pandya, IISc Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Investigate performance characteristics and evaluate errors of a measuring instrument.
CO2	Accurately measure various electrical parameters using appropriate instruments.
CO3	Measure physical parameters using relevant sensors and measuring instruments.
CO4	Perform analysis on time domain signals to measure unknown parameters.
CO5	Investigate the response of measuring systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2							2	3	1	1
CO2	3	3	3	2							2	3	1	2
CO3	2	2	3	3							3	3	3	2
CO4	3	3	2	3							3	3	1	1
CO5	3	3	2	3							3	3	2	3

		•	University	
L-T-P	Credits	N	/Iarks	

Silicon

Category	Code	Complex Analysis & Numerical Methods	L-T-P	Credits	Marks					
PCR	MT2004	Complex Analysis & Numerical Methods	3-0-0	3	100					
Objectives		The objective of this course is to provide the knowledge	•		· •					
		& zeros, residue calculus, and numerical methods, along with the applications of								
		these methods in engineering.								
Pre-Requisi	tes	Knowledge of calculus of single variables, coordinate	geometry	y of two ai	nd three					
	dimensions, matrix algebra and ordinary differential equations is required.									
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are								
planned to be interactive with focus on problem solving activities.										

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basics of Complex Numbers, Derivatives, Analytic Functions, C-R Equations, Basic elementary Complex functions.	8 Hours
Module-2	Complex Line Integration, Integral Theorems, Complex Power Series and Taylor Series.	8 Hours
Module-3	Laurent Series, Residue Integration and its application for evaluation of real integrals.	8 Hours
Module-4	Error Analysis, Solution of Nonlinear Equations, Bisection Method, Fixed- Point Iteration Method, Secant Method, Newton Method, Interpolation by Polynomials: Lagrange Interpolation, Newton Divided Differences, Newton's forward & backward Interpolation.	9 Hours
Module-5	Numerical Differentiation and Integration, Trapezoidal, Simpson's Rules, Composite Rules, Error Formulae, Gaussian Quadrature Rules, Solution of Differential Equations by Euler Method, Modified Euler Method, and Runge- Kutta Methods.	9 Hours
	Total	42 Hours

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, 8th Ed., Wiley India, 2015.

Reference Books:

R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Ed., Oxford University Press, 2015.

R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Ed., McGraw-Hill, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/111105035: by Prof. P. D. Srivastava, IIT Kharagpur.
- 2. https://nptel.ac.in/courses/122104017: by Prof. S. K. Ray, IIT Kanpur.
- 3. https://nptel.ac.in/courses/122102009: by Prof. S. R. K. Iyengar, IIT Delhi.
- 4. https://nptel.ac.in/courses/111107063: by Dr. S. Gakkhar, IIT Roorkee.
- 5. https://nptel.ac.in/courses/112102316: by Prof. A. Gupta, IIT Delhi.
- 6. https://nptel.ac.in/courses/111101165: by Prof. S. Baskar, IIT Bombay.
- 7. https://nptel.ac.in/courses/111107107: by Prof. A. K. Nayak, IIT Roorkee.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the fundamental concepts of Analytic function.
CO2	Evaluate complex line integral and find the Taylor's series expansion of analytic functions.
CO3	Expand functions in Laurent's Series and evaluate integrations using residues.
CO4	Find the root of nonlinear and transcendental equations using numerical methods and interpolate data.
CO5	Perform numerical integration and solve ODE using various numerical methods.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	3						1	2	1	1
CO2	2	2	2	2	2						1	2	1	1
CO3	3	3	2	3	3						1	2	1	1
CO4	3	3	3	3	3						2	3	1	1
CO5	3	3	3	3	3						2	2	1	1

Category	Code	Programming in Python		Credits	Marks			
UCR	CS2007	r rogramming in r ython	3-0-0	3	100			
Objectives The objective of this course is to develop programming skills in Python which is rich in tools & libraries and is popularly used for solving real-life computing problems in many engineering domains.								
Pre-Requisi	Pre-Requisites Basics of programming, algorithms and problem solving skills are required. Pri experience with a programming language will be beneficial.							
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with programming & problem solving activities.						

Attendance	Attendance Teacher's Assessment		End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Python : Introduction, Features of Python, Data types, Variables, Literals, Input/output statements, Keywords, Identifiers, Operators, Precedence and associativity, Expressions, Control statements.	8 Hours
Module-2	Data Structures : Lists - Operations, Slicing, Built-in list functions, List comprehension, Tuples - Accessing elements, Operations using built-in tuple functions, Dictionaries - Accessing values in dictionaries, Built-in dictionary functions, Sets, Functions, Recursion, Anonymous functions; Modules: Creating modules, Import statement, Packages.	9 Hours
Module-3	Object Oriented Programming : Creating class and object, Using a class and its methods, Constructor; Inheritance: Types of inheritance, Overriding methods, Encapsulation and information hiding, Polymorphism, Operator overloading, Method overloading and overriding, Abstract method and class.	8 Hours
Module-4	File Handling : Types of files, Opening & closing, Reading & writing, Binary files; Command line arguments; Exception Handling: Errors, Types of exception, try, except, and finally, assertion; Database Connectivity: Connect with a SQL database, Executing queries, Transactions, SQLDB database connection parameters, Insert, Update, Delete operations.	7 Hours
Module-5	Data Handling, Visualization, and GUI Programming : Regular Expressions - Match & Search functions, Quantifiers, Pattern; NumPy: Introduction, Creating of arrays and matrices; Panda: Creating a DataFrame, DataFrame operations, Data manipulation and aggregation, Reshaping DataFrame objects; Matplotlib: Introduction, creating basic plots (line plot, scatter plot, bar chart, histogram), Customizing plots; Graphical User Interface: GUI toolkits, Creating GUI widgets with Tkinter, Creating layouts, Radio buttons, Checkboxes, Dialog boxes.	10 Hours
	Total	42 Hours

Text Books:

- T1. R. N. Rao, *Core Python Programming*, 2nd *Ed.*, DreamTech Press, 2019. T2. V. Guttag, *Introduction to Computation and Programming Using Python with Application to* Understanding Data, 2nd Ed., PHI Learning, 2016.
- T3. W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter, 3rd Ed., O'Reilly Media, 2022.

Reference Books:

- R1. P. Barry, *Head First Python*, 2nd *Ed.*, O'Reilly Media, 2010.
 R2. A. Downey, *Think Python*, 2nd *Ed.*, Green Tea Press, 2015.
- R3. E. Matthes, Python Crash Course: A Hands-On, Project-Based Introduction to Programming, 3rd Ed., No Starch Press, 2023.
- R4. J. Zelle, *Python Programming: An Introduction to Computer Science*, 3rd *Ed.*, Franklin, Beedle & Associates, 2016.

Online Resources:

- 1. https://nptel.ac.in/courses/106106182: By Prof. S. Iyengar, IIT Ropar
- 2. https://nptel.ac.in/courses/106106145: By Prof. M. Mukund, IIT Madras
- 3. https://nptel.ac.in/courses/106106212: By Prof. R. Rengasamy, IIT Madras
- 4. https://nptel.ac.in/courses/106107220: By Prof. A. Ramesh, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Compile and debug basic python programs, and solve problems using control structures.
CO2	Apply the data structure for real life problems and design modular python programs.
CO3	Develop applications using object oriented programming concepts using python.
CO4	Apply the concept of file handling and database connectivity in real life problems.
CO5	Utilize advanced tools & libraries for data analysis and develop GUI based applications.

