Silicon Institute of Technology

An Autonomous Institute

Curriculum Structure and Detailed Syllabus

Bachelor of Technology in Electrical & Electronics Engineering

Department of Electrical & Electronics Engineering Silicon Institute of Technology Silicon Hills, Patia, Bhubaneswar - 751024

Effective From Academic Year 2021-22

Version: 2.11 (Build: 12-05-2025)

Approval History

ACM#	Date	Resolutions
AC-6 09/10/2021		The curriculum structure and detailed syllabus of 1st Year as proposed by the Boards of Studies is approved by the Academic Council.
AC-8	13/08/2022	The curriculum structure and detailed syllabus of 2nd, 3rd, and 4th years as proposed by the Boards of Studies is approved by the Academic Council.
AC-Spl	26/02/2024	Addition of a new open elective subject titled "Securities, Analysis & Trading" in final year as recommended by the Board of Studies is approved by the Academic Council through circulation.

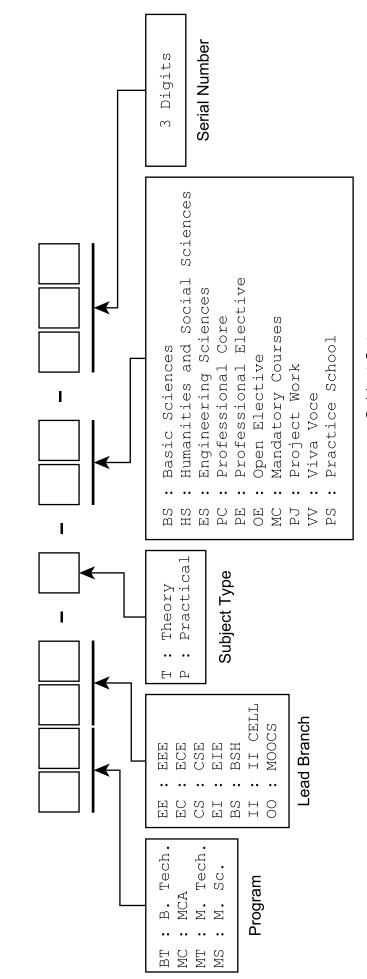
Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
- PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. **Conduct Investigations of Complex Problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long Learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

- PSO1. Understand, analyze, formulate and solve engineering problems of varying complexity in Electrical and Electronics Engineering by implementing the fundamental principles of electrical machines, power systems, power electronics, control systems and signal processing.
- PSO2. Acquire the skills in modern methodologies, tools and platforms to become a successful professional or entrepreneur, develop a passion for innovation & higher studies, and contribute as a responsible citizen with effective communication, strong moral values & professional ethics.
- PSO3. Adapt to the emerging developments in electrical sciences, apply modern practices & strategies in project development using hardware & software environments to deliver quality solutions considering green energy challenges of the future.


Program Educational Objectives (PEOs)

- PEO1. Fundamental Knowledge & Core Competence: To apply the principles of science, applied mathematics and fundamentals of electrical & electronics engineering essential for a successful professional and inculcate competent problem-solving ability.
- PEO2. *Proficiency for the Real World*: To foster creative ability and skills required to analyze, design, test, and implement emerging technologies in electronics & power systems with economic considerations, useful in the real world.
- PEO3. *Leadership & Social Responsibility*: To exhibit leadership capability with professional, ethical, interpersonal skills, social & economic commitment with a sense of responsibility towards public policies, community services, humanity and environment.
- PEO4. *Life-long Learning*: To grow professionally through continued education & training of technical and management skills, pursue higher studies, and engage in life-long learning.

Course Types & Definitions

L	Lecture
T	Tutorial
P	Laboratory / Practical / Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
PC	Professional Core
PE	Professional Elective
OE	Open Elective
MC	Mandatory Course
00	Massive Open Online Course (MOOC) - Self Study
PJ	Summer Internship / Project Work / Seminar
PS	Practice School / Industry Internship
VV	Viva Voce

Subject Code Format

Subject Category

Contents

I	1st Year B. Tech. (Common to All Branches)	1
	Induction Program	2
	Curriculum Structure	3
	Semester I	3
	Semester II	4
	Detailed Syllabus (Semesters I & II)	5
	Theory	5
	Engineering Mathematics - I	5
	Engineering Chemistry	7
	Engineering Physics	10
	Basic Electronics Engineering	13
	Basic Electrical Engineering	15
	Computer Programming	17
	Constitution of India	20
	Environmental Science & Engineering	22
	Engineering Mathematics - II	24
		26
	Data Structures & Algorithms	29
	Communicative & Technical English	
	Practical	30
	Engineering Chemistry Lab	31
	Engineering Physics Lab	34
	Manufacturing Practices	36
	Engineering Graphics	39
	Basic Electronics Engineering Lab	42
	Basic Electrical Engineering Lab	44
	Computer Programming Lab	46
	Data Structures & Algorithms Lab	48
	Communicative & Technical English Lab	50
II	2nd Year B. Tech. (EEE)	52
11	Curriculum Structure	
	Semester III	
	Semester IV	53
	List of Electives	54
		5 4
	Detailed Syllabus (Semester III)	55 55
	Theory	
	Mathematics-III for Electrical Sciences	55
	OOP Using Java	57
	Basics of Mechanical Engineering	59
	Circuits & Signals	63
	Electromagnetic Theory	66
	Analog Electronic Circuits	69
	Practical	71
	OOP Using Java Lab	72
	Circuits & Signals Lab	74
	Analog Electronic Circuits Lab	76

Detailed S	yllabus (Semester IV)	. 77
Theor	y	
	Mathematics-IV for Electrical Sciences	
	Fundamentals of Management	
	Digital Electronic Circuits	
	Electrical Machines	
	Measurements & Instrumentation	
	Applied Linear Algebra	
	Fluid Mechanics	
	Electronic Devices & Modeling	
	Operating Systems	
	Programming in Python	
	Biomedical Instrumentation & Signal Processing	
	Universal Human Values & Professional Ethics	
Practi	ical	
	Digital Electronic Circuits Lab	
	Electrical Machines Lab	
	Measurements & Instrumentation Lab	
	Corporate Communication Lab	. 116
III 3rd Year	B. Tech. (EEE)	118
	n Structure	
	ster V	
	etives	
	yllabus (Semester V)	
Theor	y	
	Power Electronics	
	Control Systems Engineering	
	Introduction to Digital Signal Processing	
	Sensors & Circuit Analysis	
	Renewable Energy Systems	
	Soft Computing Techniques	
	Numerical Optimization	
	Organizational Behaviour	
	Information Theory & Coding	
	Algorithm Design & Analysis	
Du a ata		
Practi	ical	
	Soft Skills & Interpersonal Skills Lab	
	Control Systems Engineering Lab	
Datailad C	Power Electronics Lab	
•	yllabus (Semester VI)	
1 neor	y	
	Biology for Engineers	
	Fundamentals of Microprocessors & Microcontrollers	
	Power Systems Operation & Control	. 1/4

Introduction to VLSI Design		 	176
Advanced Power Electronics			
Electrical Drives		 	181
IoT & Applications			
Communication Systems Engineering		 	186
Smart Grid			
Advanced Control Systems		 	192
Stochastic Processes		 	196
Project Management		 	198
Adaptive Signal Processing		 	200
Internet Technology & Applications			
Advanced Java Programming			
Virtual Instrumentation		 	207
Practical		 	209
Fundamentals of Microprocessors & Micro	ocontrollers Lab	 	210
Power Systems Lab		 	212
Skill Lab & Project-I			
,			
TT 4:1 1/ D T 1 (TET)			24=
IV 4th Year B. Tech. (EEE)			217
Curriculum Structure (Regular)			
Curriculum Structure (PS-7)			
Curriculum Structure (PS-8)			
List of Electives			
Detailed Syllabus (Semesters VII & VIII)			
Theory			
Embedded System Design			
Digital Image & Video Processing			
Power System Protection			
Flexible AC Transmission Systems			
Fiber Optic Communications			
Microwave Engineering			
Power Quality			
PLC & SCADA			
Mobile Communication & Networks			
HVDC Transmission			
High Voltage Engineering			
Simulation & Modelling			
Power Plant Engineering			
Entrepreneurship Development			
Security Analysis, Investment & Trading			
Satellite Communication Systems			
Robotics & Robot Applications			
Artificial Intelligence			
Introduction to Machine Learning			
Industrial Instrumentation			
Practical			
Emerging Technologies Lab		 	274

Part I

1st Year B. Tech. (Common to All Branches)

Induction Program

It is necessary for a newly admitted student to acclimatize to the environment of a college, create a bonding between the teacher and students, equip the students with communication skills, and get them acquainted with the academic & disciplined culture of institution & human values.

All students admitted to B.Tech. programs shall undergo a mandatory induction program after joining the institute and before the commencement of classes. Regular classes of the engineering programs shall begin only after the students have completed the induction program.

The induction program shall comprise of familiarization to the rules & regulations of the institute, examinations & evaluation system, departments/branches, campus facilities, official processes & important officials, curricular/ co-curricular/ extra-curricular activity clubs, innovation & research activities, etc. The program shall also comprise of lectures by eminent persons on adopting a disciplined & healthy life-style, career planning & emerging technologies, social awareness, human values & ethics to sensitize & motivate the students to become not only a successful engineer, but also a socially responsible citizen and contribute their part for social development and nation building.

Interaction with faculty advisors, mentors, senior students, individual/group physical activities, learning or exhibiting an art form/literature, social service initiatives, and visits to important places of the city, and any other events/activities deemed to be necessary, may also be included in the induction program.

Every new student must diligently attend & participate in all the activities of the induction program. Attendance in the activities shall be recorded. Students have to submit a daily report in prescribed format to the concerned faculty advisor on the next day. There will be a computer-based test with multiple-choice questions on a suitable date about a week after completion of the induction program.

Evaluation of Induction Program shall be done out of 100 marks, comprising of 3 components, namely: (i) 25 marks for attendance, (ii) 25 marks for the daily reports, and (iii) 50 marks for the computer-based multiple-choice test. A student has to score at least 50 marks in total to pass the induction program.

In case of failure, the student has to attend the induction program in the next academic year along with the newly admitted students, submit daily reports, and appear the computer-based test to score a pass mark.

Curriculum Structure

	Semester I								
Type	Type Code Course Title						Credits L-T-P		
		THEORY	•						
BS	BTBS-T-BS-005	Engineering Mathematics-I	3	0	0	3	0	0	
BS	BTBS-T-BS-002/ BTBS-T-BS-006	Engineering Chemistry/ Engineering Physics	3	0	0	3	0	0	
ES	BTEC-T-ES-001/ Basic Electronics Engineering/ 2 0 BTEE-T-ES-001 Basic Electrical Engineering		0	0	2	0	0		
ES	BTCS-T-ES-001	Computer Programming	3	0	0	3	0	0	
MC	MC BTBS-T-MC-001/ Constitution of India/ Environmental Science & Engineering		2	0	0	0	0	0	
		PRACTICAL			•				
BS	BTBS-P-BS-003/ BTBS-P-BS-007	Engineering Chemistry Lab/ Engineering Physics Lab	0	0	2	0	0	1	
ES	BTBS-P-ES-009/ BTBS-P-ES-004	Manufacturing Practices/ Engineering Graphics	0	0	2	0	0	1	
ES	ES BTEC-P-ES-002/ Basic Electronics Engineering Lab/ BTEE-P-ES-002 Basic Electrical Engineering Lab 0 0		2	0	0	1			
ES	BTCS-P-ES-002	Computer Programming Lab		0	4	0	0	2	
		SUB-TOTAL 13		0	10	11	0	5	
		TOTAL		23			16		

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated *Engineering Chemistry* in Semester-I, then he/she will be allocated *Engineering Physics* in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

	Semester II							
Type	$\begin{array}{ c c c c c c }\hline \textbf{Fype} & \textbf{Code} & \textbf{Course Title} & & & & & & & & & & & & & & & & & & &$					Credits L-T-P		
		THEORY						
BS	BTBS-T-BS-013	Engineering Mathematics-II	3	0	0	3	0	0
BS	BTBS-T-BS-006/ BTBS-T-BS-002	Engineering Physics/ Engineering Chemistry	3	0	0	3	0	0
ES	BTEE-T-ES-001/ BTEC-T-ES-001	Basic Electrical Engineering / Basic Electronics Engineering	2	0	0	2	0	0
ES	BTCS-T-ES-003	Data Structures & Algorithms	3	0	0	3	0	0
MC	MC BTBS-T-MC-008/ Environmental Science & Engineering/ BTBS-T-MC-001 Constitution of India		2	0	0	0	0	0
HS	HS BTBS-T-HS-099 Communicative & Technical English				0	2	0	0
		PRACTICAL	•	•	•			
BS	BTBS-P-BS-007/ BTBS-P-BS-003	Engineering Physics Lab/ Engineering Chemistry Lab	0	0	2	0	0	1
ES	BTBS-P-ES-004/ BTBS-P-ES-009	Engineering Graphics/ Manufacturing Practices	0	0	2	0	0	1
ES	BTEE-P-ES-002/ Basic Electrical Engineering Lab/ 0 0 2 BTEC-P-ES-002 Basic Electronics Engineering Lab		0	0	1			
ES	BTCS-P-ES-004 Data Structures & Algorithms Lab 0		0	4	0	0	2	
HS	BTBS-P-HS-011	G-011 Communicative & Technical English Lab		0	2	0	0	1
		SUB-TOTAL 15 0 12		13	0	6		
	TOTAL 27			19				

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated *Engineering Chemistry* in Semester-I, then he/she will be allocated *Engineering Physics* in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

Type	Code	Engineering Mathematics - I	L-T-P	Credits	Marks
BS	BTBS-T-BS-005	Engineering wathematics 1	3-0-0	3	100

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of curve tracing, ordinary differential equations and applications, solution of system of linear equations using matrix methods, and Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Functions and their Graphs, Asymptotes & Curvature (concepts only), Geometric meaning of $y' = f(x, y)$ & direction fields, Separable ordinary differential equations (ODE) and Modeling.	8 Hours
Module-2	Exact ODE & Integrating Factor, Linear ODE, Bernoulli's Equation and Population models, Modeling electrical circuits, Homogeneous linear ODE of second order, Second order Linear ODE with constant coefficients, Modeling free oscillation.	8 Hours
Module-3	Euler-Cauchy ODE, Non-homogeneous linear ODE and applications to electrical circuits.	7 Hours
Module-4	Matrix algebra, system of linear equations, rank and inverse of matrices, vector space.	8 Hours
Module-5	Eigen values and Eigen vectors, Complex matrices, Diagonalization of matrices. Positive Definite Matrix, Singular Value Decomposition (SVD) and Pseudo Inverse.	11 Hours
	Total	42 Hours

Text Books:

- T1. S. Narayan and P. K. Mittal, *Differential Calculus*, Revised Edition, S. Chand & Company, 2014.
- T2. E. Kreyszig, *Advanced Engineering Mathematics*, 8th Edition, Wiley India, 2015.
- T3. G. Strang, *Linear Algebra and Its Applications*, 4th Edition, Cengage Learning, 2015.

Reference Books:

- R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Edition, Oxford University Press, 2015.
- R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Edition, McGraw Hill, 2017.