Program Outcomes Relevant to the Course:

	Engineering Vneuledge, Apply kneuledge of methematics, network science, computing
PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

<u> </u>	8													
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1		1					2	2	3	1
CO2	3	3	3	2	1	2					3	2	3	2
CO3	3	3	2	2	1	2					2	2	3	1
CO4	2	2	3	2	2	1					2	2	3	1
CO5	3	3	2	1	3	2					3	2	3	2

Category	Code	Transducers & Measurement Systems	L-T-P	Credits	Marks					
PCR	EC2020	- Italisuucers & Measurement Systems	3-0-0	3	100					
Objectives		The objective of this course is to study the characteristics of different types of measurement systems and industrial applications of various transducers & sensors for design & construction of precise measuring instruments.								
Pre-Requisites Basic knowledge of physics, mathematics, electrical and electronics is req										
Teaching Sc	heme	Regular classroom lectures with use of ICT as and w	ires with use of ICT as and when required sessions are							

Teaching Scheme Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Dynamic Characteristics: Transfer functions of typical sensing elements, Step & frequency response of first & second-order elements, Dynamic errors, Dynamic compensation; Temperature Measurement: Thermal expansion methods - Bimetallic, Liquid in glass, Thermocouples (Laws, Characteristics, Installation), RTDs (3-wire & 4-wire type), Thermistor, IC type Temperation Sensor, Thermal Radiation Pyrometer (narrowband & broadband), Optical pyrometer.	9 Hours
Module-2	Force Measurement: Bourdon tube, bellows, diaphragm, load cell; Torque Measurement: Torsion Bar; Pressure Measurement: Manometers, Mc- Leodgauge, Thermal conductivity, and Ionization gauge; Flow Measurement: Variable Head (Orifice, Venturi, Pitot static), Variable area (Rotameter), Turbine flow meter, Electromagnetic flow meter, Ultrasonic flow meter, Doppler velocity meter.	9 Hours
Module-3	Translational & Rotational Velocity Measurement: Moving coil moving magnet pickups, Eddy current magnetic & photoelectric pulse counting; Seismic Measurement: Seismic displacement, velocity & acceleration pickups. Miscellaneous Sensors: Optical sensors, Principle, intensity and phase- modulated sensors, FBG sensor.	8 Hours
Module-4	Acceleration Measurement: Piezoelectric transducers - Basic principle, Equivalent circuit, Frequency response, Charge amplifier; Accelerometers: Basic principle & frequency response, MEMS Accelerometer; Miscellaneous Measurements: Level measurements using floats; pH and Liquid Conductivity Measurement: Basic principles, Viscosity Measurement, Chemical Sensors: ISFET, Electro-chemical.	8 Hours
Module-5	Signal Conditioning Elements: Deflection bridges - design of resistive & reactive bridges, push-pull configuration for improvement of linearity & sensitivity; Application of Operational Amplifiers: Instrumentation amplifier, Isolation amplifier, Analog filters, Charge amplifier design, AC carrier systems, Phase-sensitive demodulators and its applications.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. P. Bentley, *Principles of Measurement Systems*, 4th Ed., Pearson Education, 2005.
- T2. A. K. Ghosh, Introduction to Measurement and Instrumentation, 3rd Ed., PHI Learning, 2009.

Reference Books:

- R1. D. Patranabis, *Sensors and Transducers*, 2nd *Ed.*, PHI Learning, 2013.
- R2. D. V. S. Murthy, *Transducers and Instrumentation*, 2nd Ed., PHI Learning, 2008.
- R3. E. O. Doeblin, *Measurement Systems Applications and Design*, 6th Ed., McGraw Hill, 2007.
- R4. C. Rangan, G. Sarma, and V. S. V. Mani, *Instrumentation : Devices and Systems*, 2nd Ed., McGraw Hill, 2017.
- R5. B. G. Liptak, *Instrument Engineers' Hand Book (Process Measurement & Analysis)*, 4th Ed., CRC Press, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105088/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/105/108105062/: by Prof. Mukhopadhyay and Sen, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108/105/108105064/: by Prof. A. Barua, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108/108/108108147/: By Prof. H. J. Pandya, IISc Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain various measuring instruments and use temperature sensors in industrial applications.
CO2	Articulate the principles and uses of different force, torque, pressure sensors, and flow meters.
CO3	Utilize the concepts of velocity measurement and specialized optical sensors.
CO4	Determine special measuring principles of different physical parameters using various sensors.
CO5	Analyze the design of signal conditioning circuits and evaluate their performance.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

<u> </u>	0					,) - · · C	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2					2	2	1	1
CO2	3	3	3	2	2	2					2	3	2	3
CO3	3	3	3	3	2	2					3	3	1	2
CO4	2	2	2	2	2	2					2	2	3	2
CO5	3	3	3	2	2	2					2	2	2	3

Category	Code		Digital Electronic Circuits	L-T-P	Credits	Marks				
PCR	EC200	7	Digital Electronic Circuits	3-1-0	4	100				
Objectives The objective of this course is to understand the conc with digital systems and their design & implementat					-					
Pre-Requisi	tes	Kn	owledge of basic eectronics and fundamentals of nu	umber sys	stems is re	quired.				
Teaching Scheme			Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.							

Attendance	Attendance Teacher's Assessment		End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Review of Boolean Algebra and Logic gates; Codes: Binary codes and their application: BCD Code, Excess-3 Code, 2-4-2-1 Code, 8-4-(-2)-(-1) code and Gray code, Code converters; Combinational Logic Design: Boolean Algebra and Identities, Algebraic Reduction using Boolean algebra; Standard Representation for Logic Functions: Sum-of-Products (SOP) and Product-of-Sums (POS) forms, Canonical SOP and POS forms; K-map representation and simplification of logic functions using K-map, Minimization of 2, 3, 4 variable logical functions; Don't care conditions.	11 Hours
Module-2	Combinational Logic Components: Adders, Subtractors, Carry-Look-Ahead Adder, Binary Multiplier, Equality Detector and Comparator, BCD to 7- Segment Display, Multiplexer, De-Multiplexer, Decoders, Encoder (Priority Encoder), Design of Combinational Circuits using Multiplexer and Decoder.	11 Hours
Module-3	Sequential Logic Design: Latches & Flip flops: S-R, D, JK & T Flip Flops. Master-Slave JK FF, Flip Flop Conversion; Finite State Machines: Mealy and Moore models: FSM Design using Melay and Moore based model, Sequence detector; Synchronous Counters: Up counter, Down Counter, Up-Down Counter, Mod-N Counters & Random Sequence Counter.	12 Hours
Module-4	Asynchronous Counter: Up & Down using positive and negative edge trigger Flip Flop, Up-Down Counter, Mod-N Asynchronous counter; Shift Registers: SISO, SIPO, PIPO & PISO, Bi-directional shift register, Universal Shift Register, Ring Counter, Johnson Counter; Data Converters: ADCs and DACs; Basic Operational Characteristics and Parameters: Noise margin, Propagation delay, Fan-in, Fan-out; Semiconductor Memories: Basics of ROM, SRAM & DRAM.	11 Hours
Module-5	Verilog HDL: Introduction to Verilog HDL, Verilog design codes using different modeling styles: Data flow, Behavioral, Gate level and Structural Modeling, Data types, Synthesis and Simulation, Verilog Testbench code for design simulation, Port mapping by order, Port mapping by name; Verilog Design Codes for Combinational Circuit: Basic Logic gates - Adder, Subtractor, Mux, De-Mux, Decoder, Encoder; Verilog Design Codes for Sequential Circuit: Latches, Flip Flops & Counters.	11 Hours
	Total	56 Hours

Text Books:

T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL*, 5th *Ed.*, Pearson Education, 2013.

- T2. D. P. Leach, A. P. Malvino, and G. Saha, *Digital Principles and Applications*, 8th *Ed.*, McGraw Hill Education, 2014.
- T3. S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, 2nd Ed., Prentice Hall, 2003.

Reference Books:

- R1. D. V. Hall, *Digital Circuits and Systems*, International Student Edition, McGraw-Hill Education, 1989.
- R2. R. P. Jain, *Modern Digital Electronics*, 4th *Ed.*, McGraw-Hill Education, 2009.
- R3. A. A. Kumar, *Fundamentals of Digital Circuits*, 3rd *Ed.*, PHI Learning, 2014.
- R4. W. H. Gothmann, *Digital Electronics An Introduction to Theory and Practice*, 2nd *Ed.*, PHI Learning, 1982.

Online Resources:

- 1. https://nptel.ac.in/courses/117106086: by Prof. S. Srinivasan, IIT Madras
- 2. https://nptel.ac.in/courses/117103064: by Prof. Mahanta and Prof. Palanthinkal, IIT Guwahati
- 3. https://nptel.ac.in/courses/108105113: by Prof. S. Chattopadhyay, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108105132: by Prof. G. Saha, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design basic and universal boolean functions using logic gates.
CO2	Design and analyze combinational logic circuits.
CO3	Design and analyze sequential logic circuits and explain finite state machine.
CO4	Design, analyze and implement memory array using sequential network for digital logic and investigate performance of CMOS based logic circuits in modern VLSI technology.
CO5	Simulate and synthesize various digital circuits using HDL in industry standard tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

11														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1						3	1	
CO2	2	3	2	3	3	1						3	1	
CO3	2	3	2	3	3	1						3	1	
CO4	2	3	2	3	2	1					2	3	1	
CO5	2	3	2	3	2	1					2	3	1	

Category	Code	Solid State Devices	L-T-P	Credits	Marks				
PEL	EC2010	Solid State Devices	3-0-0	3	100				
ObjectivesThe objective of this course is to study the underlying physics of semic devices and designing different semiconductor devices for applications i and various other domains.									
Pre-Requisites Knowledge of solid state physics including quantum physics of electrons i atom and group of atoms is required.									
Teaching So	cheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.							

Attendance	Attendance Teacher's Assessment		End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Review of quantum mechanics, Electrons in periodic lattices, E-K diagrams, Energy bands in solids; Electrons and holes in semiconductors: Silicon crystal structure, Donors and acceptors in the band model, Effective mass, Density of states(D(E)), Thermal equilibrium, Fermi-Dirac distribution function($f(E)$) for electrons and holes, Fermi energy, Derivation of equilibrium concentration of electrons (n) and holes (p) from D(E) and f(E), Fermi level and carrier concentrations, np product and intrinsic carrier concentration.	10 Hours
Module-2	Electrons, holes and their transport phenomena in semiconductors: Carrier concentrations at extremely high and low temperatures - complete ionization, partial ionization and freeze-out, Energy-band diagram and Fermi-level, Variation of Ef with doping concentration and temperature; Carrier drift: Electron and hole mobilities, Drift current and conductivity and resistivity; Carrier diffusion: diffusion current, Total current density, Thermal generation, Electron-hole recombination.	9 Hours
Module-3	PN Junction & Schottky diodes: P-N junction characteristics; Building blocks of the pn junction theory, Energy band diagram and depletion layer of a pn junction, Built-in potential, Carrier injection under forward bias- Quasi-equilibrium boundary condition; current continuity equation, I-V characteristics, Reverse biased P-N junction: Avalanche breakdown, Zener diode, Schottky diode: I-V characteristics, Comparison between Schottky barrier diode and pn-junction diode.	8 Hours
Module-4	MOS Capacitor and MOSFET: The MOS structure, Energy band diagrams, Surface accumulation, Surface depletion, Flat-band condition and flat-band voltage, Threshold condition and threshold voltage, C-V characteristics of ideal MOS capacitor, Basic structure of MOSFET, MOSFET Vt, Qinv and I-V Characteristics.	8 Hours
Module-5	IC Fabrication Process: Oxidation, Diffusion, Ion implantation, Photolithography, Etching, Chemical vapor deposition, Sputtering and twin tube CMOS process.	7 Hours
	Total	42 Hours

P.T.O

Text Books:

- T1. D. A. Neamen, Semiconductor Physics and Devices, 4th Ed., McGraw-Hill, 2012.
- T2. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 7th Ed., Pearson, 2014.

Reference Books:

- R1. S. M. Sze and K. N. Kwok, *Physics of Semiconductor Devices*, 3rd Ed., John Wiley & Sons, 2006.
- R2. C. T.Sah, Fundamentals of Solid State Electronics, 1st Ed., World Scientific Publishing Co., 1991.
- R3. D. A. Neamen and D. Biswas, *Semiconductor Physics and Devices*, 4th Ed., Tata McGraw-Hill Education, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/115102103/: by Prof. M. R. Shenoy, IIT Delhi
- 2. https://nptel.ac.in/courses/113104012/: by Prof. D. Gupta, IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze charge carrier statistics and calculate various parameters of semiconductor devices.
CO2	Investigate carrier transport phenomena to calculate the conductivity of semiconductor devices.
CO3	Apply the concepts to investigate the electronic properties of diodes under different conditions.
CO4	Investigate the V I characteristics of MOS capacitor and MOSFET.
CO5	Describe and explain the basic fabrication steps in CMOS technology.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	0				-	,		, C	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2							1	2	1	1
CO2	3	3	2	2							2	2	2	2
CO3	3	3	3	1							2	2	1	2
CO4	3	1	2	2							2	3	1	2
CO5	3	2	3	3							1	3	1	1

Category	Code	Embedded C Programming	L-T-P	Credits	Marks			
PEL	EC2011		3-0-0	3	100			
				•				
Objectives		The objective of this course is to learn the in-depth concepts of embedded C						
programming techniques, GPIO, peripheral operations, and serial communicat								
standards by leveraging industry standard MCUs.								

Pre-Requisites	Knowledge of computer programming and basic electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on design & programming activities.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours				
Module-1	C Programming : Names, Types, and Type declarations, Storage classes, Linkage and Scope, Character constants, Arrays, Other types, Operators and Expressions, Increment and Decrement operators, Precedence and Associativity, Program Flow and Control, Functions, Recursion, Demonstration and practice.	8 Hours				
Module-2	Advanced Topics in C : Pointers, Multidimensional arrays, Structures, Input and Output, Memory Management, Miscellaneous functions, Demonstration and practice.	9 Hours				
Module-3	Introduction to STM MCU : Principal MCU components, Bit Serial Ports, S/W for MCU programming, STM project development, Memory- Mapped peripherals, Core memory addresses, Peripheral memory addresses; HAL_GPIO module – GPIO pin hardware, LED Test demonstration, Enabling multiple outputs, Push-Button test; Clock speed – Setting the PIN clock speed, Demonstration and practice.					
Module-4	Interrupts, Timer and UART : NVIC specifications; Interrupt Process – External Interrupts; STM timer peripherals, Timer configurations, LED test programs; UART & USARTs – Transmit and Receive programming, Demonstration and practice.	8 Hours				
Module-5	ADC and PWM : ADC Functions – ADC module with HAL, Conversion modes, Channels, Groups, and Ranks, Demonstrations; General purpose timer PWM signal generation, Timer H/W architecture, PWM signals with HAL; Introduction to I2C, SPI, Demonstration and practice.	8 Hours				
	Total	42 Hours				

Text Books:

- T1. P.S. Deshpande and O. G. Kakde, C and Data Structures, 1st Ed., Dreamtech Press, 2003.
- T2. E. Balagurusamy, Programming in ANSI C, 7th Ed., McGraw-Hill Education, 2017.
- T3. C. Noviello, *Mastering STM32*, 2nd Ed., Leanpub, 2022.
- T4. M. A. Mazidi, S. Chen, and E. Ghaemi, STM32 Arm Programming for Embedded Systems (Using C Language with STM32 Nucleo), 1st Ed., Microdigitaled, 2018.