Online Resources:

- 1. http://www.nptel.ac.in/courses/111105035
- 2. http://www.nptel.ac.in/courses/122104017
- 3. http://nptel.ac.in/courses/122102009
- 4. http://nptel.ac.in/courses/111107063

- 5. https://www.coursera.org/learn/linearalgebra2
- 6. https://www.coursera.org/learn/differentiation-calculus
- 7. https://www.coursera.org/learn/single-variable-calculus
- 8. https://alison.com/courses/Algebra-Functions-Expressions-and-Equations

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe graphs of functions (curves) and their characteristics like asymptotes and curvature.
CO2	Solve first order ordinary differential equations using various methods and apply them to find solutions of physical problems.
CO3	Explain the methodology to solve second order ordinary differential equations and apply them to solve applied problems of electrical circuits.
CO4	Explore the concepts and methods of system of linear equations to solve a system.
CO5	Use the eigen values and eigen vectors of matrices, its properties and applications of SVD.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	0				,				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								2	1	1
CO2	3	3	2	1	2								3	2	1
CO3	3	3	3	3	1								3	2	1
CO4	3	3	3	2	3								2	2	1
CO5	3	3	2	2	2								3	2	1

Type	Code	Engineering Chemistry	L-T-P	Credits	Marks
BS	BTBS-T-BS-002	Engineering Chemistry	3-0-0	3	100

Objectives	The purpose of this course is to emphasize the relevance of fundamentals and applications of chemical sciences in the field of engineering. The course attempts to address the principles of general chemistry and specific topics relevant to various engineering disciplines, so that the students can apply the knowledge in their respective areas of expertise.
Pre-Requisites	Basic knowledge on Normality, Molarity, mole concept, types of chemical reactions, and elementary idea on electrochemistry.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
	Introduction & Pre-requisites	2 Hours
Module-1	Water Treatments : Types of hardness-Units, Alkalinity of water and its significance, Softening methods and Numerical problems based on these methods; Membrane-based processes; Dissolved Oxygen, Problems with Boiler feed water and its treatments.	8 Hours
Module-2	Corrosion Science : Definition and scope of corrosion, Dry and wet corrosion; Direct chemical corrosion, Electrochemical corrosion and its mechanisms; Types of electrochemical corrosion, (differential aeration, galvanic, concentration cell); Typical Electrochemical corrosion like Pitting, Inter-granular, Soil, Waterline; Factors affecting corrosion, Protection of corrosion.	7 Hours
Module-3	Instrumental Techniques : Fundamentals of Spectroscopy; Principles and applications of molecular spectroscopy (such as UV-visible, IR and microwave).	8 Hours
Module-4	Energy Sciences: Types of fuels, Calorific value, Determination of Calorific value, Combustion and its calculations, Solid fuel: Coal analysis (Proximate and ultimate analysis), Elementary ideas on some gaseous fuels (Natural gas, Water gas, Producer gas, LPG) (Synthesis is excluded), Liquid fuels: IC engine fuel, concept of knocking, antiknocking, octane No and cetane No, Fractional Distillation of petroleum, Cracking of heavy oils; Battery technology – Fundamentals of primary & Secondary cells, Rechargeable batteries: Lead acid storage battery, Lithium ion battery, Fuel cells: principles, applications. Elementary idea on Photovoltaics.	10 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Nanochemistry: Nanomaterials, Classification of nanomaterials, Synthesis of noble metal nanoparticles (e.g., Gold /silver) and oxide based nanoparticles (e.g., cuprous oxide/zinc oxide) using green synthetic route, Stabilization of nanoparticles using capping agents, Elementary ideas on characterization of nanoparticles (X-ray Diffraction (XRD) and electronic spectroscopy), applications of nanomaterials.	7 Hours
	Total	42 Hours

Text Books:

- T1. Jain & Jain, *Engineering Chemistry*, 16th Edition, Dhanpat Rai Publishing Company, 2015.
- T2. Wiley-India Editorial Team, Engineering Chemistry, 2nd Edition, Wiley India, 2011.
- T3. C. N. Banwell, *Fundamentals of Molecular Spectroscopy*, 4th Edition, McGraw Hill Education, 2017.

Reference Books:

- R1. S. S. Dara, *Engineering Chemistry*, 12th Edition, S. Chand Publisher, 2014.
- R2. G. A. Ozin & A. C Arsenault, *Nanochemistry A Chemical Approach to Nanomaterials*, 2nd Edition, RSC Publishing, 2008.
- R3. J. M. Lehn, L. Cademartiri, *Concepts of Nanochemistry*, 1st Edition, Wiley-VCH, 2009.
- R4. Y. R. Sharma, *Elementary Organic Spectroscopy*, S Chand & Co Ltd., 2013.

Online Resources:

- 1. https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Exemplars/Corrosion/Corrosion_Basics
- 2. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm
- 3. http://nptel.ac.in/courses/103105110/ Fuel & Combustion
- 4. http://nptel.ac.in/courses/105104102/hardness.htm
- 5. http://nptel.ac.in/courses/105106112/1_introduction/5_corrosion.pdf
- 6. https://alison.com Spectroscopic Technique, Colorimetry

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Exploit the concept of hardness in softening hard water and determining the hardness of water.
CO2	Utilize the knowledge of electrochemistry and corrosion science in preventing engineering equipments from corrosion.
CO3	Apply the concept of molecular spectroscopy to analyze organic compounds using spectrophotometer.
CO4	Classify various fuels based on combustion parameters and understand the working principle of various batteries.
CO5	Acquire knowledge on synthesis & characterization of oxide based & noble metal nanoparticles through green synthetic route.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Cont'd...

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1	2	1	1					2	2	2
CO2	3	2	1	1	1	2	1						2	2	2
CO3	2	2	1	1	2	2	1	1					2	2	2
CO4	2	2	1	1	1	1	1						2	1	1
CO5	2	2	1	1	2	2	1	1					2	2	2

Type	Code	Engineering Physics	L-T-P	Credits	Marks
BS	BTBS-T-BS-006	Engineering Thysics	3-0-0	3	100

Objectives	The objective of this course is to obtain basic idea about various laws and understand different phenomena using principles of physics. This knowledge will be useful for the engineering students to understand the basic operating principle of instruments and techniques. The knowledge obtained can also be used to prepare various models and projects.
Pre-Requisites	Adequate knowledge and clear concepts in higher secondary physics like waves, oscillations, optics, electricity, magnetism, modern physics, etc.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	ssessment	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total		
05	05	05	25	60	100		

Detailed Syllabus

Module-#	Topics	Hours
	Introduction & Pre-requisites	2 Hours
Module-1	Wave Optics: Concept of wave and wave equation, Superposition of waves (two beam and multiple beam) and interference, Huygen's principle, Interference by division of amplitude and division of wavefront, Theory of Newton's rings and its applications, Diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer's diffraction from a single slit, Theory of plane diffraction grating, Determination of wavelength of light with a plane diffraction grating.	10 Hours
Module-2	Vector Calculus: Gradient of scalar field, Divergence and curl of vector field, Gauss divergence theorem and Stokes theorem (statement only). Maxwell's Equations: Gauss's law in electromagnetism, Faraday's law of electromagnetic induction, Ampere's circuital law, Displacement current, Maxwell's electromagnetic equations (integral and differential form). Electromagnetic Waves: Electromagnetic Wave (EM) equations - Free space, Dielectric and conducting medium, Transverse nature of EM wave, Electromagnetic wave in ionized medium, Electromagnetic energy density, Poynting's theorem and Poynting's vector.	11 Hours
Module-3	Introduction to Quantum Mechanics : Need of quantum mechanics, Particle nature of radiation - Black body radiation (no derivation), Photoelectric effect, Compton effect and pair production, Concept of de-Broglie's matter waves, Phase and group velocity, Heisenberg's Uncertainty principle with applications.	6 Hours

Cont'd...

Module-#	Topics	Hours
Module-4	Schrödinger's wave equation with applications : Concept of wave function ψ and interpretation of $ \psi ^2$, Schrödinger's time-dependent and time-independent equations, Probability current, Expectation values, Operators in quantum mechanics, Eigen functions and Eigen values, Applications of Schrödinger's equation- Particle in one dimensional rigid box, Potential barrier (emphasis on tunneling effect).	6 Hours
Module-5	Laser: Radiation-matter interaction, Absorption of light, Spontaneous and stimulated emission of light, Population inversion, Types of Laser-Solid State Laser (Ruby), Gas Laser (He-Ne), Properties and applications of Laser. Optical Fiber: Structure and Principle, Types of optical fiber, Numerical aperture, Applications of optical fiber.	7 Hours
	Total	42 Hours

Text Books:

- T1. D. R. Joshi, *Engineering Physics*, 1st Edition, Tata McGraw-Hill Publication, 2017.
- T2. Md. M. Khan and S. Panigrahi, *Principle of Physics*, Vol. I & II, Cambridge Univ. Press.

Reference Books:

- R1. A. Ghatak, *Optics*, Tata McGraw Hill.
- R2. B. S. Agarwal, *Optics*, Kedar Nath Rama Nath & Co.
- R3. S. Prakash, Electromagnetic Theory and Electrodynamics, Kedar Nath Ram Nath & Co.
- R4. D. J. Griffith, *Introduction to Electrodynamics*, Pearson Education.
- R5. R. Eisberg and R. Resnick, *Quantum Physics of Atoms, Molecules, Solids, Nuclei & Particles*, John Wiley Publications.
- R6. A. Beiser, Concept of Modern Physics, McGraw Hill.
- R7. R. K. Gour and S. L. Gupta, *Engineering Physics*, Dhanpat Rai Publications.

Online Resources:

- 1. https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/
- 2. http://www.ilectureonline.com/lectures/subject/PHYSICS
- 3. https://ocw.mit.edu/courses/physics
- 4. https://nptel.ac.in/courses/115102026/
- 5. https://nptel.ac.in/courses/113104012/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze wave properties of light like interference and diffraction and apply them in communications
CO2	Develop Maxwell's equations from basic laws of electromagnetism and apply them to understand the properties of electromagnetic waves.
CO3	Analyze wave-particle duality to understand radiation-matter interaction
CO4	Develop and apply Schrödinger's equations to diverse fields like bound particle, potential barrier etc.
CO5	Investigate the basic principle, properties, operations and applications of laser & optical fibre in different fields like communication, industry, medicine, research etc.

Program Outcomes Relevant to the Course:

Cont'd...

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1								1	2	2	3
CO2	3	2	1	2	1							1	3	3	2
CO3	3	2		1								1	2	2	2
CO4	3	2		1								1	2	1	1
CO5	3	3	1	2	1							1	3	2	2

Type	Code	Basic Electronics Engineering		Credits	Marks
ES	BTEC-T-ES-001	Dasic Licetonics Liighteening	2-0-0	2	100

Objectives	Know broadly the concepts and functionalities of the electronic devices, tools and instruments. Understand general specifications and deployability of the electronic devices, and assemblies. Develop confidence in handling and usage of electronic devices, tools and instruments in engineering applications.
Pre-Requisites	Knowledge on intrinsic and extrinsic Semiconductors, Physics and Chemistry of Higher Secondary Science level.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, and planned lectures to make the sessions interactive with problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai		
05	05	05	25	60	100		

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Electronics: Signals, Frequency spectrum of signals, Analog and digital signals; Diodes and Applications: Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers, Breakdown Mechanisms, Zener Diode – Operation and Applications; Clipper and Clamper Circuits, Diode applications.	7 Hours
Module-2	Bipolar Junction Transistor (BJT) : Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Fixed and Voltage divider Biasing Configurations.	6 Hours
Module-3	Field Effect Transistor (FET) : Construction, Characteristics of Junction FET (JFET), Depletion and Enhancement type Metal Oxide Semiconductor FETs (MOSFET), Introduction to Complementary MOS (CMOS) circuits.	5 Hours
Module-4	Operational Amplifiers and Applications : Introduction to Op-Amp, Differential Amplifier Configurations, Basics of Op-Amp, Characteristics of Ideal Op-Amp, CMRR, PSRR, Slew Rate; Block Diagram and Pin Configuration of IC 741 Op-Amp, Applications of Op-Amp as: Summing Amplifier, Difference Amplifier, Differentiator, Integrator.	5 Hours
Module-5	Feedback Amplifiers : Principle, Advantages of Negative Feedback, Different Feedback Topologies. Oscillators : Classification, RC Phase Shift Oscillator.	5 Hours
	Total	28 Hours

Text Books:

- T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Edition, Pearson Education, 2015.
- T2. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th Edition, Oxford University Press, 2009.

Reference Books:

- R1. A. Agarwal and J. Lang, *Foundations of Analog and Digital Electronic Circuits*, 1st Edition, Morgan Kaufmann, 2005.
- R2. V. K. Mehta and R. Mehta, *Principles of Electronics*, 10th Rev. Edition, S. Chand Publishing, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/117/103/117103063/: by Prof. G. Barua, IIT Guwahati
- 2. https://nptel.ac.in/courses/108/101/108101091/: By Prof. M. B. Patil, IIT Bombay
- 3. https://nptel.ac.in/courses/122/106/122106025/: By Prof. T. S. Natarajan, IIT Madras
- 4. https://nptel.ac.in/courses/117/107/117107095/: Web Content by IIT Roorkee
- 5. https://nptel.ac.in/courses/122/104/122104013/: Web Content by IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Become familiar with basic signals, diodes and their applications.
CO2	Investigate on the operation of different configurations of bipolar junction transistor. Analyze and design different biasing configurations with their applications.
CO3	Understand the construction, operation and characteristics of JFET and MOSFET. Analyze and design different biasing configurations with their applications.
CO4	Learn the construction and characteristics of Op-Amp and design circuits for various applications using Op-Amp.
CO5	Understand different types of feedback topologies and design various kinds of oscillators.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										2	2	2
CO2	3	2	3	1									3	3	2
CO3	2	2	2	1									3	3	2
CO4	3		3										2	3	2
CO5	2	1	2										2	3	1

Type	Code	Basic Electrical Engineering	L-T-P	Credits	Marks
ES	BTEE-T-ES-001	busic Electrical Engineering	2-0-0	2	100

Objectives	The objective of this course is to introduce the students to basic concepts of electricity and magnetism. The course will cover the basics of DC & AC networks, principle of operation of different electrical machines and measuring instruments. The course will train the students about the basic protection system and safety requirements and will give an overview of the electrical power systems.
Pre-Requisites	Basic knowledge of intermediate Physics, knowledge of basic Mathematics such as Calculus, Ordinary Differential Equations, Matrices etc.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	rprise Test(s) Assignment(s)		End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Fundamentals of Electric Circuits: Charge & current, Voltage & current sources, Electrical circuit elements (R, L and C) and their characteristics, Kirchoff's current and voltage laws; Resistive Network Analysis: Node voltage & Mesh current analysis, Node voltage and mesh current analysis with controlled sources, Thevenin Theorem, Norton's Theorem, Principle of superposition, Maximum power transfer theorem; Formation of differential equation for RL & RC circuits; Concept of measurement and use of shunt and multipliers in ammeters and voltmeter.	8 Hours
Module-2	Representation of sinusoidal waveforms, Peak and rms values, Phasor representation, Real power, Reactive power, Apparent power, Power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel).	6 Hours
Module-3	Three phase balanced circuits, Voltage and current relations in star and delta connections. Brief introduction to generation, Transmission and Distribution of electrical power, Earthing & electrical safety.	3 Hours
Module-4	Electricity and magnetism, magnetic circuit and magnetic reluctance, Magnetic materials, BH characteristics, Ideal and practical transformer, e.m.f. equation of transformer, Equivalent circuit.	4 Hours
Module-5	Construction of D.C. machines, generator, Types of excitation system, working of D.C. motor, Classification of D.C. motor, Characteristics and speed control of dc motor; Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Torque-slip characteristic; Single-phase induction motor.	7 Hours
	Total	28 Hours

Text Books:

- T1. E. Hughes, *Electrical & Electronic Technology*, 9th Edition, Pearson, 2004.
 T2. G. Rizzoni, *Principles and Applications of Electrical Engineering*, 5th Edition, McGraw Hill, 2006.

Reference Books:

- R1. A. E. Fitzgerald, D. E. Higginbotham, and A. Grabel, *Basic Electrical Engineering*, 5th Edition, Tata McGraw Hill.
- R2. B. L. Theraja and A. K. Theraja, *Textbook of Electrical Technology (Vol-I)*, 23rd Edition, S. Chand & Co.Ltd., 2002.
- R3. L. S. Bobrow, Foundations of Electrical Engineering, Asian Edition, Oxford Univ. Press, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105053/: by Prof. G. D. Roy, Prof. N. K. De, and Prof. T. K. Bhattacharya, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/108/108108076/: By Prof. L. Umanand, IISc Bangalore
- 3. https://www.electrical4u.com/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and analyze basic electrical network with D.C. source.
CO2	Measure current, voltage and power of series RLC circuit excited by single-phase ac circuit.
CO3	Analyze three phase electrical systems and develop an understanding of the real power system.
CO4	Explain different concepts of magnetic fields and apply it to single phase transformer.
CO5	Describe the working principles of rotating electrical machines.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2									3	1	1
CO2	3	3	2	3									2	1	1
CO3	3	2	1	1			2						2	1	2
CO4	3	2	2				1						3		1
CO5	3	3	2	1									2		1

Type	Code	Computer Programming	L-T-P	Credits	Marks
ES	BTCS-T-ES-001	Computer Frogramming	3-0-0	3	100

Objectives	The objective of this course is to introduce fundamentals of computer programming using the C programming language to the students. Starting with simple programs, the course will cover advanced topics like structures, pointers, file processing and pre-processor directives etc. and enable the students to write programs using C language for solving various engineering problems.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10tai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to computers and programming, operating system, compilers, interpreters, algorithm, flowchart, pseudocode etc., structure of C program, character set, identifier, keywords, constants, variables, data types, operators, expressions, statements, operator precedence and associativity, type conversion, input/output statements.	8 Hours
Module-2	Decision making and branching: if, if-else, nested if-else, else-if ladder and switch constructs, iterative execution of code using loops: while, for, dowhile, nested loops, controlling loop behavior using jump statements (break, continue, goto) and exit statements.	8 Hours
Module-3	Arrays (1-D & 2-D), declaration and initialization of arrays, accessing array elements, operations on arrays - insertion, deletion, searching, sorting (selection sort), merging etc., character arrays and strings, initialization, input & output of strings, operations on strings, array of strings, string handling functions.	9 Hours
Module-4	User-defined functions, declaration and definition, parameter passing by value, functions returning values, idea on call by reference, passing arrays to functions, recursion, storage classes - auto, register, static, extern, Structures and Unions - definition, initialization, accessing members, array of structures, arrays within structures, structures and functions, self-referential structures.	9 Hours
Module-5	Understanding pointers, declaration, initialization, accessing variables using pointers, pointer expressions, scale factor, chain of pointers, using pointers with arrays, strings, functions and structures, dynamic memory management, pre-processor directives, command line arguments, basics of file handling.	8 Hours
	Total	42 Hours

Text Books:

- T1. E. Balagurusamy, *Programming in ANSI C*, 7th Edition, McGraw-Hill Education, 2017.
- T2. Y. Kanetker, Let Us C, 16th Edition, BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Edition, Pearson Education,
- R2. H. Schildt, *C: The Complete Reference*, 4th Edition, McGraw-Hill, 2017. R3. A. Kelley and I. Pohl, *A Book on C*, 4th Edition, Pearson Education, 2008.
- R4. B. Gottfried, *Schaum's Outline of Programming with C*, 3rd Edition, McGraw-Hill, 2017.