Reference Books:

- R1. K. R. Venugopal and S. R. Prasad, *Mastering C*, 3rd *Ed.*, McGraw-Hill Education, 2017.
 R2. T. V. Sickle, *Programming Microcontrollers in C*, 2nd *Ed.*, LLH Publishing, 2001.

Online Resources:

- 1. https://nptel.ac.in/courses/106104128: By Prof. S. Nandakumar, IIT Kanpur
- 2. https://nptel.ac.in/courses/106105171: By Prof. A. Basu, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106105193: By Prof. I. Sengupta and Prof. K. Datta, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108105102: By Prof. S. Chattopadhyay, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the concepts of C programming required to program any MCU.
CO2	Develop advanced C programming skills for embedded system applications.
CO3	Program an Industry standard MCU using embedded C programming.
CO4	Describe interrupts, timers, and UART operations for real-time applications.
CO5	Analyze the ADC and PWM operations using embedded C programming techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	/				`	,	,	0	,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	1	1	1						1	2	2	2
CO2	2	2	2	1	2						1	2	2	2
CO3	3	3	3	3	2						2	3	3	3
CO4	3	3	3	3	2						2	3	3	3
CO5	3	3	3	3	1						2	3	3	3

Category	Code	– Soft Computing Techniques	L-T-P	Credits	Marks				
PEL	EE2007	sont computing reeninques	3-0-0	3	100				
Objectives		The objective of this course is to introduce the conce echniques like fuzzy logic, neural networks, Genet ptimization techniques/evolutionary computation ifferent fields of engineering.	c algorith	m etc., alo	ng with				
Pre-Requisi	ites	Knowledge of engineering mathematics and the basics of programming is required.							
Teaching So	cheme	legular classroom lectures with use of ICT as and lanned to be interactive with focus on problem solv	-		ions are				

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total	
10	20	20	50	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basic Tools of Soft Computing : Evolution of Computing - Soft Computing constituents, Difference between soft computing and hard computing, Characteristics of Soft computing and its applications, Fuzzy logic, Basics of fuzzy logic theory, Crisp and fuzzy sets, Operations on Fuzzy Sets, Membership Functions, Fuzzy relations.	8 Hours
Module-2	Fuzzy Logic Systems : Fuzzy rules, Propositions, Implications and inferences, Zadeh's compositional rule of inference, Methods of Defuzzification; Fuzzy Logic Controller: Fuzzy Inference System, Mamdani, Takagi and Sugeno architectures, Examples and applications of fuzzy logic controllers.	10 Hours
Module-3	Artificial Neural Networks : Biological background of Neural Networks and its architecture, Single layer feed forward network, Multi-layer feed forward network, Recurrent networks, Early neural network architectures - Rosenblatt's Perceptron, ADALINE network, MADALINE network, Examples and applications of neural networks.	8 Hours
Module-4	Training of ANN : Back propagation algorithm, Effect of tuning parameters of the back propagation algorithm, Radial Basis Function networks & Least Square training algorithm, Kohenen self–organizing map and learning vector quantization networks, Recurrent neural networks, Simulated annealing neural networks, Adaptive Neuro-fuzzy inference systems (ANFIS).	10 Hours
Module-5	Evolutionary Computing : Basics of Genetic Algorithm and its architectures, GA operators - Encoding, Crossover, Selection, Mutation; Introduction to other optimization techniques and hybrid evolutionary algorithms.	6 Hours
	Total	42 Hours

Text Books:

- T1. J. S. R. Jang, C. T. Sun, and E. Mizutani, *Neuro-Fuzzy & Soft Computing A Computational Approach* to Learning and Machine Intelligence, 1st Ed., PHI Learning, 2015.
- T2. S. Rajasekaran and G. A. V. Pai, *Neural Networks, Fuzzy Systems and Evolutionary Algorithms : Synthesis and Applications*, 2nd *Revised Ed.*, PHI Learning, 2017.

Reference Books:

R1. F. O. Karry and C. De Silva, *Soft Computing and Intelligent Systems Design - Theory, Tools and Applications*, 1st *Ed.*, Pearson Education, 2009.

- R2. S. Haykin, *Neural Networks : A Comprehensive Foundation*, 2nd *Ed.*, Pearson Education, 1997.
 R3. T. J. Ross, *Fuzzy Logic with Engineering Applications*, 3rd *Ed.*, Wiley, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/127105006: by Prof. D. K. Pratihar, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106105173: Prof. D. Samanta, IIT Kharagpur
- 3. https://nptel.ac.in/courses/117105084: Prof. S. Sengupta, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the fundamentals of fuzzy logic and apply its concepts to solve various problems.
CO2	Apply fuzzy principles & inference and implement them for designing fuzzy systems.
CO3	Apply different types of neural networks in electrical & electronics engineering problems.
CO4	Analyze effectiveness of neural networks for solving complex engineering problems.
CO5	Explore evolutionary computation techniques & its application to genetic algorithm.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

11														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	1					1	1	1	
CO2	3	3	2	2	2	2					2	2	2	2
CO3	3	3	1	1	3	2					2	2	2	2
CO4	3	3	1	1	3	2					1	2	2	2
CO5	3	3	1	1	2	1					1	1	2	2

Category	Code	Advanced Electronic Circuits	L-T-P	Credits	Marks		
HNS	EC2018	Advanced Electronic Circuits	3-0-0	3	100		
Objectives		The objective of this course is to study advanced electronic circuits like filters,					
	multivibrators, timers, trigger, sweep generators etc.,	and their	applicatio	ons.			
Pre-Requisi	tes	Fundamental knowledge of basic electronics and analog electronics is required.					

Pre-Requisites	Fundamental knowledge of basic electronics and analog electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are

planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

	Detailed Synabus	
Module-#	Topics	Hours
Module-1	Active Filters: Active Filters and their frequency response; First order and Second Order Low-pass/High Pass Butterworth filter: Filter Design, Frequency Scaling, Band-pass and Band-reject filters (wide & narrow), All- Pass filter; Oscillators: Principles, Types, Quadrature and Voltage Controlled Oscillator, Saw tooth wave generator; Comparators: Basic comparator, zero- crossing detector, Schmitt trigger, Comparator characteristics, Limitations of Op-Amp as comparators, Voltage limiters.	9 Hours
Module-2	Bistable (Fixed Bias and Self Bias) Multivibrator, Loading, Commutating capacitors, Triggering the binary (symmetrical and unsymmetrical through unilateral device), Schmitt Trigger Circuit (Emitter-coupled Bi-stable MV), Monostable Multivibrator (collector coupled and emitter coupled), Gate Width and Waveforms, Triggering of the Monostable MV, Astable Multivibrator (collector coupled and emitter coupled).	9 Hours
Module-3	Wide-band Amplifiers: The Hybrid- π , High-frequency, Small signal Common- emitter Model, RC-Coupled Amplifier, Frequency Response of a Transistor Stage, Short-Circuit Current Gain, Current Gain with Resistive Load, Transistor Amplifier Response taking Source Impedance into Account, Transient Response of a Transistor Stage; Negative Resistance Switching Devices: Voltage Controllable Negative resistance devices, Tunnel Diode operation and characteristics, Monostable, Astable, Bistable operations using tunnel diode, Voltage controlled Negative Resistance Switching circuits.	8 Hours
Module-4	Voltage and Current Time Base Generators: Time-Base Generators, General features of a Time-base signal, Methods of generating a voltage time- base waveform, Exponential sweep circuit, Miller and bootstrap timebase generators - Basic principles, Transistor miller time-base generator, Transistor bootstrap time-base generator, Current time-base generators, A simple current sweep, Linearity correction through adjustment of driving waveform, Transistor current time-base generator.	8 Hours
Module-5	Specialized IC Applications:IC 555 Timer as Monostable and Astable Multivibrator, applications; Phase Locked Loop: Operating principle of PLL, Phase detectors, Exclusive-OR phase detector, Monolithic phase detector, Instrumentation Amplifier and its applications.	8 Hours
	Total	42 Hours

Text Books:

T1. J. Millman and H. Toub, *Pulse, Digital and Switching Waveforms*, 3rd *Ed.*, McGraw Hill, 2017.

T2. R. A. Gayakwad, *Op-Amps and Linear Integrated Circuits*, 4th *Ed.*, Pearson Education, 2015.

Reference Books:

R1. A. A. Kumar, *Pulse and Digital Circuits*, 2nd *Ed.*, PHI Learning, 2008.

R2. K. V. Rao, K. R. Sudha, and G. M. Rao, Pulse and Digital Circuits, 1st Ed., Pearson Education, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/108102095: by Prof. S.C. Dutta Roy, IIT Delhi
- 2. https://nptel.ac.in/courses/117107094: by Dr. P. Agarwal, IIT Roorkee
- 3. https://nptel.ac.in/courses/117108038: by Prof. M. K. Gunasekaran, IISc Bangalore
- 4. https://nptel.ac.in/courses/117105138: by Prof. A. Bhattacharya, IIT Kharagpur
- 5. https://www.elprocus.com/types-active-filters-and-applications/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain active filters, oscillators, comparators and signal generators with their applications.
CO2	Distinguish between different types of multivibrators (astable, monostable and bistable).
CO3	Design memory circuits, multivibrators, and microwave circuits using wide band amplifiers and negative resistance switching devices.
CO4	Design different types of voltage and current time-base generators for various applications.
CO5	Use instrumentation amplifier in electronic communication circuits and realize specialized chip design for monostable and astable applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

<u> </u>	·····································													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	1	1						1	2	1	1
CO2	3	2	3	1	2						1	2	1	1
CO3	2	2	3	1	2						1	2		
CO4	3	2	2	1	2						1	2	1	
CO5	2	1	1	2	1						1	1	1	

Category	Code	Power Electronic Devices	L-T-P	Credits	Marks		
MNR	EC2024	Power Electronic Devices	3-0-0	3	100		
Objectives		The objective of this course is to study different types of power semiconductor devices and their switching characteristic, including the operation and characteristics of various power electronic converters.					
Pre-Requisites		Knowledge of physics, calculus, ordinary differential equations and basic electronics is required.					
Teaching Scheme		Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.					

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Power Semiconductor Devices: Switching and V-I characteristic of devices: Transistor Family: BJT, IGBT, and MOSFET, Thyristor family: SCR, TRIAC; Series and parallel grouping of SCR, SCR triggering methods, SCR: Over voltage, Over Current, dv/dt, di/dt, Gate Protection, Snubber circuit.	10 Hours
Module-2	AC to DC Converter: Phase Controlled Converter: Principle of phase controlled converter operation, single phase full converter with R, R-L and R-L-E load, 3 phase full converter with R, R-L and R-L-E load, single phase semi converter with R, R-L and R-L-E load.	10 Hours
Module-3	AC to AC Converter: Single phase bi-directional controllers with R and R-L load, Single phase cycloconverters – Step up and Step down, Applications.	6 Hours
Module-4	DC to DC Converter: First quadrant, second quadrant, first and second quadrant, third and fourth quadrant converter; Switching Mode Regulators: Buck regulators, Boost regulators, Buck-Boost regulators; Isolated Converters: Flyback & Forward Converter, Applications.	8 Hours
Module-5	DC to AC Converter: Voltage Source Inverter (VSI) - Single phase Bridge Inverters, 3-Phase Inverters - 180° mode conduction, 120° mode conduction, Voltage control of 3-Phase Inverters by Sinusoidal PWM (PWM VSI), Current Source Inverter (CSI); Power Electronics Applications: UPS, SMPS, Induction Heating, AC/DC drives speed control.	8 Hours
	Total	42 Hours

Text Books:

- T1. M. H. Rashid, *Power Electronics: Devices, Circuits, and Applications*, 4th *Ed.*, Pearson Education, 2017.
- T2. P. S. Bhimbra, *Power Electronics*, 6th *Ed.*, Khanna Publishers, 2014.

Reference Books:

- R1. M. D. Singh and K. B. Khanchandani, *Power Electronics*, 2nd *Ed.*, McGraw-Hill, 2017.
- R2. P. C. Sen, *Power Electronics*, 1st *Ed.*, McGraw Hill India, 2001.

P.T.O

- 1. https://nptel.ac.in/courses/108101038/: by Prof. Fernandes and Chatterjee, IIT Bombay.
- 2. https://nptel.ac.in/courses/108/102/108102145/: by Prof. G. Bhuvaneshwari, IIT Delhi.
- 3. https://ocw.mit.edu/courses/6-334-power-electronics-spring-2007/pages/lecture-notes/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Articulate the characteristics of power semiconductor devices and fundamentals of thyristors.
CO2	Analyze the operation of AC-DC converters and its application in the practical field.
CO3	Interpret the operation of AC-AC converters and analyze their performance.
CO4	Design and analyze the operation of DC-DC converters and their use in DC drives.
CO5	Investigate the operation of DC-AC converters, SPWM modulation technique and applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

<u>mappi</u>														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	2	2	1					1	3	2	
CO2	3	2	2	3	3	1					1	3	3	2
CO3	3	1	2	2	3	2					1	3	2	2
CO4	3	2	2	2	3	2					1	3	2	1
CO5	3	3	3	3	2	2					2	2	2	1

Category	Code	– Operating Systems	L-T-P	Credits	Marks					
MNR CS20		- Operating Systems	3-0-0	3	100					
Objectives		e objective of this course is to understand the fundamental concepts, techniques								
& algorithms, and internal working principles of a computer ope										

	become a system designer or an efficient application developer.
Pre-Requisites	Knowledge of computer programming and data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Overview, Evolution of operating system, Types of systems - Batch Processing, Multiprogramming, Time Sharing systems; Personal Computers, Parallel, Distributed, and Real-time Systems; Operating System Services, System components, System calls.	7 Hours
Module-2	Process Management : Process concepts, states, PCB, Process scheduling queues, queuing diagram, Types of schedulers, Operations on process; Interprocess communication - shared memory, message passing, Concept of buffering, Thread overview, Benefits of multi-threaded program, User and kernel threads, Multi-threading models, Issues with multi-threading - thread cancellation, thread pools, thread specific data; CPU Scheduling: Dispatcher, Scheduling - Criteria, Algorithms - FCFS, SJF, SRTF, RR, Priority, Multi-level Queue (MLQ), MLQ with Feedback.	9 Hours
Module-3	Process Synchronization : Background, Bounded-buffer – Shared-memory solution to Producer-consumer problem, Race condition, Critical section problem - Peterson's solution, Synchronization hardware: TestAndSet(), swap() instructions, Semaphores - Counting and binary semaphore, spinlocks, Classical problems of synchronization - Bounded-buffer problem, Readers-writers problem, Dining-philosophers problem, Monitors; Deadlock: System model, characterization, Resource-allocation graph, Methods for handling deadlocks, Deadlock prevention & avoidance, Banker's algorithm, Deadlock detection & recovery.	9 Hours
Module-4	Memory Management : Background, Logical & physical address space, Dynamic loading & dynamic linking, Swapping, Contiguous memory allocation, Dynamic storage allocation problem, Overlays, Paging, Segmentation; Virtual Memory: Background, Demand paging, Page fault, Basic page replacement policy, Page replacement algorithms - FIFO, OPT, LRU, LRU Approximation, LFU, MFU, Thrashing, Working-set model.	9 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Secondary Storage Structure : Overview of mass storage structure, Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, LOOK, CLOOK, Swap-space management, RAID structure; File System: Concept, Access methods, Directory structure, Directory implementation, Allocation methods, Free space management, Access control list; I/O System: Polling, Interrupts, DMA; Case Studies: The LINUX System visual representations of your data, Avoiding common pitfalls.	8 Hours
	Total	42 Hours

Text Books:

T1. A. Silberschatz, P. B. Galvin, and G. Gagne, *Operating System Concepts*, 8th Ed., Wiley, 2009.