Online Resources:

- 1. http://www.stat.cmu.edu/~hseltman/c/CTips.html
- 2. http://www.c-faq.com/
- 3. https://www.learn-c.org/
- 4. https://www.javatpoint.com/c-programming-language-tutorial
- 5. http://www2.its.strath.ac.uk/courses/c/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Formulate logic of a problem and write C programs using variables, expressions and input/output statements.
CO2	Develop structured C programs involving decision making using different control constructs.
CO3	Solve problems involving similar set of data items and convert them into C programs using arrays.
CO4	Design modular C programs and handle heterogeneous data items using structures & unions.
CO5	Write C applications using pointers, pre-processor directives, command line arguments and files.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1								1	3	2	2
CO2	3	3	2	2								1	3	2	2
CO3	3	3	2	2								1	3	2	2
CO4	3	2	2	2								1	3	2	2
CO5	3	3	2	3								1	3	2	2

Type	Code	Constitution of India	L-T-P	Credits	Marks
MC	BTBS-T-MC-001	Constitution of mara	2-0-0	0	100

Objectives	The objective of this subject is to provide understanding of the basic concepts of Indian Constitution and various organs created by the constitution including their functions. The course acquaints students with the constitutional design of state structures and institutions, and their actual working over time.
Pre-Requisites	Basic knowledge of Indian history, overall idea on India's political system.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient features of Indian constitution, Fundamental rights, Fundamental Duties and its legal status, Directive principles of state policy-its importance and Implementation.	8 Hours
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice-President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours
Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	4 Hours
	Total	28 Hours

Text Books:

- T1. D. D. Basu, *Introduction of Constitution of India*, 22nd Edition, LexisNexis, 2015.
- T2. K. Subas, *An Introduction to India's Constitution and Constitutional Law*, 5th Edition, National Book Trust India, 2011.

P.T.O

Reference Books:

- R1. M. Laxmikanth, *Indian Polity*, 5th Edition, McGraw Hill, 2011.
- R2. P. M. Bakshi, *The Constitution of India*, 14th Edition, Universal Law Publishing Co, 2006.

Online Resources:

- 1. https://www.india.gov.in/sites/upload_files/npi/files/coi_part_full.pdf
- 2. https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text
- 3. https://www.tutorialspoint.com/indian_polity/indian_polity_tutorial.pdf
- 4. https://www.careerpower.in/wp-content/uploads/2016/03/SSC-POLITY-CIVICS-CAPSULE-2016.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Provide basic information about Indian constitution and to analyze the legalities and related issues of drafting, adoption and enforcement of the Indian Constitution as a fundamental law of the nation and the provisions and privileges of Indian Citizenship.
CO2	Understand and judiciously use the fundamental rights and privileges envisaged in the constitution propagating social harmony and equality and respecting the rights and liberties of other people.
CO3	Analyze the major dimensions of Indian Political System and to contribute in protecting and preserving the sovereignty and integrity of India.
CO4	Know the successful functioning of democracy in India and to respect the Constitutional Institutions like Judiciary, Executive and Legislature.
CO5	Understand their obligations, responsibilities, privileges & rights, duties and the role that they have to play in deciding the Administrative Machinery of the country.

Program Outcomes Relevant to the Course:

	-
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				1		2	1	1	1				1	2	2
CO2						2	1	1	1				1	1	1
CO3						3	1	1	1				1	2	1
CO4						2	1	1	1				2	2	1
CO5						2	1	2	1				1	2	1

Type	Code	Environmental Science & Engineering	L-T-P	Credits	Marks
MC	BTBS-T-MC-008	Lity nonmental Science & Engineering	2-0-0	0	100

Objectives	This course serves as a general introduction to environmental science. From ecology and ecosystems, it acquaints the students to air & water quality and the impact of pollution on the environment due to industries and urbanization. Some remediation methods of minimizing the impact of pollutants through technology and legal systems are also addressed.
Pre-Requisites	Basic knowledge of physics, chemistry and biology is required for this course.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required and some sessions are planned for expert talk, seminar presentation by students.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Ecology & Biogeochemical Cycles: Introduction to environmental science, ecological perspective and value of environment, biodiversity of species, biotic components, energy, food chain, biogeochemical cycles like water, oxygen, nitrogen and carbon cycle.	6 Hours
Module-2	Water & Wastewater Treatment: Water quality standards and parameters, pre-treatment and conventional treatment processes of water, DO, BOD, COD, wastewater treatment.	6 Hours
Module-3	Atmospheric chemistry, soil chemistry, ground water recharge, noise source & abatement: atmospheric chemistry, air pollution, climate change, soil chemistry, water table and aquifer, ground water recharge, noise standards, noise measurement, noise control and activities including expert talk.	5 Hours
Module-4	Waste Management: Municipal Solid Waste (MSW), Hazardous waste and e-waste handling & management, Introduction to Life Cycle Assesment (LCA), Environmental Impact Assessment (EIA), Environmental Impact Statement (EIS).	6 Hours
Module-5	Environmental gradients & Laws: Environmental gradients, tolerance levels of environment factors, Indian environmental laws, Human population & the environment, Activities including seminar presentations by students.	5 Hours
	Total	28 Hours

Text Books:

- T1. G. M. Masters and W. P. Ela, *An Introduction to Environmental Engineering and Science*, 3rd Edition, PHI Learning, 2015.
- T2. G. Kiely, Environmental Engineering, Spl. Indian Edition, McGraw Hill, 2007.

Reference Books:

- R1. M. L. Davis and S. J. Masten, *Principles of Environmental Engineering and Science*, 2nd Edition, McGraw-Hill, 2017.
- R2. H. D. Kumar and U. N. Dash, *Environmental Studies*, 2nd Edition, IndiaTech Publishers, 2017.

Online Resources:

- 1. http://nptel.ac.in/courses/120108002/: Aquatic Biodiversity and Environmental Pollution.
- 2. http://nptel.ac.in/courses/120108004/: Environment Management.
- 3. http://nptel.ac.in/courses/120108005/: Municipal Solid Waste Management.
- 4. https://www.epa.gov/environmental-topics/: All Current Environmental Issues.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply concepts of ecology, eco systems, food chain and biogeochemical cycles for better understanding of functions of the environment.
CO2	Enhance knowledge of water and wastewater treatment for prevention of water pollution.
CO3	Understand the chemistry of pollutants in the atmosphere, soil and groundwater and understand principles of noise abatement.
CO4	Enhance knowledge of waste minimization technique to minimize and manage solid, hazardous wastes generated in different areas.
CO5	Understand environmental gradients, tolerance levels and environmental laws for prevention of environmental pollution.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

T T	71 8														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1					2	3	1	2		1			1	1
CO2	1					2	2	2	2		1			1	2
CO3	1					1	2	1	1		1		1	1	2
CO4	1					2	3	1	2		1		1	1	2
CO5	1					3	3	3	2		1			1	2

Type	Code	Engineering Mathematics - II	L-T-P	Credits	Marks
BS	BTBS-T-BS-013	Engineering wathematics - II	3-0-0	3	100

Objectives	The objective of this course is to familiarize the perspective engineers with the knowledge and concepts of probability and statistics which are essential to study non-deterministic systems.
Pre-Requisites	Basics of sets, counting techniques, differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Measures of central tendencies, Elementary probability, Conditional probability, Bayes' Rule (related problems only), Random variable, Binomial & Hypergeometric distribution, Mean and variance, Chebyshev's Theorem.	9 Hours
Module-2	The Poisson approximation to Binomial Distribution, Poisson Process, Geometric Distribution & Multinomial Distribution, Continuous random variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Uniform Distribution, Exponential Distribution, Joint Discrete Distribution.	9 Hours
Module-3	Populations and Samples, Sampling Distribution of Mean (σ known), Sampling Distribution of Mean (σ unknown) & Sampling Distribution of Variance; Point Estimation of mean, Interval Estimation of mean, Tests of hypotheses and errors involved, Hypotheses concerning one mean, Inference concerning two mean, Estimation of variance, Hypotheses concerning one variance, Hypotheses concerning two variances.	8 Hours
Module-4	Estimation of Proportions, Hypotheses Concerning proportion (one & several), Analysis of $r \times c$ table (Contingency table), Goodness of fit, Application of goodness of fit, Kolmogorov-Smirnov test.	7 Hours
Module-5	The method of least squares, Inferences based on the least square estimation, Curvilinear Regression, Multiple Regression, Checking the adequacy of the model, Correlation, Multiple linear regression (matrix notation); Analysis of Variance, General principle, Completely Randomized Design, Randomized Block Design.	9 Hours
	Total	42 Hours

Text Books:

T1. R. A. Johnson, *Miller & Freund's - Probability and Statistics for Engineers*, 8th Edition, PHI Learning, 2011.

P.T.O

Reference Books:

- R1. W. Mendenhall, R. J. Beaver, and B. M. Beaver, *Probability and Statistics*, 14th Edition, Cengage Learning, 2014.
- R2. R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, *Probability & Statistics for Engineers & Scientists*, 9th Edition, PHI Learning, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/111/105/111105041/: by Prof. S. Kumar, IIT Kharagpur
- 2. https://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-spring-2014/lecture-notes/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply the concepts of probability and random variables to evaluate probabilities of events.
CO2	Apply different discrete and continuous probability models to solve real life problems.
CO3	Apply the concepts of sampling to estimate population parameters and test hypothesis.
CO4	Test the goodness of a model and apply it to real life problems.
CO5	Apply regression model and ANOVA to study the characteristics data sets.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2								2	1	1
CO2	3	3	3	3	3								2	1	1
CO3	3	2	3	2	2								2	1	1
CO4	3	3	3	3	3								3	2	1
CO5	3	3	3	3	3								3	2	1

Type	Code	————— Data Structures & Algorithms		Credits	Marks	
ES	BTCS-T-ES-003	Data Structures & Angommis	3-0-0	3	100	

Objectives	To understand the abstract data types and to solve problems using data structures such as stacks, queues, linked lists, hash tables, binary trees, heaps, binary search trees, graphs and writing programs for these solutions.
Pre-Requisites	Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to data structures, classification of data structures, algorithmic notation, complexity of algorithms, asymptotic notations, abstract data types. Arrays - introduction, representation of arrays (row and column major representation), basic operations on array (traverse, insert, delete, search), sparse matrix, representation of sparse matrix using triplet form, operations on sparse matrix (addition, transpose)	8 Hours
Module-2	ADT Stack - stack model, representation of stack using array, basic operations with analysis, applications- recursion, and conversion of infix to post fix expression, evaluation of postfix expression. ADT Queue - queue model, representation using array, basic operations with analysis, circular queue, introduction to priority queue and double ended queue.	8 Hours
Module-3	Linked list - introduction, types of linked list (single, double, circular), representation in memory, operations on linked list (traverse, search, insert, delete, sort, merge) in each type with analysis. Representation of polynomial and its operations (addition, multiplication), implementation of stack and queue using linked list.	9 Hours
Module-4	Tree - terminology, representation, binary tree - tree traversal algorithms with and without recursion. Binary search tree, Operations on Binary Search Tree with analysis, threaded binary tree, general tree, Height balanced tree (AVL tree), m-way search trees, B-trees. Graph - terminology, representation (adjacency matrix, incidence matrix, path matrix, linked representation), graph traversal (BFS, DFS), Dijkstra's single source shortest path algorithm, Warshall's all pair shortest path algorithm, topological sort.	9 Hours
Module-5	Sorting algorithms - bubble sort, selection sort, insertion sort, quick sort, merge sort, radix sort, heap sort. Hashing- hash functions and hashing techniques. collision resolution techniques- linear probing, quadratic probing, chaining.	8 Hours
	Total	42 Hours

Text Books:

- T1. E. Horowitz, S. Sahni, S. Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, Universities Press, 2008.
- T2. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Edition, Pearson Education, 2002.

Reference Books:

- R1. A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, *Data Structures Using C*, 3rd Edition, Pearson Education, 2007.
- R2. J. P. Tremblay and P. G. Sorenson, *An Introduction to Data Structures with Applications*, 2nd Edition, McGraw Education, 2017.
- R3. S. Lipschutz, *Data Structures*, 1st Revised Edition, McGraw Education, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106127/: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
- 2. https://nptel.ac.in/courses/106/102/106102064/: By Prof. N. Garg, IIT Delhi
- 3. https://nptel.ac.in/courses/106/106/106106130/: By Dr. N. S. Narayanaswamy, IIT Madras
- 4. https://www.geeksforgeeks.org/data-structures/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze performance of algorithms and implement various operations on array and sparse matrix.
CO2	Apply the basic operations of stacks and queues to solve real world problems.
CO3	Implement different types of linked list operations and their applications.
CO4	Represent data using trees & graphs to use them in various real life applications.
CO5	Analyze various sorting algorithms and explore different hashing techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2		1						1	2	2	1
CO2	3	3	3	2		1						1	2	1	1
CO3	3	3	3	2		1						1	2	1	1
CO4	3	2	3	3		2						1	2	2	1
CO5	3	3	3	3		1						1	2	3	1

Type	Code	Communicative & Technical English	L-T-P	Credits	Marks
HS	BTBS-T-HS-099	Communicative & Technical English	2-0-0	2	100

Objectives	The objectives of this course are to develop the students' communication skills with proficiency in Technical English, make them speak with a standard accent, develop analytical skills to read and comprehend texts, and help students compose basic business messages.
Pre-Requisites	Basic knowledge of English grammar and the ability to read and write using the English language.
Teaching Scheme	Regular classroom lectures with the use of PPTs as and when required; sessions are planned to be interactive with focus on improving spoken and written communication skills in English.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Elements of Communication : Process, factors and importance of communication; Principles of communication; Barriers to communication; General vs Business communication.	3 Hours
Module-2	Sounds of English : Importance of neutral accent; vowels, diphthongs, consonants and consonant clusters; syllable and stress.	5 Hours
Module-3	Critical Reading : Importance of reading; Intensive and extensive reading; reading strategies, Reading texts (short story, contemporary essay, editorial).	5 Hours
Module-4	Effective Business Communication (Oral) : Purpose and importance of business communication; technology in communication; Structure of business organisation; Patterns of business communication; Models of communication in business settings.	7 Hours
Module-5	Effective Business Communication (Written) : Constituents of effective business writing; Process writing; Paragraph writing; Common written forms in business writing: Importance, features, format and uses.	8 Hours
	Total	28 Hours

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, McGraw-Hill Education, 2017.
- T2. T. Balasubramaniam, *English Phonetics for Indian Students*, 3rd Edition, Trinity Press, 2017.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles & Practice*, 2nd Edition, Oxford University Press, 2011.
- T4. D. K. Das, A. Kumari, and K. K. Padhi, *Anthology of Modern English Prose*, 1st Edition, Laxmi Publications, 2011.

Reference Books:

- R1. S. Kumar and P. Lata, *Communication Skills*, Oxford University Press, 2011.
- R2. K. R. Lakshminarayanan and T. Murugavel, *Communication Skills for Engineers*, Scitech Publications, 2009.