T2. M. Milenković, Operating Systems: Concepts and Design, 2nd Ed., Tata McGraw-Hill, 2001.

Reference Books:

- R1. A. S. Tanenbaum, Modern Operating Systems, 3rd Ed., PHI, 2009.
- R2. P. B. Prasad, *Operating Systems and System Programming*, 2nd Ed., Scitech Publications, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/106102132/: by Prof. S. Bansal, IIT Delhi
- 2. https://nptel.ac.in/courses/106108101/: by Prof. P. C. P. Bhatt, IISc Bangalore
- 3. https://nptel.ac.in/courses/106106144/: by Prof. C. Rebeiro, IIT Madras
- 4. https://nptel.ac.in/courses/106105214/: by Prof. S. Chattopadhyay, IIT Kharagpur
- 5. https://www.cse.iitb.ac.in/~mythili/os/: Notes & slides by Prof. M. Vutukuru, IIT Bombay
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explore principles behind various types of operating systems, system components, system calls, protection mechanisms and services.
CO2	Explain different schedulers, scheduling policies, and design new scheduling algorithms for real life problems.
CO3	Describe the significance of process synchronization through classical synchronization problems and deadlock handling mechanisms.
CO4	Describe the working principle of main memory, cache memory and virtual memory organization and solve memory related problems.
CO5	Articulate secondary storage management, and analyze the performance of various disk scheduling algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing,
	engineering fundamentals and an engineering specialization to develop to the solution of
	complex engineering problems (WK1 to WK4).
	Problem Analysis: Identify, formulate, review research literature and analyze complex
PO2	engineering problems reaching substantiated conclusions with consideration for sustainable
	development (WK1 to WK4).

Cont'd...

PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	-			1					, <u>,</u>			1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1		2					2	2	2	
CO2	3	3	3	1		2					2	3	3	1
CO3	3	3	3	1	1	2					2	3	3	1
CO4	3	3	3	1	1	2					1	3	3	1
CO5	2	2	2	1	1	2					1	3	3	1

Category	Code	Data Mining & Data Warehousing	L-T-P	Credits	Marks
MNR	CS3013	Data Willing & Data Warehousing	3-0-0	3	100
				•	

Objectives	The objective of this course is to analyze large, complex, information-rich data in various domains, study the concepts and applications of data warehouses and discover useful patterns by applying data mining techniques.					
Pre-Requisites	Knowledge of database management systems, probability, statistics and programming language are required.					
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.					

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Data Warehousing: Basic concepts & applications of Data Warehouse, Difference between operational databases and data warehouses, OLTP and OLAP systems, Three-tier architecture of Data Warehouse, ETL Process, Data Marts, Data staging area, Metadata.	8 Hours
Module-2	Data Mining Concepts: Basic concepts & applications of Data Mining, KDD process, Data Objects and attributes types, Basic Statistical Descriptions of Data including central tendency, variation, spread, standard deviation and Boxplot analysis. Data similarity & dissimilarity. Data Pre-processing: Data cleaning, binning, integration, reduction & transformation, Redundancy & Correlation Analysis: Pearson's coefficient, Chi-Square & Covariance.	10 Hours
Module-3	Mining Frequent Patterns, Associations and Correlations: Introduction, Market Basket Analysis, Association rule mining, Support, Confidence, Lift, Frequent Item-sets, Closed frequent Item-sets & Maximal frequent Item-set & generation, Apriori algorithm, FP-Growth algorithm, Evaluation of association patterns, Association analysis & correlation analysis.	8 Hours
Module-4	Classification: Basic concepts & applications of Classification, Decision Tree Induction, Information Gain, Bayes Theorem, Naive Bayesian Classifier, K Nearest Neighbor; Neural Network: Perception, Multilayer Feed-Forward Neural Network, Multilayer Perceptron Model, Handling the class imbalance problem.	8 Hours
Module-5	Clustering: Basic concepts & applications of Clustering, Partition-based Clustering: K-Means algorithm, K-Medoid algorithm, Hierarchical clustering: Agglomerative & Divisive methods, Density-based Clustering: DBSCAN, Graph-based clustering.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. Han, M. Kamber, and J. Pei, *Data Mining: Concepts and Techniques*, 3rd *Ed.*, Morgan Kaufmann, 2011.
- T2. R. Thareja, *Data Warehousing*, 1st *Ed.*, Oxford University Press, 2009.

Reference Books:

- R1. A. Berson and S. J. Smith, *Data Warehousing, Data Mining & OLAP*, 1st *Ed.*, McGraw Hill Education, 2017.
- R2. P. N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, *Introduction to Data Mining*, 2nd *Ed.*, Pearson Education, 2019.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105174/: by Prof. P. Mitra, IIT Kharagpur
- 2. http://infolab.stanford.edu/~ullman/mining/2003.html: notes by Stanford University
- 3. https://www.cse.iitb.ac.in/~krithi/courses/631/anand.ppt: by Prof. A. Deshpande, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Elucidate the concepts and applications of Data Warehouse and its components.
CO2	Explain the fundamental concepts of Data Mining and its applications.
CO3	Construct frequent patterns, association rules and determine correlations using data mining techniques.
CO4	Compare different classification algorithms and apply the same to the real life problems.
CO5	Apply different clustering algorithms for solving real life problems in various domains.

Program Outcomes Relevant to the Course:

0	
PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

1	0				· ·	,		ý Ľ	, ,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	3							2	3	1	1
CO2	2	2	2	2							2	3	2	2
CO3	3	2	2	2							3	3	2	2
CO4	3	3	2	3							3	3	2	2
CO5	2	3	2	3							3	3	2	2

Category	Code		Marketing Management		Credits	Marks
MNR	MG200	2	Marketing Management	3-0-0	3	100
Objectives		ma be	e objective of this course is to obtain a compre- arketing principles and strategies, analyzing marke havior, and developing effective approaches to pro omotion, distribution, and digital marketing.	et enviror	nments, co	onsumer
Pre-Requisites		Ba	sic knowledge on fundamentals of management and	d econon	nics is desi	red.
m 1 · 0	.1	D .		r 1	· · 1	1.

Teaching SchemeRegular classroom lectures with use of ICT as needed. Each session is planned to
be interactive with focus on real-world case studies and examples.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Marketing: Meaning, scope and importance, Evolution of marketing, Understanding marketing in new perspective, Marketing environment, Information system and marketing research - Importance, scope and steps of marketing research process, Understanding consumer behaviour, Analysing business markets, Customer relationship management.	9 Hours
Module-2	Understanding consumer behaviour, Analysing business markets, Customer relationship management; Managing Mix: Product - Concept and classification, New product development, Product-mix and product line strategies, Product life cycle strategies, Branding, packaging, labelling and warranty.	8 Hours
Module-3	Promotion Programme: Advertising, Sales promotion, Public relations, Publicity and personal selling; Pricing: Price determination, Pricing policies and strategies.	8 Hours
Module-4	Channel Decision: Nature of marketing channels, Types of channel flows, Channel functions, Functions of distribution channel, Structure and design of marketing channels, Channel co-operation, Conflict and competition, Retailers and wholesalers.	9 Hours
Module-5	Distribution logistics and Supply chain management, Marketing channels, Retailing, Wholesaling and physical distribution, Marketing and information economy, Direct and online marketing.	8 Hours
	Total	42 Hours

Text Books:

- T1. V. S. Ramaswamy and S. Namakumari, *Marketing Management*, 6th *Ed.*, Sage Publications, 2018.
- T2. K. Karunakaran, *Marketing Management*, 1st Ed., Himalaya Publishing House, 2010.
- T3. T. N. Chabra and S. K. Grover, *Marketing Management*, 1st Ed., Dhanpat Rai & Co., 2016.

Reference Books:

- R1. P. Kotler and K. L. Keller, *Marketing Management*, 15th *Ed.*, Pearson Education, 2016.
- R2. P. Baines, C. Fill, S. Rosengren, and P. Antonetti, *Marketing*, 5th Ed., Oxford University Press, 2019.
- R3. C. W. Lamb, J. F. Hair, D. Sharma, C. McDaniel, *Marketing*, 1st Ed., Cengage Learning, 2013.
- R4. J. P Mahajan and A. Mahajan, *Marketing Management*, 1st Ed., Vikas Publishing House, 2014.

- 1. https://nptel.ac.in/courses/110104068: by Prof. J. Chatterjee and Dr. S. S. Mishra, IIT Kanpur
- 2. https://nptel.ac.in/courses/110104070: by Prof. J. Chatterjee and Dr. S. S. Mishra, IIT Kanpur
- 3. https://nptel.ac.in/courses/110108141: by Prof. R. Srinivasan, IISc Bangalore
- 4. https://ddceutkal.ac.in/Syllabus/MCOM/Marketing_Management.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain marketing, marketing mix and impact of marketing on business strategies.
CO2	Conduct marketing research and understand consumer behaviour, products & their life cycle.
CO3	Design effective promotional strategies for publicity and product positioning in the market.
CO4	Determine pricing policies as per market dynamics and effectively utilize marketing channels.
CO5	Implement supply chain management and leverage digital tools for direct and online marketing.

Program Outcomes Relevant to the Course:

U	
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics : Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work : Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1			2	3	2	2	1	1	2	2	1			
CO2			2	2	2	1	2	2	2	3	1			
CO3			2	2	2	2	2	1	2	3	2		1	
CO4			2	2	3	3	3	3	2	3	1		1	
CO5			2	2	3	3	3	3	3	3	2		1	1

Category	Code	Programming in Python Lab	L-T-P	Credits	Marks			
UCR	CS2010		0-0-2	1	100			
Objectives		The objective of this laboratory course is to develop problem solving skills using python programming language and prepare the students use python tools & libraries for solving advanced engineering problems.						
Pre-Requisites		Knowledge of programming and basic problem solving skills are required.						
Teaching Scheme		Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise programming assignments.						

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Write, compile, test, and debug simple Python programs.
2	Write programs using control structures (if, if-elif-else).
3	Write programs using loop control structure (while & for loops).
4	Write programs based on the concept of lists and tuples
5	Write programs based on the concept of set and dictionaries.
6	Develop the Python programs step-wise by defining functions and calling them, function with variable number of parameters.
7	Write programs for creating class, object, methods and constructor.
8	Write programs for demonstrating inheritance, and method overriding.
9	Write programs on operator overloading, method overloading, and abstract classes.
10	Write programs on file handling, exception handling, and database connectivity.
11	Write programs using regular expressions, Numpy arrays and matrices.
12	Panda module, data frame from CSV file, reshaping & data aggregation.
13	Programs for creating different types of plots using Matplotlib libraries.
14	Creating widgets using Tkinter and designing layouts with radio buttons, checkboxes, and dialogue boxes.

Text Books:

- T1. R. N. Rao, *Core Python Programming*, 2nd *Ed.*, DreamTech Press, 2019.
- T2. V. Guttag, Introduction to Computation and Programming Using Python with Application to Understanding Data, 2nd Ed., PHI Learning, 2016.
- T3. W. McKinney, *Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter*, 3rd *Ed.*, O'Reilly Media, 2022.

Reference Books:

- R1. P. Barry, *Head First Python*, 2nd Ed., O'Reilly Media, 2010.
- R2. A. Downey, *Think Python*, 2nd *Ed.*, Green Tea Press, 2015.
- R3. E. Matthes, *Python Crash Course: A Hands-On, Project-Based Introduction to Programming*, 3rd *Ed.*, No Starch Press, 2023.
- R4. J. Zelle, *Python Programming: An Introduction to Computer Science*, 3rd *Ed.*, Franklin, Beedle & Associates, 2016.

- 1. https://nptel.ac.in/courses/106106182: By Prof. S. Iyengar, IIT Ropar
- 2. https://nptel.ac.in/courses/106106145: By Prof. M. Mukund, IIT Madras
- 3. https://nptel.ac.in/courses/106106212: By Prof. R. Rengasamy, IIT Madras
- 4. https://nptel.ac.in/courses/106107220: By Prof. A. Ramesh, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop programs using various features of the Python programming language.
CO2	Develop programs using built-in as well as user-defined functions in Python.
CO3	Apply object-oriented concepts, perform file processing & exception handling.
CO4	Explore regular expressions, NumPy and Panda modules of Python for solving real-life problems.
CO5	Visualize data using matplotlib libraries and design GUI based applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication : Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2		2	3		2	1		2	2	3	1
CO2	3	3	3		2	3		2	1		3	2	3	2
CO3	3	3	3		3	3		2	2		2	2	3	1
CO4	2	3	3		3	3		3	2		2	2	3	1
CO5	3	3	3		3	3		3	2		3	2	3	2

Category	Code	Digital Electronic Circuits Lab	L-T-P	Credits	Marks			
PCR	EC2008	- Digital Electronic Circuits Lab	0-0-4	2	100			
Objectives The objective of the course is to provide hands-on exposure on logic gain implementation using Boolean algebra, designing digital circuits like coun registers and apply the knowledge to formulate digital systems using HDL.								
Pre-Requisi	ites	Knowledge of basic electronics is required.						
Teaching Scheme		Regular laboratory experiments to be conducted under supervision of the faculty with use of ICT as and when required, sessions are planned to be interactive with focus on implementation in hardware & software tools.						

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Digital Logic Gates: Investigate logic behavior of AND, OR, NAND, NOR, EX-OR, EX-NOR, Invert & Buffer gates, use of Universal (NAND & NOR) Gates.
2	Gate-level minimization: 2-level and multilevel implementation of Boolean functions.
3	Design, implement and test a given design example with (i) NAND Gates only (ii) NOR Gates only and (iii) Using a minimum number of Gates.
4	Combinational Circuits: design, assemble and test: adders & subtractors.
5	Design, assemble & test code converters: binary code to gray code, gray code to binary and 7 segment displays.
6	Study of Multiplexer, Demultiplexer. Implement a function using multiplexer.
7	Design of Binary to Octal decoder and Implementation of Boolean function using decoder.
8	Flip-Flop: assemble, test & investigate operation of SR, D, J-K & T flip-flops.
9	Shift Registers: Design and investigate the operation of all types of shift registers.
10	Counters: Design, assemble and test various ripple & synchronous counters.
11	Binary Multiplier: design and implement a circuit that multiplies two 4-bit unsigned numbers to produce a 8-bit product.
12	Design, implement & test two bit magnitude comparator.
13	Design of a special type of counters (4-bit ring counter & Johnson counter) using JK flip-flops.
	Verilog Simulation & Implementation
14	Different types of logic gates.
15	Half adder and half subtractor using different types of modeling.
16	Full adder and full subtractor using different types of modeling.
17	Multiplexer circuits using different types of modeling.
18	Decoder circuits using different types of modeling.
19	SR-FF, D-FF, JK-FF, T-FF.
20	4-bit up counter & 4-bit down counter.

- T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL, VHDL and System Verilog*, 6th *Ed.*, Pearson Education, 2018.
- T2. S. Palnitkar, *Verilog HDL: A Guide to Digital Design and Synthesis*, 2nd *Ed.*, Pretince Hall, 2003.