- R3. J. Seeley, *The Oxford Guide to Effective Writing and Speaking*, 3rd Edition, Oxford University Press, 2013.
- R4. B. K. Das, K. Samantray, R. Nayak, S. Pani, and S. Mohanty, *An Introduction to Professional English and Soft Skills*, Cambridge University Press, 2009.
- R5. S. Samantray, Business Communication and Communicative English, S. Chand & Co, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/109/106/109106094/: By Prof. A. Iqbal, IIT Madras
- 2. https://nptel.ac.in/courses/109/104/109104031/: By Dr. T. Ravichandran, IIT Kanpur
- 3. https://www.coursera.org/specializations/business-english
- 4. https://ocw.mit.edu/courses/comparative-media-studies-writing/21w-732-5-introduction-to-technical-communication-explorations-in-scientific-and-technical-writing-fall-2006/download-course-materials/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand the elements of and technical communication and possible barriers to it.
CO2	Explain the basic aspects of English pronunciation and speak using a neutral accent.
CO3	Enhance their reading skills and be able to critically analyse texts of various kinds.
CO4	Effectively use the channels of business communication and hierarchies to communicate in a business set-up.
CO5	Compose basic business correspondences effectively.

Program Outcomes Relevant to the Course:

PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								1	1	2	2	3	1	3	1
CO2									1	1	1	3	1	2	1
CO3								1	1	1	2	3	1	3	1
CO4									3	2	3	3		3	1
CO5								3		3		3		3	2

Type	Code	Engineering Chemistry Lab	L-T-P	Credits	Marks
BS	BTBS-P-BS-003	Engineering Chemistry Lab	0-0-2	1	100

Objectives	Objectives of the subject is to educate the students with modern instrumental techniques & role of chemical analysis in various fields of engineering and science to examine and understand the effect of chemicals, compositions, impurities etc., on the properties of materials & the detrimental effects of polluting materials, and other unwanted impurities.
Pre-Requisites	Student should have the knowledge of balancing equations, principle of titrations, titrant, titrand, preparation of standard solutions, concentration of a solution, indicators used in a titration, principle of reduction-oxidation reactions, handling of instruments like pH meter & accurate measurement of sample by using electronic balance.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment	
Experiment "	At least 10 Experiments	
1	Determination of Total hardness of water sample by EDTA method.	
2	Determination of alkalinity of water.	
Determination of available chlorine of bleaching powder/residual chlorwater.		
4	Determination of dissolved oxygen in supplied water.	
5	Determination of saponification value of oil.	
6	Determination of Acid value of oil.	
7	Determination of Flash-point/fire point of a lubricant by Pensky-Martein's apparatus.	
8	Determination of kinematic viscosity and Viscosity Index of a lubricant by Redwood viscometer.	
9	Determination of concentration of a colour substance by Spectrophotometer.	
10	Green synthesis of noble metal/oxide based nanoparticles.	
11	Estimation of calcium in limestone powder.	
12	Determination of chloride content of water.	
13	Determination of the partition coefficient of a substance between two immiscible liquids.	
14	Adsorption of acetic acid by charcoal.	
15	Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin solutions and/or coagulation of the white part of egg.	

Cont'd...

Experiment-# Assignment/Experiment	
16	Proximate analysis of coal sample.
17	Determination of iodine value of oil/fat.

Text Books:

- T1. Jain & Jain, *Engineering Chemistry*, 16th Edition, Dhanpat Rai Publishing Company, 2015.
- T2. S. S. Dara, *Engineering Chemistry*, 12th Edition, S. Chand Publisher, 2014.

Reference Books:

- R1. S. Chawla, Essentials of Experimental Engineering Chemistry, Dhanpat Rai & Co.
- R2. S. K. Bhasin and S. Rani, *Laboratory Manual on Engineering Chemistry*, 3rd Edition, Dhanpat Rai & Co, 2012.

Online Resources:

- 1. https://www.metrohm.com/en/industries/petro-lubricants/: Lubricant analysis according to international standards
- 2. http://www.eco-web.com/edi/01759.html: Efficient Wastewater Treatment: The field for analytical and monitoring

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyse various water quality parameters such as alkalinity, hardness, dissolved oxygen & chloride content before it is put into use in various general, research, or industrial purposes.
CO2	Test the quality of an oil/fat by measuring its iodine or acid value by means of amount of unsaturation for various industrial use.
CO3	Verify quality of a lubricant by means of its viscocity or flash point which gives their nature & flammability for various industrial applications.
CO4	Analyse various fractions present in coal by proximate analysis for better use of carbon based compounds in industrial applications.
CO5	Study the importance of green synthesis by way of synthesising metal/ metal oxide based nano-particles for various material applications.

Program Outcomes Relevant to the Course:

	outcomes refevant to the course.
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Cont'd...

PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		1	2		1		2	1			1	1	2
CO2	2	2		1	2		2		2	2			1	2	1
CO3	3	2		1	2		1		2	2			1	1	2
CO4	3	3		1	1		2		2	2			1	2	2
CO5	3	2		1	1		1		1	1			2	1	1

Type	Code	Engineering Physics Lab	L-T-P	Credits	Marks
BS	BTBS-P-BS-007	Engineering Thysics Lab	0-0-2	1	100

Objectives	The objective of this course is to develop the basic practical skill to design and measure different parameters of a physical quantity with proper error analysis which can help them in different field of engineering sciences. This practical knowledge will be useful for the engineering students to understand the basic operating principle of instruments. The knowledge obtained can also be used to prepare various models and projects.
Pre-Requisites	Adequate practical knowledge in Higher Secondary Physics including measuring instruments like screw gauge, slide caliper, spherometer etc. Knowledge of error analysis, graphical analysis etc. is also required.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Determination of bandgap of semiconductor.
2	Determination of rigidity modulus by static method.
3	Determination of surface tension by capillary rise method.
4	Determination of acceleration due to gravity by bar / Kater's pendulum.
5	Determination of Plank's constant, verification of inverse square law by photocell.
6	Determination of wavelength of light by Newton's ring apparatus.
7	Determination of grating element of a diffraction grating.
8	Plotting of characteristic curve of a PN junction diode.
9	Plotting of characteristic curves of BJT.
10	Verification of laws of vibration of stretched string using sonometer.
11	Determination of wavelength of laser source by diffraction grating method.
12	Study of Hall effect.
13	Study of RC circuit.
14	Determination of Young's modulus by bending of beams.
15	Michelson Interferometer.
16	Determine of reduction factor of the given tangent galvanometer and horizontal component of Earth's magnetic field using tangent galvanometer.

Text Books:

- T1. C. L. Arora, *B.Sc. Practical Physics*, 20th Edition, S.Chand & Co.Ltd, 2009. T2. S. Srivastava, *Practical Physics*, 3rd Edition, New Age International, 2017.

Reference Books:

- R1. H. Singh, B.Sc. Practical Physics, S. Chand & Co.Ltd, 2002.
- R2. B.Mallick, S. Panigrahi, Engineering Practical Physics, Cengage Learning, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/122103010/
- 2. https://www.practicalphysics.org/
- 3. http://www.bsauniv.ac.in/: Search for PHYSICS-LAB-MANUAL2017-(new-regulation).pdf
- 4. https://arxiv.org/ftp/arxiv/papers/1510/1510.00032.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the wave aspect of light like interference and diffraction by conducting Newton's rings and Fraunhofer diffraction experiment.
CO2	Investigate some properties of matter like surface tension of water (capillary rise method) and coefficient of elasticity of steel, copper.
CO3	Verify and analyze the IV characteristics of junction diode and BJT, charging and discharging of capacitor in RC circuit.
CO4	Study and apply Hall effect to calculate the Hall coefficient, carrier concentrations; measure band gap of semiconductor and dielectric constant of dielectric material.
CO5	Understand and verify laws of transverse vibrations in a stretched string using sonometer.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		2								1	3	2	2
CO2	2	2		1	1							1	1	1	1
CO3	2	1		2									3	2	2
CO4	2	2		3	1								3	2	2
CO5	3	1		1								1	2	1	1

Type	Code	Manufacturing Practices	L-T-P	Credits	Marks
ES	BTBS-P-ES-009	Manufacturing Fractices	0-0-2	1	100

Objectives	The objective of this practical course is to provide the basic concepts about tools used in manufacturing practices. Detailed concepts are proposed in all the major trades of engineering interest.
Pre-Requisites	None
Teaching Scheme	Regular manufacturing jobs using tools under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction & familiarity with tools: measuring, marking, holding, and cutting tools, Fitting (limit, fit, tolerance), Fastening (different types of screws, rivets, nuts & bolts).
2	Welding: Arc welding & Gas welding - theory & setup, Machining: Study of different parts & function of Lathe, Milling & Shaping.
3	To make a hexagonal bolt & nut with facing, step turning, internal & external threading & grooving (V-groove, rectangular groove on a square block) using Lathe, milling & shaping machine.
4	To make a flange coupling using Gas welding, arc welding & fitting.
5	To make heat-sink by using a metal plate (sheet metal work).
6	Introduction to electrical tools and safety measures. Demonstrate the precautionary steps adopted in case of electrical shocks.
7	Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB with ratings.
8	To design and develop a simple winding for inductorand 230/12V transformers used in electronics circuits.
9	 Introduction to house wiring: Wiring of simple circuit for controlling light/fan point. Wiring of Two-way switches. Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.
10	Familiarization of PCB assembling tools [such as Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screwdrivers, Tweezers, Crimping tool, Microsoldering station, Hot air soldering and de-soldering station etc.] and testing tools [such as Multimeter, DSO, clamp meter, function generator etc.]
11	Familiarization of EDA tools (such as Eagle or XCircuit) with general purpose components for designing a Printed Circuit Board (PCB) and fabrication of a single sided PCB for a simple circuit with manual etching (Ferric chloride solution).
12	Testing of a sample PCB (Types: Single sided, Double sided) for selected applications with general purpose instruments.

Text Books:

- T1. S. K. H. Choudhury, *Elements of Workshop Technology, Vol-1 and Vol-2*, Media Promotors & Publishers, 2008.
- T2. B. H. Deshmukh, *Electrical Materials and Wiring Practices*, Nirali Prakashan, 2018.
- T3. R. S. Khandpur, *Printed Circuit Boards: Design, Fabrication, Assembly and Testing*, 1st Edition, McGraw Hill,2006.

Reference Books:

- R1. S. Monk, *Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards*, Mc Graw-Hills, 1st edition,2014.
- R2. H. Joshi, Residential, Commercial and Industrial Electrical Systems: Protection, Testing and Commissioning, Vol-3, McGraw-Hill Education, 2008.
- R3. J. Varterisian, Fabricating Printed Circuit Boards, 1st Edition, Newnes, 2002.

Online Resources:

- 1. http://www.technicaltrainingsolutions.co.uk/courses/bench-fitting-course.html
- 2. http://nptel.ac.in/courses/112101005/14: (Sheet Metal Forming Processes)
- 3. http://nptel.ac.in/downloads/112105127: (Machining Processes)
- 4. http://nptel.ac.in/courses/112107144/27: (Welding Processes)
- 5. https://bharatskills.gov.in/pdf/E_Books/Electrcian_SEM1_TP.pdf
- 6. https://bharatskills.gov.in/pdf/E_Books/Electrician_SEM2_TP.pdf
- 7. https://bharatskills.gov.in/Home/StudyMaterial?var=WSdYV6aWadK8jUuNKxoBWg==
- 8. https://onlinecourses.swayam2.ac.in/nou20_cs08/preview
- 9. https://www.lanl.gov/safety/electrical/docs/arc_flash_safety.pdf
- 10. https://www.ee.iitb.ac.in/~pcpandey/courses/ee616/pcblayout_c_aug07.pdf
- 11. https://nptel.ac.in/courses/108/108/108108157/
- 12. https://nptel.ac.in/courses/122/106/122106025/
- 13. https://nptel.ac.in/courses/108/101/108101091/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Brief idea about the workshop, different tools and their operation, limits, fits, tolerance while assembling different parts of a flange coupling by using fitting shop.
CO2	Design and fabricate the components of a flange coupling by using machine tools and welding operation.
CO3	Identify different safety equipment and apply those in various electrical systems.
CO4	Plan and Design wiring configuration of residential and office and calculate the energy consumption for various loads.
CO5	Familiarity with PCB designing and fabrication methodology for different applications.
CO6	Analysis and application of specific PCB using modern instruments.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Cont'd...

PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		1	1		2			3		3	2	1	1	1
CO2	2	1	2	1		2			3		3	2	1	1	1
CO3	1	1	2	1	2	1		1	1	1	3	1	1	1	1
CO4	2	3	3	1	1	1		1	2	2	3	1	1	1	1
CO5	3	3	3	1	2	1			3	1	3	2	2	3	2
CO6	3	3	1	1	2	1			2	1	3	2	2	2	1

Type	Code	Engineering Graphics	L-T-P	Credits	Marks
ES	BTBS-P-ES-004	Engineering Grupines	0-0-2	1	100

Objectives	The objective of this laboratory course is to learn engineering drawing standards, conventions & practices, develop drawing skills in 2D & 3D, and use computer-aided drawing software to create meaningful engineering drawings.	
Pre-Requisites Basic understanding of 2D and 3D geometry is required.		
Teaching Scheme	Regular laboratory classes using drawing tools under supervision of the teacher. Demonstration will be given for each drawing assignment using both conventional and CAD software tools as per requirement.	

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Principles of Engineering Graphics and their significance (lettering & scale) and usage of Drawing instruments.
2	Orthographic projections, Principles of orthographic projections, Projections of points and lines.
3	Projections of different planes.
4	Projection of solids, 3D to 2D views, Machine component diagrams, Sectional views of simple and compound solid models.
5	Principles of Isometric projection, Isometric Scale & Views, Isometric views of planes and solids.
6	Development of surface and intersection of surfaces.
7	Engineering curves and conics.
8	Introduction to AutoCAD, GUI of AutoCAD, Tool bars and commands, use of mouse and short cut keys.
9	2D AutoCAD drawing using basic tools, Draw & Modify menu commands.
10	Orthographic projection drawings of various models using AutoCAD.
11	Isometric drawing & 3D modeling in AutoCAD, different solid editing options.
12	3D modeling of simple & compound models, and machine components using AutoCAD.

Text Books:

- T1. N. D. Bhat, M. Panchal, *Engineering Drawing*, Charotar Publishing House, 2008.
- T2. M. B. Shah, B. C. Rana, *Engineering Drawing and Computer Graphics*, Pearson Education, 2008.
- T3. S. Tickoo, AutoCAD 2020 Work Book, BPB Publications, 2020.

Reference Books:

- R1. R. K. Dhawan, A Text Book of Engineering Drawing, S. Chand Publications, 2007.
- R2. K. Venugopal, *Engineering Drawing and Graphics*, 3rd Edition, New Age International, 1998.

Online Resources:

- 1. http://nptel.ac.in/courses/112103019
- 2. https://nptel.ac.in/courses/112/102/112102101/
- 3. https://freevideolectures.com/course/3420/engineering-drawing
- 4. https://www.autodesk.in/campaigns/autocad-tutorials
- 5. https://help.autodesk.com/view/ACD/2020/ENU/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and apply the concepts of lettering and dimensioning for drafting of machine drawings and building drawings and different conics and curves.
CO2	Recognize and be familiar with the orthographic projections of points, lines, planes and solids.
CO3	Visualize the real product from isometric projections, solid and sectional views.
CO4	Become familiar with AutoCAD, its different tools and commands.
CO5	Draw various 2D drawings using draw and modify tools of AutoCAD.
CO6	Design various machine components and building structure by using AutoCAD.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1					2	1	1	1		1
CO2	3	2	1	1	1					2	1	1	1		1
CO3	3	2	1	1	1					2	1	1	1		1
CO4	3	1	1	1	1					2	1	1	1		1
CO5	3	2	2	2	3					2	2	1	1		1
CO6	3	2	1	1	2					2	2	1	2		2

Тур	e Code	Basic Electronics Engineering Lab	L-T-P	Credits	Marks
ES	BTEC-P-ES-002	Dasic Electionics Engineering Lab	0-0-2	1	100

Objectives	Know broadly the concepts and functionalities of the electronic devices, tools and instruments. Understand general specifications and deployability of the electronic devices, and assemblies. Develop confidence in handling and usage of electronic devices, tools and instruments in engineering applications.			
Pre-Requisites	Knowledge on intrinsic and extrinsic Semiconductors, Physics and Chemistry of Higher Secondary Science level.			
Teaching Scheme	Regular laboratory experiments to be conducted under the supervision of teachers and demonstrators with the help of ICT, as and when required along with pre-lab session and demonstration for each experiment.			

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Familiarization of electronic components and devices (Testing of semiconductor diodes and transistors using digital multi-meter).
2	Study and use of Oscilloscope, signal generator to view waveforms and measure amplitude and frequency of a given waveform.
3	V-I characteristics of semiconductor diode and determining its DC and AC resistances.
4	Implementation of clipper circuits, both positive clipper and negative clipper. Observe its output waveforms and compare them with theoretical analyzed results.
5	Study of half-wave and full-wave rectifier circuits without and with capacitor filter; recording of the waveforms and measurement of average and rms values of the rectified output.
6	Study of static characteristics of BJT in CE configuration.
7	DC biasing (Fixed bias) of the transistor in CE configuration and determination of its operating point.
8	Studies on Op-Amp applications (Inverting, non-inverting, integrating differentiating configurations) recording of the input-output waveforms.
9	Studies on logic gates (truth table verification of various gates, implementation of EXNOR and Half Adder using basic gates).
10	Design of 2:1 MUX and simple SR Latch.

Text Books:

- T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Edition, Pearson Education.
- T2. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th Edition, Oxford University Press.

Reference Books:

R1. V. K. Mehta and R. Mehta, *Principles of Electronics*, 3rd Edition, S. Chand Publishing, 1980.

Online Resources:

- 1. http://vlab.co.in/ba_labs_all.php?id=1
- 2. http://iitg.vlab.co.in/?sub=59&brch=165

Course Outcomes: At the end of this course, the students will be able to:

CO1	Familiarize with various electronic components, measuring instruments, semiconductor diodes and their applications.
CO2	Acquire knowledge of characteristics of transistors and design, testing & implementation of transistors in various applications
CO3	Gain understanding of operational amplifiers (Op-Amp) and design & testing of electronic circuits for various applications using Op-Amp.
CO4	Develop understanding of digital logic gates and design & test digital circuits for various applications using logic gates.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1										2	2	2
CO2	3	3	2	1									3	3	2
CO3	2	2	2	1									3	2	2
CO4	2	2	3										3	3	2

Type	Code	Basic Electrical Engineering Lab	L-T-P	Credits	Marks
ES	BTEE-P-ES-002	busic Electrical Engineering Eab	0-0-2	1	100

Objectives	Introduce the students to different electrical components and basic safety rules and regulations, give hands on practice about different measuring and protection equipment and their operations to understand and verify the basic concept of electrical & magnetic circuits and electric machines. The laboratory experiments shall go hand-in-hand with the topics taught in the theory class.
Pre-Requisites	Basic knowledge of different electrical components and different analysis techniques of electrical and magnetic circuits. Topics taught in Basic Electrical Engineering theory class are essential to conduct the experiments.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Connection and measurement of power consumption of a fluorescent lamp.
2	Identification of different terminals of a DC compound machine.
3	Power and power factor measurement of 3-phase load by two wattmeter method.
4	Connection and testing of a single-phase energy meter.
5	Determination of open circuit characteristics (OCC) of DC shunt generator.
6	Calculation of power and power factor in series R-L-C circuit by AVW method.
7	Polarity test of a single-phase transformer.
8	Study of single-phase induction motors / fan motor.
9	Verify Thevenin's Theorem and Superposition Theorem.
10	Draw the B-H curve of a magnetic Specimen.
11	Starting of three-phase induction motor.
12	Regulation and efficiency of single phase transformer by direct loading.

Text Books:

- T1. A. Husain, Fundamentals of Electrical Engineering, 4th Edition, Dhanpat Rai & Co., 2016.
- T2. B. L. Thereja & A. K. Thereja, A Textbook of Electrical Technology, 23rd Edition, S. Chand & Co.

Reference Books:

- R1. J. B. Gupta, A Textbook of Electrical Science, S. K. Kataria & Sons, 2013.
- R2. B. R. Gupta and V. Singhal, *Electrical Science*, S. Chand & Co, 2005.

Online Resources:

- 1. www.nptel.iitm.ac.in/electricalengineering
- 2. www.electronics-tutorials.ws/dc-circuits

Course Outcomes: At the end of this course, the students will be able to:

CO1	Get an exposure to common electrical components and their ratings.
CO2	Develop electrical circuits using wires, measuring instruments, and protective devices of appropriate ratings.
CO3	Understand the usage of common electrical measuring instruments.
CO4	Understand the basic characteristics of transformers and electrical machines.
CO5	Verify different network theorems and magnetic properties.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1 1	0				`			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			2		1		1	1	1	1	1	1	1	2
CO2	2			2		1		2	1	1	2	1	1	1	1
CO3	1			3		2		2	1	1	1	1	2	1	2
CO4	1			2		2		1	1	2	2	1	2	1	2
CO5	1			1		1		1	1	1	1	1	2	1	2

Type	Code	Computer Programming Lab	L-T-P	Credits	Marks
ES	BTCS-P-ES-002	Computer Frogramming Lab	0-0-4	2	100

Objectives	To enable the students to analyse problems, formulate and implement solutions using the C programming language. The students will develop logical understanding for converting solutions of problems into C programs to be executed on a computer.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to computers and Linux operating system.
2, 3	Get acquainted with the programming environment - Linux commands and VI-editor.
4	Editing, compiling, executing, and debugging of simple C programs.
5	Programs using operators and formatted input/output statements.
6	Decision making using if, if-else, else-if ladder, nested if.
7	Decision making using switch-case construct.
8,9	Loop control structure (while, do-while, for) with jump statements.
10	Nested loops (printing various formats)
11, 12	1-D arrays including operation like searching, sorting, merging etc.
13	Handling 2-D arrays such as matrix operations.
14, 15	Programs on strings using various string handling functions (library functions)
16, 17	Designing user-defined functions.
18, 19	Programs on recursion.
20	Designing user defined functions for string manipulation.
21	Passing arrays (both 1D and 2D) to functions.
22, 23	Structure, array of structure, nested structure.
24	Dynamic memory management.
25	Self-referential structure (create and display operation of single linked list)
26, 27	File handling - reading from and writing to files.
28	Command-line argument, pre-processor directives.

Text Books:

- T1. E. Balagurusamy, *Programming in ANSI C*, 7th Edition, McGraw-Hill Education, 2017. T2. Y. Kanetker, *Let Us C*, 16th Edition, BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Edition, Pearson Education, 2015.
- R2. H. Schildt, C: The Complete Reference, 4th Edition, McGraw-Hill, 2017.
- R3. A. Kelley and I. Pohl, A Book on C, 4th Edition, Pearson Education, 2008.
- R4. B. Gottfried, Schaum's Outline of Programming with C, 3rd Edition, McGraw-Hill, 2017.

Online Resources:

- 1. https://www.w3resource.com/c-programming-exercises/
- 2. https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx
- 3. https://www.onlinegdb.com/online_c_compiler
- 4. https://www.tutorialspoint.com/compile_c_online.php

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Construct C programs for mathematical operations using control statements.					
CO2	CO2 Develop C programs for Array and String manipulation.					
CO3	Construct modular programs for better maintenance and reusability.					
CO4	Manipulate heterogeneous data using structure and union.					
CO5	Create and manipulate files using C programs.					

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1								1	3	2	3
CO2	3	3	3	2								1	3	2	3
CO3	3	3	3	2								1	3	2	3
CO4	3	2	2	2								1	3	2	3
CO5	3	3	2	3								1	2	1	1

Type	Code	│ Data Structures & Algorithms Lab	L-T-P	Credits	Marks
ES	BTCS-P-ES-004	Data Structures & Algorithms Lab	0-0-4	2	100

Objectives	Develop skills to design and analyze simple linear and non linear data structures, strengthening the ability of students to identify and apply the suitable data structure for the given real world problem.
Pre-Requisites	Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Operations on arrays – insert, delete, merge.
2	Selection Sort, Bubble sort.
3	Linear Search and Binary search.
4	Representation of sparse matrix.
5, 6	Addition and transpose of sparse matrix.
7	Implementation of stack using array.
8	Conversion of infix to postfix expression.
9	Evaluation of postfix expression.
10	Operations of queue using array.
11	Operations of circular queue.
12, 13	Single linked list operations.
14, 15	Double linked list operations.
16	Circular linked list operations.
17	Stack using linked list.
18	Queue using linked list.
19	Polynomial addition using linked-list.
20, 21	Binary Search Tree operations.
22, 23	Graph traversal (BFS, DFS).
24	Warshall's shortest path algorithm.
25, 26	Implementation Insertion Sort and Quick Sort.
27, 28	Implementation of Merge Sort and Heap Sort.

Text Books:

- T1. E. Horowitz, S. Sahni, S. Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, Universities Press, 2008.
- T2. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Edition, Pearson Education, 2002.

Reference Books:

- R1. A. K. Rath and A. K. Jagadev, *Data Structures Using C*, 2nd Edition, Scitech Publication, 2011.
- R2. Y. Kanetkar, *Data Structures Through C*, 2nd Edition, BPB Publication, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106127/: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
- 2. https://nptel.ac.in/courses/106/102/106102064/: By Prof. N. Garg, IIT Delhi
- 3. https://nptel.ac.in/courses/106/106/106106130/: By Dr. N. S. Narayanaswamy, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Implement various operations on array and sparse matrix.
CO2	Design functions to implement basic operations on stack & queue and apply them to solve real world problems.
CO3	Implement single, double & circular linked list and apply them in various real life applications.
CO4	Construct binary search tree and perform traversal, insertion, deletion, and search operations on it.
CO5	Perform BFS and DFS traversal operations in a graph and implement various sorting and searching algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2								1	2	2	1
CO2	3	3	3	2								1	2	1	1
CO3	3	3	3	2								1	2	1	1
CO4	3	3	2	3								1	2	2	1
CO5	3	3	3	3								1	2	3	1

Type	Code	Communicative & Technical English Lab	L-T-P	Credits	Marks
HS	BTBS-P-HS-011	Communicative & Technical English Lab	0-0-2	1	100

Objectives	This laboratory course is designed to make students effective communicators and addressing issues like speaking inhibitions, accomplished by individual and team activities based on the four skills of language (LSRW).					
Pre-Requisites	Basic knowledge of English grammar and the ability to speak, read and write using the English language.					
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair work, group/team work, individual and group presentations, discussions, role plays, listening to audios, watching videos, business writing and vocabulary enhancement.					

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Module 1: Analyzing communication situations through role-plays.
2	Module 1: Barriers in communication: video analysis
3	Module 2: Developing pronunciation skills – speech sounds and stress
4	Module 2: Developing pronunciation skills: listening to native English speech
5	Module 3: Reading comprehension – extensive: short story
6	Module 3: Reading comprehension – intensive: editorial
7	Module 4: Models of oral business communication: role-plays
8	Module 4: Oral presentations
9	Module 4: Oral presentations
10	Module 4: Oral presentations
11	Module 5: Written Communication – paragraph development
12	Module 5: Business Writing – email
13	Module 5: Business Writing – letter

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, Tata McGraw Hill, 2017.
- T2. T. Balasubramaniam, English Phonetics for Indian Students, Trinity Press.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practices*, Oxford University Press.

Reference Books:

- R1. S. Samantray, Business Communication and Communicative English, S. Chand & Co.
- R2. J. Seeley, *The Oxford Guide to Writing and Speaking*, Oxford University Press.
- R3. B. K. Mitra, *Communication Skills for Engineers*, Oxford University Press, 2011.
- R4. B. K. Das, An Introduction to Professional English & Soft Skills, Cambridge Univ. Press, 2009.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Speak in public and overcome their inhibitions to speak.
CO2	Develop English pronunciation skills through practice.
CO3	Comprehend and critically appreciate technical texts.
CO4	Work effectively as a member of a team or as a leader through group presentation assignments.
CO5	Critically analyse texts of various kinds and compose effective business messages.

Program Outcomes Relevant to the Course:

PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								2	3	3	3	3	1	3	1
CO2									1	3	1	3		2	1
CO3									1	3	2	3	1	3	1
CO4								2	3	3	3	3	1	3	1
CO5								1	1			3	1	3	1

Part II 2nd Year B. Tech. (EEE)

Curriculum Structure

	Semester III										
Type	Code	Course Title		WCE L-T-F		Credits L-T-P					
THEORY											
BS	BTBS-T-BS-041	Mathematics-III for Electrical Sciences	3	0	0	3	0	0			
ES	BTCS-T-ES-005	OOP Using Java	3	0	0	3	0	0			
ES	BTBS-T-ES-013	Basics of Mechanical Engineering	3	3 1 0			1	0			
PC	BTEE-T-PC-001	Circuits & Signals	s 3 1 0				1	0			
PC	BTEE-T-PC-002	Electromagnetic Theory	3	0	0	3	0	0			
PC	BTEI-T-PC-001	Analog Electronic Circuits	3	0	0	3	0	0			
		PRACTICAL									
ES	BTCS-P-ES-006	OOP Using Java Lab	0	0	2	0	0	1			
PC	BTEE-P-PC-001	Circuits & Signals Lab	0	0	2	0	0	1			
PC	BTEI-P-PC-002	Analog Electronic Circuits Lab	0	0	2	0	0	1			
PJ	BTII-P-PJ-001	Summer Internship - I 0				0	0	1			
		SUB-TOTAL	18	2	6	18	2	4			
	TOTAL 26						24				

	Semester IV										
Туре	Code	Course Title		WCH		Credits L-T-P					
	THEORY										
BS	BTBS-T-BS-025	Mathematics-IV for Electrical Sciences	3	0	0	3	0	0			
PC	BTBS-T-HS-022	Fundamentals of Management	3	0	0	3	0	0			
PC	BTEC-T-PC-010	Digital Electronic Circuits	3	0	0	3	0	0			
PC	BTEE-T-PC-010	Electrical Machines	3	1	0	3	1	0			
PC	BTEE-T-PC-008	Measurements & Instrumentation 3 0 0						0			
OE		Open Elective - I	3	0	0	3	0	0			
MC	BTBS-T-MC-020	Universal Human Values & Professional Ethics	2	0	0	0	0	0			
		PRACTICAL	•		•						
PC	BTEC-P-PC-011	Digital Electronic Circuits Lab	0	0	2	0	0	1			
PC	BTEE-P-PC-011	Electrical Machines Lab	0	0	2	0	0	1			
PC	BTEE-P-PC-007	Measurments & Instrumentation Lab 0 0 2						1			
HS	BTBS-P-HS-012	Corporate Communication Lab 0 0 2					0	1			
		SUB-TOTAL	20	20 1 8			1	4			
		TOTAL		29			23				

Note: Courses offered under each elective are given in "List of Electives" on Page 54.

List of Electives

Code	Elective # and Subjects
Oper	ı Elective - I
BTBS-T-OE-027	[BSH] Applied Linear Algebra
BTBS-T-OE-028	[BSH] Fluid Mechanics
BTEC-T-OE-056	[ECE] Electronic Devices & Modeling
BTCS-T-OE-036	[CSE] Operating Systems
BTCS-T-OE-039	[CSE] Programming in Python
BTEI-T-OE-020	[EIE] Biomedical Instrumentation & Signal Processing

Note: Open Electives are choice-based courses offered by other departments as indicated within brackets.

-	Гуре	Code	Mathematics-III for Electrical Sciences	L-T-P	Credits	Marks
	BS	BTBS-T-BS-041	Mathematics-III for Electrical Sciences	3-0-0	3	100

Objectives	The objective of this course is to provide the knowledge of Fourier Transforms, analytic functions, poles & zeros, residue calculus, and Laplace transform for study of electrical sciences.
Pre-Requisites	Knowledge of calculus of single variable, coordinate geometry of two and three dimensions, matrix algebra, and ordinary differential equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basics of Complex Numbers, Derivatives, Analytic Functions, C-R Equations, Basic elementary Complex functions.	8 Hours
Module-2	Complex Line Integration, Integral Theorems, Complex Power Series and Taylor Series.	8 Hours
Module-3	Laurent Series, Residue Integration and its application for evaluation of real integrals.	8 Hours
Module-4	Periodic function and Fourier series, Euler formula, Even and odd functions, Half range expansions, Fourier integrals, Power series solutions to ordinary differential equations.	9 Hours
Module-5	Laplace transform, inverse Laplace transform, shifting theorems, transform of derivatives and integrals, unit step function and Dirac delta function, applications to derivatives, differentiation and integration of transforms.	9 Hours
	Total	42 Hours

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, 8th Edition, Wiley India, 2015.

Reference Books:

- R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Edition, Oxford University Press, 2015.
- R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Edition, McGraw-Hill, 2017.