Reference Books:

- R1. A. M. Michelén, Digital Electronics Laboratory Manual, Pearson Education, 2000.
- R2. J. W. Stewart and C. -Y. Wang, *Digital Electronics Laboratory Experiments: Using the Xilinx XC95108 CPLD with Xilinx Foundation : Design and Simulation Software*, 2nd *Ed.*, Pearson, 2004.

Online Resources:

- 1. https://www2.mvcc.edu/users/faculty/jfiore/Resources/DigitalElectronics1LaboratoryManual.pdf
- 2. https://www.elprocus.com/top-digital-electronic-projects-for-electronics-engineering-students/
- 3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-111-introductory-digital-systems-laboratory-spring-2006/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the function of logic gates and implement of Boolean functions.
CO2	Realize universal gates and implement minimized Boolean expressions.
CO3	Design and analyze different combinational circuits.
CO4	Design various asynchronous and Synchronous Sequential Circuits.
CO5	Acquire knowledge about internal circuitry and logic behind any digital system.
CO6	Simulate various digital circuits using VHDL in industry standard tool such as Xilinx.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World : Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P-	0				(,		, - ·c	<u>,</u> ,					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1						3	1	
CO2	2	3	3	3	3	1						3	1	
CO3	2	3	3	3	3	1					1	3	1	
CO4	2	3	2	3	2	1					1	3	1	
CO5	2	3	2	3	2	1					1	3	1	
CO6	2	3	2	3	2	1					1	3	1	

Category	Code	Transducers & Measurement Systems	L-T-P	Credits	Marks
PCR	EC2021	Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to get practical exposure to transducers and measurement systems for accurately measuring temperature, weight, position/displacement, pressure, flow, level, etc.
Pre-Requisites	Basic knowledge of physics, mathematics, electrical and electronics is required. Topics taught in TMS theory class are essential to conduct the experiments.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment in the pre-lab session.

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Analyze the response of the vibration sensor.
2	Temperature sensing using semiconductor type temperature sensor.
3	Weight measurement using strain gauge Load cell.
4	Implementation of IVDT and its signal conditioning for position/displacement measurement.
5	Pressure measurement using Bourdon tube and diaphragm type sensor.
6	Temperature measurement using a thermocouple.
7	Flow measurement using turbine-type flow sensor.
8	Time duration measurement using DAQ system and LabView.
9	Speed measurement using optical and variable reluctance type transducers.
10	Design of active 2nd order low pass filter.
11	Design of a piezoelectric accelerometer with charge amplifier configuration
12	Design of Instrumentation amplifiers.
13	Design of Phase sensitive detector.
14	Analyze the characteristics of Fiber Bragg Grating (FBG) sensor.

Text Books:

T1. J. P. Bentley, *Principles of Measurement Systems*, 4th *Ed.*, Pearson Education, 2005.

T2. A. K. Ghosh, Introduction to Measurement and Instrumentation, 3rd Ed., PHI Learning, 2009.

Reference Books:

- R1. D. Patranabis, *Sensors and Transducers*, 2nd *Ed.*, PHI Learning, 2013.
- R2. D. V. S. Murthy, *Transducers and Instrumentation*, 2nd *Ed.*, PHI Learning, 2008.
- R3. E. O. Doeblin, *Measurement Systems Applications and Design*, 6th Ed., McGraw Hill, 2007.

Online Resources:

- 1. https://nptel.ac.in/courses/108105088: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108105062: by Prof. Mukhopadhyay and Sen, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108105064: by Prof. A. Barua, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108108147: By Prof. H. J. Pandya, IISc Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the characteristics of RTD and Thermistor.
CO2	Measure temperature, weight and position using different sensors.
CO3	Explain the techniques to measure flow, level and speed using various types of sensors.
CO4	Conceptualize and design different types of active filters.
CO5	Design instrumentation amplifiers and phase sensitive detectors.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis : Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

	. I	0					,		<u> </u>	, ,					
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO)1	3	3	3	2	2						2	3	3	2
CO)2	3	3	3	2	3						2	3	2	2
CO)3	3	3	3	3	3						3	2	2	2
CO)4	2	2	2	2	2						2	3	1	1
CO)5	3	3	2	2	3						2	2	2	3

Category	Code	Simulation & Design Lab	L-T-P	Credits	Marks
PCR	EC2022	Simulation & Design Lab	0-0-2	1	100
01.1		1	1 1 1		•

Objectives	The objective of this laboratory course is to provide hands-on experience in
	simulating, designing, and analyzing systems using advanced tools. Students
	will gain practical insights into signal processing, data acquisition, hardware
	interfacing, and the integration of software with physical systems.
Pre-Requisites	Knowledge of programming, analog & digital electronics, sensors, and transducers
	is required to conduct the experiments.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher.
	Demonstration will be given for each experiment in the pre-lab session.

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to MATLAB: Basic commands, plotting, and simulating simple mathematical models.
2	Design and simulation of RC, RL and RLC circuits in time and frequency domains.
3	Simulation and analysis of transient and steady-state responses of electrical systems.
4	Introduction to LabVIEW: Creating simple virtual instruments (VIs) for data acquisition and analysis.
5	Simulate the step response of a first-order system using LabVIEW.
6	Arduino Basics: Setting up the IDE, blinking LEDs, and interfacing simple input/output devices.
7	Temperature measurement using an LM35 sensor with Arduino and displaying data on the serial monitor.
8	Interfacing an ultrasonic sensor with Arduino for distance measurement.
9	Pulse Width Modulation (PWM) generation and motor speed control using Arduino.
10	Interfacing an LDR (Light Dependent Resistor) with Arduino for light intensity measurement.
11	Build a virtual oscilloscope for signal visualization using LabVIEW.
12	Measure voltage from a sensor or potentiometer and display it in LabVIEW.
13	Signal processing: Filtering and FFT analysis of sensor signals using LabVIEW.
14	Mini Project: Design and implementation of a simple system integrating Arduino, sensors, and LabVIEW.

Text Books:

- T1. G. Johnson, *LabVIEW Graphical Programming*, 4th *Ed.*, McGraw Hill, 2006.
- T2. A. K. Sawhney, *A Course in Electrical and Electronics Measurements & Instrumentation*, Dhanpat Rai & Co, 2015.
- T3. M. Schwartz, Internet of Things with Arduino Cookbook, Packt Publishing, 2016.

P.T.O

- R2. D. V. S. Murthy, *Transducers and Instrumentation*, 2nd Ed., PHI Learning, 2008.
- R3. G. W. Johnson and R. Jeninngs, *LabVIEW Graphical Programming*, 4th *Ed.*, McGraw-Hill Education, 2019.

- 1. https://nptel.ac.in/courses/108107115: by Prof. Yogesh Vijay Hote, IIT Roorkee.
- 2. https://nptel.ac.in/courses/103106118: by Prof. Dr. Niket S.Kaisare, IIT Madras.
- 3. https://nptel.ac.in/courses/108105376: by Prof. Banibrata Mukherjee, IIT Kharagpur.
- 4. https://nptel.ac.in/courses/106106210: by Prof. Janakiraman Viraraghavan, IIT Madras.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Simulate mathematical models, analyze circuits and evaluate responses of systems.
CO2	Design and create virtual instruments for data acquisition, signal processing, and visualization.
CO3	Interface various sensors for data acquisition and control using Arduino programming.
CO4	Apply signal processing techniques to interpret sensor outputs effectively.
CO5	Design, simulate, and prototype integrated systems to solve real-world problems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions : Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems : Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage : Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning : Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

· 1 1	0	8												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO	. 3	3	2	2	3						2	3	2	2
CO2	2 3	3	3	3	3						2	3	2	2
CO3	3 3	3	3	3	3						3	3	3	2
CO4	- 3	3	2	3	3						3	3	2	3
COS	5 3	3	3	3	3						3	3	2	3

Department of Electronics Engineering SiliconTech, Bhubaneswar

© 2025, All Rights Reserved. This document has been typeset using $M_E X 2_{\varepsilon}$