Online Resources:

- 1. http://www.nptel.ac.in/courses/111105035
- 2. http://www.nptel.ac.in/courses/122104017
- 3. http://nptel.ac.in/courses/122102009
- 4. http://nptel.ac.in/courses/111107063
- 5. https://www.coursera.org/learn/linearalgebra2
- 6. https://www.coursera.org/learn/differentiation-calculus
- 7. https://www.coursera.org/learn/single-variable-calculus
- 8. https://alison.com/courses/Algebra-Functions-Expressions-and-Equations

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts of Analytic functions.
CO2	Evaluate complex line integral and find the Taylor's series expansion of analytic functions.
CO3	Expand functions in Laurent's Series and evaluate integrations using residues.
CO4	Find the Fourier series and Fourier integral of functions.
CO5	Apply the concept of Laplace transforms to solve ordinary differential equations.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								2	1	1
CO2	3	3	2	1	2								2	1	1
CO3	3	3	3	3	1								2	1	1
CO4	3	3	3	2	3								3	1	1
CO5	3	3	2	2	2								2	1	1

Type	Code	OOP Using Java	L-T-P	Credits	Marks
ES	BTCS-T-ES-005	OOI Comg java	3-0-0	3	100

Objectives	The objective of this course is to introduce the key concepts of object-oriented programming (OOP) using Java as the programming language.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with a programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Mid-Term	End-Term	10141	
05	05	05	25	60	100

Detailed Syllabus

Module-#	Tonico	Цолж
iviouule-#	Topics	Hours
Module-1	Object oriented concepts: Object oriented systems development life cycle; Java Overview: Java Virtual Machine, Java buzz words, Data types, Operators, Control statements, Class fundamentals, Objects, Methods, Constructors, Overloading, Access modifiers.	8 Hours
Module-2	Inheritance: Basics of Inheritance, using super and final keyword, method overriding, Abstract classes, defining and importing packages, access protection, interfaces;	8 Hours
Module-3	Exception handling: Exception fundamentals, types, understanding different keywords (try, catch, finally, throw, throws), User defined exception handling; Threads: thread model, use of Thread class and Runnable interface, thread synchronization, multithreading, inter thread communication.	9 Hours
Module-4	Input/Output: Files, stream classes, reading console input; String manipulation: Basics of String handling, String class, StringBuilder, StringBuffer, StringTokenizer; Collection overview, Collection interfaces, Collection classes - ArrayList, LinkList, Set, Tree; Accessing a collection using iterator & for-each statement.	8 Hours
Module-5	Introduction to GUI Programming: working with windows, frames, graphics, color, and font. AWT Control fundamentals; Event handling: Delegation event model, event classes, sources, listeners, Adapter class, Swing overview.	9 Hours
	Total	42 Hours

Text Books:

- T1. H. Schildt, *Java: The Complete Reference*, 10th Edition, McGraw-Hill, 2017. T2. Y. D. Liang, *Introduction to Java Programming*, 9th Edition, Pearson Education, 2012.

Reference Books:

- R1. B. Bates, K. Sierra, *Head First Java*, 2nd Edition, O'Reilly Media, 2005.
 R2. E. Balaguruswamy, *Programming with Java A Primer*, 4th Edition, McGraw-Hill, 2009.
 R3. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd Edition, Pearson Education, 2009.
- R4. I. Horton, *Beginning Java*, 7th Edition, Wrox Publications, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/106105191/
- 2. https://docs.oracle.com/javase/tutorial/
- 3. http://www.javatpoint.com/java-tutorial
- 4. http://www.w3schools.in/java/
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply object oriented principles to develop Java programs for real life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robust & concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, string classes, and collection framework.
CO5	Design GUI applications using AWT and Swing.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1_1	- 0				`			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1		1						2	3		3
CO2	3	2	2	1		1						2	3		3
CO3	3	2	2	2		1						2	3		3
CO4	3	2	3	2		1						2	3		3
CO5	3	2	3	1		1						2	3		3

Type	Code	Basics of Mechanical Engineering	L-T-P	Credits	Marks
ES	BTBS-T-ES-013	Dasies of Mechanical Engineering	3-1-0	4	100

Objectives	The objectives of this course is to introduce basics of mechanical engineering, such as, statics, force equilibrium, free body diagrams, analysis of beams and associated stresses, laws of Thermodynamics and their applications in Power Plants and IC engines, and elements of fluid statics, which are essential and useful in every branch of engineering.
Pre-Requisites	Basic analytical and logical skills, a working knowledge of Physics and Mathematics including introductory calculus are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Engineering Mechanics: Basic concepts, System of Forces, Coplanar Concurrent Forces, Resultant-Moment of Forces and its application; Couples, Moment (about point and about axis), Varignon's theorem, Resultant of concurrent and non-concurrent coplanar forces, Static equilibrium, Free body diagram, Reactions; Friction, Laws of Coulomb friction; Problems involving large and small contact surfaces (Ladder and Wedges); Square threaded screws (self-locking, screw jack); Belt friction; Rolling resistance.	12 Hours
Module-2	Mechanical Properties of Materials: Stress-Strain behaviour, Brittle and Ductile materials, selection of materials, Impact Test; Analysis of Beams: Centre of Gravity and Moment of Inertia of a plane and composite sections; Types of Beams, Loads and Reactions, Shear Forces, Bending Moments; Bending of Beams, Bending Stresses and Shear Stresses in beams, Failure of Beams (in brief).	12 Hours
Module-3	Basics of Thermodynamics : System, Control Volume, Surrounding, Boundaries, Macroscopic and Microscopic approaches, Thermodynamic Equilibrium, State, Property, Process, Point and Path functions, Cycle, Reversibility and Irreversibility; Properties of pure substances and phase change, Property diagrams, Use of Steam Tables; Brief discussion on Zeroth Law, First law and Second Law of Thermodynamics.	12 Hours
Module-4	Applications of Thermodynamics : Brief description and working principles of Air Compressors, Steam Power Plant, Refrigerators and Heat Pump, I.C. Engines (two-stroke and four-stroke, petrol and diesel engines).	10 Hours
Module-5	Fluid Properties and Fluid Statics: Properties of a Fluid; Pascal's Law, Simple and Differential manometers, Hydrostatic forces on submerged surfaces, Buoyancy, Bernoulli's theorem.	10 Hours
	Total	56 Hours

Text Books:

- T1. S. Timoshenko, D. H. Young, S. Pati, and J. V. Rao, *Engineering Mechanics*, 5th Edition, McGraw-Hill, 2013.
- T2. G. H. Ryder, *Strength of Materials*, 3rd Edition, Macmillan Press, 1969.
- T3. R. E. Sonntag, C. Borgnakke, and G. J. Van Wylen, *Fundamentals of Thermodynamics*, 9th Edition. John Wiley & Sons, 2017.
- T4. S. K. Som, G. Biswas, and S. Chakraborty, *An Introduction to Fluid Mechanics and Fluid Machines*, 3rd Edition, McGraw-Hill Education, 2012.

Reference Books:

- R1. P. K. Nag, *Engineering Thermodynamics*, 4th Edition, McGraw-Hill, 2008.
- R2. R. K. Rajput, *Strength of Materials: Mechanics of Solids*, 7th Edition, S. Chand Publications, 2018.
- R3. R. K. Bansal, *A Textbook of Fluid Mechanics and Hydraulic Machines*, 9th Edition, Laxmi Publications, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/122104015/: Engineering Mechanics by Prof. M. Harbola, IIT Kanpur.
- 2. https://nptel.ac.in/courses/112/105/112105123/: Basic Thermodynamics by Prof. S. K. Som, IIT Kharagpur
- 3. https://nptel.ac.in/courses/112/105/112105171/: Basics of Fluid Mechanics by Prof. S. K. Som, IIT Kharagpur
- 4. https://nptel.ac.in/courses/105/105/105105108/: Strength of Materials by Prof. S. Bhatacharya, IIT Kharagpur)

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain and analyze the principles of mechanics to solve problems in statics.
CO2	Articulate mechanics of deformable bodies and mechanical properties of materials.
CO3	Understand and solve problems in theormodynamics of pure substances.
CO4	Explain the design and operation of various devices based on theormodynamic principles.
CO5	Analyze the behavior of fluids and apply the concepts to solve problems in hydrostatics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Cont'd...

PO5

Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

CO1	3	2	2	2	1				1	1	1
CO2	2	2	2	2	1				1	1	1
CO3	3	3	3	2	1				1	1	1
CO4	1	2	3	1	1				1	1	1
CO5	3	1	2	2	1				1	2	2

Type	Code	Circuits & Signals		Credits	Marks
PC	BTEE-T-PC-001	Circuits & Digitals	3-1-0	4	100

Objectives	The objective of this course is to study circuit configuration & synthesis with given specifications or network functions, test and improve the design as required, study various signals & systems in time & spectrum domains, and investigate the systems' stability & causality.
Pre-Requisites	Basics of Circuit analysis, Laplace transform, Fourier transform and Differential equations, and Knowledge of complex numbers and elementary calculus are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Network graph and incidence matrix, Network Theorems: Thevenin's theorem, Norton's theorem, Superposition theorem, Reciprocity theorem, Maximum power transfer theorem, Tellegen's theorem, Millman's theorem, Compensation theorem; Coupled Circuits: Introduction, Dot convention, Coefficient of coupling, Electrical equivalent of magnetically coupled coils, Series and parallel connection of coupled coils; Resonance: Introduction, Series Resonance, Parallel Resonance, Quality factor, Bandwidth and Selectivity for series resonant and parallel resonant circuits.	11 Hours
Module-2	Signals & Systems: Introduction, Classification, Continuous-time & Discrete-time LTI system, System representation through differential equations, Response of LTI system, Convolution & Correlation of signals; Fundamentals of Switching behavior, Fundamentals of Laplace & Inverse Laplace Transform, Initial and final value theorem; Application of Laplace Transform to Transient Analysis: Response of RL, RC & RLC network with step, sinusoidal, impulse and ramp input.	14 Hours
Module-3	Two Port Network Functions & Responses: Introduction, z, y, ABCD and h-parameters, Reciprocity and Symmetry, Interrelation of two-port parameters, Interconnection of two-port networks; Network Functions & Response: Transfer function and driving point function for one & two port networks, Concept of poles and zeros, Significance & Restriction on location of Poles and Zeros, Hurwitz polynomial and its properties, Positive real functions and their properties, Concepts of network synthesis.	12 Hours
Module-4	Periodic and Aperiodic function, Fourier series, Fourier Series Analysis of CT signals, Fourier Transform, properties, Circuit analysis with Fourier Series and Fourier Transform, Introduction to filters, Frequency response curve.	9 Hours

Cont'd...

Module-#	Topics	Hours	
Module-5	Discrete Time Signals: Z-Transform and its properties, Inverse Z-transform; Analysis of LSI Systems: Causality and Stability using Z-transform, Polezero Concepts, Transient and Steady State Response, Unilateral Z-transform and its properties, Solution of difference equations; Correlation of Discrete-time signals & its properties.	10 Hours	
Total			

Text Books:

- T1. M. E. Van Valkenburg, *Network Analysis*, 3rd Edition, Pearson Education, 2015.
- T2. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 5th Edition, Tata McGraw-Hill, 2013.
- T3. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, *Signals and Systems*, 2nd Edition, Prentice Hall India, 1992.

Reference Books:

- R1. A. Chakrabarti, Circuit Theory: Analysis and Synthesis, 7th Edition, Dhanpat Rai & Co., 2013.
- R2. S. Ghosh, *Network Theory: Analysis And Synthesis*, 1st Edition, Prentice Hall of India, 2009.
- R3. P. K. Satpathy, P. Kabisatapathy, S. P. Ghosh, and A. K. Chakraborty, *Network Theory*, 1st Edition, Tata McGraw-Hill, 2009.
- R4. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing: Principles, Algorithms and Applications*, 4th Edition, Prentice Hall India, 2007.
- R5. B. P. Lathi, *Principles of Signal Processing and Linear Systems*, 2nd Edition, Oxford Univ. Press, 2009.
- R6. A. N. Kani, Signals and Systems, 2nd Edition, McGraw-Hill Education, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/108102042/: by Prof. S. C. Dutta Roy, IIT Delhi
- 2. https://nptel.ac.in/courses/108106075/: by Prof. V. G. K. Murti, IIT Madras
- 3. https://nptel.ac.in/courses/117104074/: by Prof. K. S. Venkatesh, IIT Kanpur
- 4. https://nptel.ac.in/courses/108105065/: by Prof. T. K. Basu, IIT Kharagpur
- 5. https://nptel.ac.in/courses/108104100/: by Prof. A. K. Jagannatham, IIT Kanpur
- 6. https://nptel.ac.in/courses/117101055/: by Prof. V. M. Gadre, IIT Bombay
- 7. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain the concepts of network theorems, coupled circuits, and resonant circuits and apply them to solve complex networks problems.
CO2	Describe the switching phenomena of electrical circuits and evaluate transient & steady state performance using Laplace transformation.
CO3	Determine two-port network parameters and their practical application to electrical & electronic circuits.
CO4	Analyze sinusoidal & non-sinusoidal signals using Fourier series & transform and apply to electric circuit analysis.
CO5	Investigate the systems stability and causality using Z-Transform.

Program Outcomes Relevant to the Course:

	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
PO1	fundamentals, and an engineering specialisation to the solution of complex engineering
	problems.

Cont'd...

PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2	2	1						1	3	1	
CO2	3	3	1	2	2	2						1	3	1	
CO3	3	3	1	2	2							1	3	1	
CO4	3	3	1	2	2							1	3	1	
CO5	3	1	1	2	2	1							2	1	

Type	Code	Electromagnetic Theory	L-T-P	Credits	Marks
PC	BTEE-T-PC-002	Electromagnetic Theory	3-0-0	3	100

Objectives	The objective of this course is to study, analyze, synthesize & interpret the application of electric & magnetic fields as functions of time & space using different coordinate systems, and propagation of electromagnetic waves.
Pre-Requisites	Knowledge of physics, mathematics, and fundamentals of engineering sciences is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	gnment(s) Mid-Term End-Term		Iotai	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Vector Analysis: Scalars, Vectors, Unit vector, Scalar & Vector fields, Co- ordinate systems and transformation, Cartesian co-ordinates, Cylindrical co-ordinates, Spherical co-ordinates and Application; Vector Calculus: Line, Surface and volume integrals, Del operator, Gradient of a scalar, Divergence of a vector and Divergence theorem, Curl of a vector and Stoke's theorem, Laplacian and Applications.	8 Hours
Module-2	Electrostatic Fields: Coulomb's Law, Electric field intensity, Electric fields due to point, line, surface and volume charge, Electric flux density, Gauss's Law - Maxwell's equation, Application of Gauss's Law, Electric potential, Potential due to a line, Surface and volume charge; Conservative field, Relationship between $E \& V$ - Maxwell's equations, An Electric Dipole, Dipole moment, Expression of E due to an electric Dipole, Energy density in the Electrostatic fields; Conductors: Current and Current density, Continuity equation, Point form of Ohm's law, Resistance of a conductor, Relaxation time; Dielectrics: Polarization, Dielectric strength, Capacitance, Boundary conditions, Poisson's and Laplace's equation, Uniqueness Theorem, General procedures for solving Laplace's equation.	12 Hours
Module-3	Magnetostatic Fields: Magnetic field Intensity, Biot-Savart's law & its application, Ampere's Circuital Law & its application, Magnetic scalar & vector potentials, Magnetic Boundary conditions, Application; Force in Magnetic Fields: Force on a moving Point charge, Force between two straight, Long and parallel conductors carrying currents.	8 Hours

Module-#	Topics	Hours
Module-4	Faraday's Law and Lenz's Law: Statically inducted EMF, Dynamically induced EMF, Displacement current density and displacement current, Physical significance of displacement current; Maxwell's Equations for Static fields, Maxwell's equations for Time varying fields: Maxwell's Equation for Harmonic varying fields; Maxwell's Equation for Good conductors, Maxwell's Equation for Free space; Retarded Potential, Average power density, Poynting vector and Poynting Theorem(Integral & Point forms), Applications.	8 Hours
Module-5	Wave Propagation: Electromagnetic wave, Electromagnetic wave equation in phasor form, Intrinsic impedance, The loss tangent, Uniform plane waves, Uniform plane wave in lossy dielectric, Perfect dielectric, Free space and in Good conductors, Skin depth, Transmission lines, Transmission line equations, Characteristic impedance, Wave form distortion, Distortionless line.	6 Hours
	Total	42 Hours

Text Books:

- T1. S. C. Mahapatra and S. Mahapatra, *Principles of Electromagnetics*, 2nd Edition, McGraw Hill Education, 2015.
- T2. M. N. O. Sadiku and S. V. Kulkarni, *Principles of Electromagnetic*, 6th Edition, Oxford University Press, 2009.

Reference Books:

- R1. E. C. Jordan and K. G. Balmin, *Electromagnetic Waves and Radiating Systems*, 2nd Edition, Pearson Education, 2009.
- R2. B. N. Basu, *Engineering Electromagnetic Essential*, 1st Edition, Orient Blackswan, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/115/101/115101005/: Prof. D. K. Ghosh, IIT Bombay
- 2. https://nptel.ac.in/courses/108/104/108104087/: by Prof. P. Kumar, IIT Kanpur
- 3. https://nptel.ac.in/courses/108/102/108102119/: by Prof. S. Aditya, IIT Delhi
- 4. https://nptel.ac.in/courses/115/104/115104088/: by Prof. M. K. Harbola, IIT Kanpur
- 5. https://nptel.ac.in/courses/108/106/108106073/: by Prof. H. Ramachandran, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain various co-ordinate systems and solve problems involving vector calculus.
CO2	Describe electrostatic fields, their characteristics and associated parameters.
CO3	Visualize magneto-static fields, their characteristics and associated parameters.
CO4	Analyze and apply Maxwell's equations to various electromagnetic fields.
CO5	Interpret the propagation of EM waves through different mediums.

Program Outcomes Relevant to the Course:

	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
PO1	fundamentals, and an engineering specialisation to the solution of complex engineering
	problems.

PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1							1	3	1	1
CO2	3	3	3	2	1							1	3		1
CO3	2	2	3	2	1							1	2	1	1
CO4	2	2	2	2	1							1	3	2	2
CO5	2	2	3	3	1							1	3	1	1

Type	Code	Analog Electronic Circuits	L-T-P	Credits	Marks
PC	BTEI-T-PC-001	Analog Licetonic Circuits	3-0-0	3	100

Objectives	The objective of this course is to be familiar with Transistor (BJT, JFET and MOSFET) amplifiers, differential amplifiers and their implementations along with studying their characteristics & applications.
Pre-Requisites	Basic knowledge of semiconductor diodes and Bipolar Junction Transistors (BJT) is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Bipolar Junction Transistor (BJT) and its AC Analysis : Introduction to BJT DC Biasing Circuits, Design of different Biasing Circuits, Bias Stability, Introduction to BJT small signal model, r_e and h -models of different configurations (CB, CE, and CC), r_e and h -models of different biasing circuits, Effect of R_S and R_L , Standard ICs.	9 Hours
Module-2	Field Effect Transistor (FET) and its AC Analysis : JFET DC Biasing Circuits (Fixed, Self and Voltage divider), MOSFET DC Biasing Circuits, Introduction to JFET and MOSFET small signal model, Small signal model of different configurations (CG, CD, and CS), Small signal model of different biasing circuits of MOSFET, Effect of R_S and R_L , Standard ICs.	9 Hours
Module-3	Compound Configurations: CMOS and its circuit realization, Darlington pair, Current Mirror, Cascade & Cascode configuration. Frequency Response Analysis: Low Frequency Response of BJT, High Frequency Response of BJT, Low Frequency Response of FET, Miller's Effect, Multistage Frequency Effects, Gain-Bandwidth Relation.	8 Hours
Module-4	Operational Amplifiers : Introduction to OP-AMP, Applications of OP-AMP: Summing, Buffer, Log Differentiator, Schmitt Trigger and Integrator, Introduction to Differential Amplifier, DC and AC Analysis of Differential Amplifier, Instrumentation Amplifier, Active Filters, Standard ICs.	8 Hours
Module-5	Feedback Amplifiers : Introduction to Feedback Amplifiers, Feedback Topologies, Derivation of different parameters (Z_i , Z_o , A_v , A_i), Practical feedback circuits, Standard ICs. Oscillators : Introduction to Oscillators, High Frequency Oscillators: Hartley and Crystal Oscillators, Standard ICs. Power Amplifiers : Introduction to Power Amplifiers, Classification of Power Amplifiers: Class A, Class B, Class C, Push-Pull Amplifiers, Standard ICs.	8 Hours
	Total	42 Hours

Text Books:

- T1. A. S. Sedra and K. C. Smith, *Microelectronic Circuits: Theory and Applications (International Version)*, 7th Edition, Oxford University Press, 2017.
- T2. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Edition, Pearson Education, 2013.
- T3. J. V. Wait, L. P. Huelsman, and G. A. Korn, *Introduction to Operational Amplifier Theory and Applications*, McGraw-Hill USA, 1992.
- T4. J. Millman and A. Grabel, *Microelectronics*, 2nd Edition, McGraw-Hill Education, 2017.

Reference Books:

- R1. J. Millman and C. C. Halkias, *Integrated Electronics: Analog and Digital Circuits and Systems*, 2nd Edition, TMH Publications, 2017.
- R2. A. Malvino and D. J. Bates, *Electronic Principles*, 7th Edition, McGraw-Hill, 2017.
- R3. P. Horowitz and W. Hill, *The Art of Electronics*, 2nd Edition, Cambridge University Press, 1989.
- R4. P. R. Gray, P. J. Hurst, R. G. Meyer, and S. H. Lewis, *Analysis and Design of Analog Integrated Circuits*, 5th Edition, John Wiley & Sons, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/117101106/
- 2. https://nptel.ac.in/courses/108102095/
- 3. http://www.electrical4u.com/circuit-analysis.htm
- 4. http://www.allaboutcircuits.com
- 5. https://www.electronics-tutorials.ws/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design different biasing methods and small signal models of BJT and estimate the performance parameters of different amplifier configurations.
CO2	Analyze the structural behavior, characteristics and different biasing configurations of JFET and MOSFET.
CO3	Understand and analyze the structural configuration of multi-stage amplifier and plot its frequency response.
CO4	Study the construction and characteristics of an Op-Amp and design circuits for various linear applications using Op-Amp.
CO5	Design various industrial circuits such as oscillators & negative feedback amplifiers using transistors and validate their experimental results.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3								3	1	1
CO2	3	3	3	3	2							1	3	2	2
CO3	3	3	2	3	2							1	3	2	3
CO4	3	3	3	2	3							1	3	1	2
CO5	3	3	3	3	3							1	3	3	3

Type	Code	OOP Using Java Lab	L-T-P	Credits	Marks
ES	BTCS-P-ES-006	OOI OSING Java Lab	0-0-2	1	100

Objectives	The objective of the course is to apply object oriented programming principles and implement object oriented programming using JAVA language.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other object oriented programming language will be beneficial.
Teaching Scheme	Regular laboratory classes with the use of ICT whenever required, demonstration through practical simulation of code using IDE.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

	Detailed Syllab as
Experiment-#	Assignment/Experiment
1	Understanding Java platform, compilation, and execution of a java program.
2	Overview of Eclipse IDE.
3	Use of class, use of control statements, data types, operators.
4	Implement class, object, constructor, methods, and other OOP features.
5	Inheritance Basics, more uses of constructor, method overriding, use of final.
6	Object class, practical use of abstract class.
7	Using Interface for achieving multiple inheritance, implementation of package.
8	Exception handing fundamentals, java built-in exceptions, Use of Scanner class for console input, use of own Exception subclass.
9	Java thread life cycle model and implementation approach, thread priority, implementation of synchronization.
10	I/O Basics, byte stream and character streams, reading and writing files, text processing using Java pre-defined stringBuilder and stringBuffer classes.
11	Basics of Java collection framework, implementation of collections in Java with different programs.
12	GUI basics and Window fundamentals, working with different Component, Container and Layout Managers.
13	Event handling for interactive GUI application.
14	Final lab test and viva voce.

Text Books:

- T1. H. Schildt, *Java: The Complete Reference*, 9th Edition, McGraw-Hill, 2011.
- T2. Y. D. Liang, *Introduction to Java Programming*, 9th Edition, Pearson Education, 2012.

Reference Books:

- R1. B. Bates, K. Sierra, *Head First Java*, 2nd Edition, O'Reilly Media, 2005.
 R2. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd Edition, Pearson Education, 2009.
 R3. I. Horton, *Beginning Java*, 7th Edition, Wrox Publications, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/106105191/
- 2. https://docs.oracle.com/javase/tutorial/
- 3. http://www.javatpoint.com/java-tutorial
- 4. http://www.w3schools.in/java/
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply object oriented programming to develop Java programs for real-life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robus and concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, String classes and collection framework.
CO5	Design GUI applications using AWT and Swing.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	- 0				`			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1		1						2	3		3
CO2	3	2	2	1		1						2	3		3
CO3	3	2	2	2		1						2	3		3
CO4	3	2	3	2		1						2	3		3
CO5	3	2	3	1		1						2	3		3

Type	Code	Circuits & Signals Lab	L-T-P	Credits	Marks
PC	BTEE-P-PC-001	Circuits & Signals Lab	0-0-2	1	100

Objectives	The objective of the laboratory course is to provide practical knowledge of network theory and recording the experimental data effectively and correctly by studying various signals and systems in time & spectrum domains using software.
Pre-Requisites	Basic knowledge of electrical & electronics engineering, Laplace transform and differential equations is required.
Teaching Scheme	Regular laboratory experiments to be conducted using hardware and software tools under the supervision of the teacher. Demonstration along with required safety measures will be explained for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Verification of Network Theorems (Superposition, Thevenin, Norton, Maximum Power Transfer) both in DC & AC.
2	Study of resonance in R-L-C series and parallel circuit.
3	Determination of circuit parameters: Z, Y, h, ABCD Parameters
4	Frequency response of active Filters.
5	Determination of self-inductance, mutual inductance and coupling coefficient of a single phase two winding transformer representing a coupled circuit.
6	Generation of various types of continuous and discrete waveforms (sine, cosine, square, triangular etc.) using MATLAB.
7	Linear convolution of signals (without using the inbuilt conv. function in MATLAB).
8	Computation of autocorrelation of a signal, cross correlation of two signals using MATLAB.
9	Spectral analysis of a non-sinusoidal waveform.
10	Modelling and simulation of DC and AC transients for R-L, R-C & R-L-C circuits using simulations.

Text Books:

- T1. M. E. Van Valkenburg, *Network Analysis*, 3rd Edition, Pearson Education, 2015.
- T2. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 5th Edition, Tata McGraw-Hill, 2013.
- T3. A. Chakrabarti, Circuit Theory: Analysis and Synthesis, 7th Edition, Dhanpat Rai & Co., 2013.

Reference Books:

- R1. S. Ghosh, *Network Theory: Analysis And Synthesis*, 1st Edition, Prentice Hall of India, 2009.
- R2. P. K. Satpathy, P. Kabisatapathy, S. P. Ghosh, and A. K. Chakraborty, *Network Theory*, 1st Edition, Tata McGraw-Hill, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/108102042/: by Prof. S. C. Dutta Roy, IIT Delhi
- 2. https://nptel.ac.in/courses/108106075/: by Prof. V. G. K. Murti, IIT Madras
- 3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Adopt procedures to conduct experiments safely, analyze results and develop technically sound report of outcomes.
CO2	Relate the co-relation between frequency and circuit parameters at resonance condition.
CO3	Design of different configurations in electrical networks.
CO4	Identify & design various filters and examine their frequency response.
CO5	Employ concept of coupled circuits to electrical machines.
CO6	Analyze continuous & discrete signals using convolution, autocorrelation and Fourier series.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1						2	2	1	
CO2	2	1	1	2	1							1	2	1	
CO3	2	2	1	2	1							1	2	1	
CO4	1	1	1	1	1	1						1	2	1	1
CO5	3	3	2	2	3							2	2	1	
CO6	3	2	1	3	2							2	1	2	2

Type	Code	Analog Electronic Circuits Lab	L-T-P	Credits	Marks
PC	BTEI-P-PC-002	Analog Electronic Circuits Eub	0-0-2	1	100

Objectives	The objective of the course is to design, implement and test transistor biasing, amplifying action and frequency response. Also study the linear and nonlinear applications of amplifiers.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge of Basic electronics is required.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the teacher with focus on implementation in hardware/software tools.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Design and simulate BJT bias circuit and compare the results.
2	Design and simulate JFET/MOSFET bias circuit and compare the results.
3	Design and simulate BJT common-emitter circuit and compare DC and AC performance.
4	Design and simulate JFET/MOSFET common-source circuit and compare DC and AC performance.
5	Determining the frequency response of a common-emitter amplifier: low frequency, high frequency and mid frequency response and compare with simulated results.
6	Differential amplifier circuits: DC bias & AC operation with & without current source.
7	Study of Darlington connection and current mirror circuits.
8	OP-Amp Frequency Response and Compensation.
9	Application of Op-Amp as differentiator, integrator, square wave generator.
10	Obtain the band width of FET/BJT using Square wave testing of an amplifier.
11	RC phase shift oscillator/Wien-Bridge Oscillator using Op-Amp/Crystal Oscillator.
12	Class A and Class B Power Amplifiers.

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 10th Edition, Pearson Education, 2009.

Reference Books:

- R1. L. K. Maheshwari and M. M. S. Anand, *Laboratory Experiments and PSPICE Simulations in Analog Electronics*, PHI Learning, 2006.
- R2. L. K. Maheshwari and M. M. S. Anand, *Laboratory Manual for Introductory Electronics Experiments*, John Wiley & Sons, 1980.
- R3. K. A. Navas, *Electronics Lab Manual*, *Vol-2*, 6th Edition, PHI Learning, 2018.

Online Resources:

- 1. http://www2.ece.ohio-state.edu/ee327/
- 2. https://wiki.analog.com/university/courses/alm1k/alm_circuits_lab_outline
- 3. https://wiki.analog.com/university/courses/electronics/labs

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design, assemble and test BJT biasing circuits.
CO2	Analyze the Dc and Ac performance of BJT and FET.
CO3	Understand the frequency response of single & multi-stage BJT and compare the results.
CO4	Study operational amplifier and its various applications.
CO5	Analyze and design various wave shaping circuits.
CO6	Implement different oscillator circuits and analyze power amplifier characteristics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1_1	- 0				•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2							1	3	1	1
CO2	3	3	2	3	2								3	1	1
CO3	3	3	2	3	3								3	2	2
CO4	3	3	3	3	3								3	1	2
CO5	3	2	2	3	2							1	3	2	3
CO6	3	2	3	3	3						·		3	3	2

Type	Code	Mathematics-IV for Electrical Sciences	L-T-P	Credits	Marks
BS	BTBS-T-BS-025	Mathematics-1 v for Electrical Sciences	3-0-0	3	100

Objectives	The objective of this course is to provide the knowledge of vector calculus, partial differential equations & numerical methods, along with the applications of these methods in engineering.
Pre-Requisites	Knowledge of calculus of single variable, coordinate geometry of two and three dimensions, and ordinary differential equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	IUtai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Partial derivatives, Chain rule Maxima minima in several variables; Vector and scalar functions and fields, derivatives, Directional derivative & gradient of a scalar field, Divergence & Curl of a vector field.	8 Hours
Module-2	Vector line integrals, Line integrals independent of path, Double integrals, Green's theorem in the plane Surfaces, Surface integrals, Triple integrals, Gauss divergence theorem, Stoke's theorem.	10 Hours
Module-3	Basic Concepts of PDEs, One Dimensional Wave Equation and its solutions, One Dimensional Heat Equation and its solutions, Two dimensional heat equation, Laplace Equation, Solution of Laplace equation in cylindrical and spherical coordinates.	10 Hours
Module-4	Error Analysis, Solution of Nonlinear Equations, Bisection Method, Fixed-Point Iteration Method, Secant Method, Newton Method, Interpolation by Polynomials: Lagrange Interpolation, Newton Divided Differences, Newton's forward & backward Interpolation.	7 Hours
Module-5	Numerical Differentiation and Integration, Trapezoidal, Simpson's Rules, Composite Rules, Error Formulae, Gaussian Quadrature Rules, Solution of Differential Equations by Euler Method, Modified Euler Method, and Runge-Kutta Methods.	7 Hours
	Total	42 Hours

Text Books:

T1. E. Kreyszig, *Advanced Engineering Mathematics*, 8th Edition, Wiley India, 2015.

Reference Books:

- R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Edition, Oxford University Press, 2015.
- R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Edition, McGraw-Hill, 2017.

Online Resources:

- 1. http://www.nptel.ac.in/courses/111105035
- 2. http://www.nptel.ac.in/courses/122104017
- 3. http://nptel.ac.in/courses/122102009

- 4. http://nptel.ac.in/courses/111107063
- 5. https://www.coursera.org/learn/linearalgebra2
- 6. https://www.coursera.org/learn/differentiation-calculus
- 7. https://www.coursera.org/learn/single-variable-calculus
- 8. https://alison.com/courses/Algebra-Functions-Expressions-and-Equations

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts vector differential calculus and their applications.
CO2	Understand the concepts vector integral calculus and their applications.
CO3	Solve partial differential equations for engineering applications and interpret the solution.
CO4	Find the root of non-linear and transcendental equations using numerical methods and interpolate a data.
CO5	Perform numerical integration and solve ordinary differential equations using various numerical methods.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

					•										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								2	1	1
CO2	3	3	2	1	2								3	1	1
CO3	3	3	3	3	1								2	1	1
CO4	3	3	3	2	3								3	1	1
CO5	3	3	2	2	2								3	1	1

Type	Code	Fundamentals of Management	L-T-P	Credits	Marks
HS	BTBS-T-HS-022	Tundamentals of Wanagement	3-0-0	3	100

Objectives	The objective of this course is to provide basic knowledge on management of business, finance, marketing, and human resources, which will help the students
	to grow from a team player to a good manager in an enterprise.
Pre-Requisites	General knowledge of any organization and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to
	be interactive with real-life examples.

T	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	uiz Surprise Test(s) Assignment(s) Mid-Term End-Term				iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Concepts of Management: Management as an art or science, the process of management, managerial skills, good managers are born, not made, management is concerned with ideas, things and people, inducing workers to put in their best, levels and types of management, evolution of management thought, managerial environment.	8 Hours
Module-2	Functions of Management : Planning and its features and process, types of plan, effective planning, Organizing and its process, formal and informal organization, directing and its elements, staffing and functions, controlling & its features and process, tools of controlling.	6 Hours
Module-3	Marketing Function: Modern concepts of marketing, marketing vs. selling, functional classification of marketing, functions of marketing management, marketing process; Marketing Mix: product and types of product, product life cycle, development of a new product, price, factors affecting price, pricing strategies; Distribution channel: role and functions, selection of a distribution channel, promotion and types of promotion, developing an advertising campaign, promotional strategies.	12 Hours
Module-4	Financial Function : Scope and objectives, financial functions, sources of finance, project appraisal, tools of financial decisions making, overview of working capital.	6 Hours
Module-5	HRM Function: Human Resource Management, Human Resource Development, importance of HRM, overview of job Analysis, job description, job specification, labour turnover; Manpower planning, recruitment, selection, induction, training and development, placement, wage and salary administration, performance appraisal, grievance handling, welfare aspects.	10 Hours
	Total	42 Hours

Text Books:

T1. S. A. Sherlekar and V. S. Sherlekar, *Modern Business Organization & Management*, 4^{th} Edition, Himalaya Publishing House, 2018.

Reference Books:

- R1. C. R. Basu, Business Organization & Management, 4th Edition, TMH, 2010.
- R2. P. C. Tulsian and V. Pandey, Business Organization & Management, 1st Edition, Pearson, 2002.
- R3. P. Kotler, K. L. Keller, A. Koshy, and M Jha, *Marketing Management*, 14th Edition, Pearson, 2012.
- R4. I. M. Pandey, *Financial Management*, 11th Edition, Vikas Publishing, 2015.
- R5. K. Aswasthapa, *Human Resource Management: Text and Cases*, 7th Edition, TMH, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/122108038/
- 2. https://iedunote.com/marketing-concept
- 3. https://www.tutorsonnet.com/functions-of-distribution-channel-homework-help.php
- 4. https://www.managementstudyhq.com/financial-function-types-importance-objectives.html

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the basic concepts of management and organization.
CO2	Explain fundamental management functions such as planning, directing, organizing, leading and controlling.
CO3	Adopt marketing policy by applying modern concept of marketing and select appropriate distribution channels.
CO4	Apply knowledge of financial functions in management for decision making.
CO5	Utilize the concepts of HRM functions to manage & develop human resources in an organization.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1	1		2		3	1		2	1
CO2									1		3	2		2	2
CO3						1	1		1		2	2		1	1
CO4											3	2		1	2
CO5						1	1		3		3	1		1	1

Type	Code	Digital Electronic Circuits		Credits	Marks
PC	BTEC-T-PC-010	Digital Electionic Circuits	3-0-0	3	100

Objectives	The objective of this course is to understand the concepts & techniques associated with digital systems and their design & implementations in VLSI technology.
Pre-Requisites	Knowledge of Basic Electronics and fundamentals of Number Systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Test(s) Assignment(s) Mid-Term End-Term			
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Fundamental Concepts: Introduction, Digital Signals, Basic Digital Circuits, Different Logic Gates and their Logic Operations, Universal Logic Gates, Complete Logic Sets, Examples of Logic Gate ICs; Logic Families – TTL and CMOS Logic Families, Implementation of logic gates using TTL and CMOS logic; Number Systems and Codes: Number Systems, Binary Number System, Signed Binary Numbers, Binary Arithmetic, 1's and 2's Complement Arithmetic, Octal Number System, Hexadecimal Number System, Codes, Error Detecting and Correcting Codes.	8 Hours
Module-2	Combinational Logic Design: Boolean Algebra and Identities, Algebraic Reduction and Realization using Logic Gates and Universal Logic Gates; Standard Representation for Logic Functions: Sum-of-Products (SOP) and Product-of-Sums (POS) forms, Canonical SOP and POS forms; K-map representation and simplification of logic functions using K-map, Minimization of 2, 3, 4 variable logical functions; Don't care conditions; Combinational Logic Components: Multiplexer, De-Multiplexer, Decoders, Encoder (Priority Encoder), Design of Combinational Circuits using Multiplexer and Decoder, Adders, Subtractors, Carry-Look-Ahead Adder, Binary Multiplier, An Equality Detector and Comparator, BCD to 7-Segment Display Decoder.	9 Hours
Module-3	Sequential Logic Design(Flip-Flops and FSMs): Flip Flops – A 1-bit memory, Bistable latch (SR and D), the clocked SR flip flop, J-K, T and D type flip-flops, Race Around Condition, Master Slave JK-flip flop, Conversion of flip-flops; Finite State Machines (FSMs) – Mealy and Moore models of Finite State Machines.	9 Hours

Module-#	Topics	Hours
Module-4	Sequential Logic Design (Shift Registers and Counters): Shift Registers – SISO, SIPO, PISO, PIPO and Universal Shift Register, Applications of Shift Registers (Serial to Parallel Converter, Parallel to Serial Converter), Ring Counter, Twisted Ring Counter (Johnson Counter); Counters – Design of Ripple (Asynchronous) Counters (Up/Down Counter, Mod-N Counter), Design of Synchronous Counters, Gray Code Counter and Random Sequence Counter using State Diagrams.	8 Hours
Module-5	Programmable Logic Devices: Programmable Logic Array (PLA), Programmable Array Logic (PAL), Complex Programmable Logic Devices (CPLDs); Semiconductor Memories: Basics of ROM, SRAM & DRAM; Basic Hardware Description Language: Introduction to VHDL/Verilog programming language, Different Modeling Styles (Dataflow, Behavioral and Structural), Data types and Objects, VHDL/Verilog program for combinational and sequential circuits.	8 Hours
	Total	42 Hours

Text Books:

- T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL*, 5th Edition, Pearson Education, 2013.
- T2. L. K. John and C. H. Roth Jr., *Digital System Design using VHDL*, 2nd Edition, Cengage Learning, 2012.

Reference Books:

- R1. D. V. Hall, *Digital Circuits and Systems*, International Student Edition, McGraw-Hill Education, 1989.
- R2. A. A. Kumar, *Fundamentals of Digital Circuits*, 3rd Edition, PHI Learning, 2014.
- R3. R. P. Jain, *Modern Digital Electronics*, 4th Edition, McGraw-Hill Education, 2009.
- R4. W. H. Gothmann, *Digital Electronics An Introduction to Theory and Practice*, 2nd Edition, PHI Learning, 1982.
- R5. J. F. Wakerly, *Digital Design: Principles and Practices*, 4th Edition, Pearson Education, 2008.
- R6. J. P. Uyemura, *A First Course in Digital System Design : An Integrated Approach*, Vikas-Thomson Learning, 2002.
- R7. R. J. Tocci, N. S. Widemer, and G. L. Moss, *Digital Systems Principles and Applications*, 11th Edition, Pearson Education, 2010.
- R8. A. Agarwal and J. Lang, *Foundations of Analog and Digital Electronic Circuits*, 1st Edition, Morgan Kaufmann, 2005.

Online Resources:

- 1. https://nptel.ac.in/courses/117106086/
- 2. https://swayam.gov.in/course/1392-digital-circuits-and-systems
- 3. https://nptel.ac.in/courses/117103064/
- 4. https://nptel.ac.in/courses/117105080/3
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/
- 6. http://www.allaboutcircuits.com
- 7. https://www.pannam.com/blog/free-resources-to-learn-electrical-engineering/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Become familiar with various number systems, codes and Boolean algebra.
CO2	Design and analyze combinational logic circuits.
CO3	Design & analyze various sequential logic circuits and be familiar with counter design.
CO4	Design, analyze and implement memory array using sequential network for digital logic & investigate performance of CMOS based logic circuits in modern VLSI technology.
CO5	Simulate and synthesize various digital circuits using VHDL in industry standard tools such as Xilinx, Mentor Graphics etc.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

1_1	<u> </u>				`	,			0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1							3	1	
CO2	2	3	2	3	3	1							3	1	
CO3	2	3	2	3	3	1							3	1	
CO4	2	3	2	3	2	1							3	1	
CO5	2	3	2	3	2	1							3	1	

Type	Code	Electrical Machines	L-T-P	Credits	Marks
PC	BTEE-T-PC-010	Electrical Machines	3-1-0	4	100

Objectives	The objective of this course is to study constructional features, working principles, operation, performance and various other aspects of DC & AC electrical machines, transformers, synchronous and induction machines etc.
Pre-Requisites	Knowledge of Basic Electrical Engineering, Physics and knowledge of Basic Mathematics such as Calculus, Ordinary Differential Equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Assignment(s) Mid-Term		iotai
05	05	05	25	60	100

Detailed Syllabus

3.6 1.1 "	T:	TT
Module-#	Topics	Hours
Module-1	DC Machines: Constructional features, Armature windings, Armature reaction, Commutation; DC Generator – Expression for EMF induced, Voltage build-up process, OCC, Critical resistance and critical speed, Load characteristics; DC Motor – Back Emf, Torque developed, Characteristic curves; Starting and speed Control of DC Shunt and Series motors, Losses, Efficiency and Power Flow diagram of a DC Machine.	12 Hours
Module-2	Transformers : Single-Phase Transformers – Emf equation, Phasor Diagrams at No-Load and Load Conditions of an Ideal transformer and Practical transformer, Equivalent Circuit, Per Unit Calculation and its importance, Voltage regulation, Losses, Efficiency and All-Day efficiency, Open Circuit and Short Circuit Test, Polarity Test, Parallel operation of transformers; Auto Transformer – Constructional and Operational features, Conversion of a two-winding transformer into auto-transformer; Three Phase Transformers – Connections, Vector Groups, Open Delta (V-Connection), T-Connection (Scott Connection).	12 Hours
Module-3	Induction Motor: Three-Phase Induction Motor – Principle of operation, Slip, Equivalent circuit, Torque-Slip characteristics, Condition for maximum torque, Losses and efficiency, No-load and blocked rotor tests, Cogging and crawling, Induction generators; Starting and Speed Control of Three Phase Induction Motor – Types of Starters, DOL, Rotor resistance, Autotransformer and Star-delta starters, Speed Control methods, Voltage control, Frequency control and pole changing, Cascaded connection.	11 Hours

Module-#	Topics	Hours
Module-4	Synchronous Machines: Synchronous Generator – Constructional details, Types of rotors, Winding factors, Emf equation, Synchronous reactance, Armature reaction, Phasor diagrams of non-salient pole synchronous generator connected to infinite bus, Synchronizing and parallel operation, Synchronizing torque, Change of excitation and mechanical input, Voltage regulation (EMF, MMF), Steady state power-angle characteristics, Two reaction theory, Phasor diagram for salient pole machines, Reluctance power and power angle characteristics, Slip test; Synchronous Motor – Principle of operation, Torque equation, V and Inverted V curves, Power input and power developed equations, starting methods, Hunting.	12 Hours
Module-5	Single-Phase Induction Motors: Constructional details, Double field revolving theory and operation, Equivalent circuit, No-load and blocked rotor test, starting methods of single-phase induction motors, Capacitor Start, Capacitor run Induction motor. Special Machines: Shaded pole induction motor, AC series motor, Stepper motors, BLDC motor. Practical Transformers: Components of a practical transformer, Power and distribution transformer, Cooling methods of transformers, Buchholtz's relay, Tap changing transformers and its application.	9 Hours
	Total	56 Hours

Text Books:

- T1. A. E. Fitzgerald, C. Kingsley Jr., and S. D. Umans, *Electric Machinery*, 6th Edition, McGraw-Hill Education, 2017.
- T2. S. J. Chapman, *Electric Machinery and Fundamentals*, 4th Edition, McGraw-Hill, 2017.

Reference Books:

- R1. P. S. Bimbhra, *Electrical Machinery*, 7th Edition, Khanna Publishers, 2011.
- R2. D. P. Kothari and I. J. Nagrath, *Electric Machines*, 5th Edition, McGraw-Hill Education, 2017.
- R3. P. K. Mukherjee and S. Chakravorti, *Electrical Machines*, Dhanpat Rai Publications, 2011.
- R4. B. S. Guru and H. R. Hiziroglu, *Electric Machinery and Transformers*, 3rd Edition, Oxford University Press, 2012.
- R5. B. L. Theraja and A. K. Theraja, *A Textbook of Electrical Technology (Vol.2) AC and DC Machines*, 23rd Revised Edition, S Chand & Co, 2005.

Online Resources:

- 1. https://nptel.ac.in/courses/108105017/
- 2. https://nptel.ac.in/courses/108/105/108105131/: by Prof. T. K. Bhattacharya, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108/106/108106072/: by Prof. K. Vasudevan, Prof. G. S. Rao, Prof. P. S. Rao, IIT Madras
- 4. https://swayam.gov.in/nd1noc20ee38/preview
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machines-fall-2013/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the construction & operation of DC machines and analyze their performance characteristics.
CO2	Explain the principles of various transformers and determine their circuit parameters and efficiency.
CO3	Describe the construction, operation and performance of 3-phase induction machines and apply the methods of starting & speed control of three-phase induction motors.

CO4	Explain the constructional details and performance of different types of synchronous generators and motors and plot their characteristic curves.
CO5	Explore single-phase induction motors, special type of machines and the practical transformer.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1							2	3	1	
CO2	3	2	1	1	1							2	3	2	
CO3	3	2	1	1	1							2	3	2	
CO4	3	2	1	1	1							2	3	1	
CO5	2	2	2		2							2	2	2	

Type	Code	Measurements & Instrumentation	L-T-P	Credits	Marks
PC	BTEE-T-PC-008	Measurements & Instrumentation	3-0-0	3	100

Objectives	The objective of this course is to introduce the students to basic principle of operation of different electrical & electronic measuring instruments and their uses in different branches of engineering. The course will also introduce the applications of transducers, storage, display and data acquisition systems.
Pre-Requisites	Basic knowledge of intermediate physics, Mathematics, Basic Electrical Engineering and Basic Electronics Engineering is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Types of Measurement Systems, Accuracy and Precision, Types of Errors, Standards and calibration, Classification of Measuring instruments; Electromechanical Indicating type Instruments : Types of torque, general constructional details; Ammeter and Voltmeter : Derivation for Deflecting Torque of PMMC and MI type; Measurement of Power and Energy : Construction, Theory and Principle of operation of (a) Electro-Dynamometer and Induction type Wattmeter (b) Single Phase Induction Type Watt-hour meter.	12 Hours
Module-2	Measurement of Resistance: Measurement of Resistance of Insulating Materials, Measurement of Earth Resistance using Fall of Potential Method; Measurement of Inductance: Maxwell's Inductance Bridge and Anderson Bridge; Measurement of Capacitance: Schering Bridge and Wein's Bridge, Wagnor's earthing device.	7 Hours
Module-3	Potentiometer: DC Potentiometers (Crompton), AC Potentiometers (Drysdale); Instrument Transformers : Construction, Theory, Equivalent circuit, Phasor Diagram, and characteristics of CTs and PTs.	8 Hours
Module-4	Electronic Instruments: AC Voltmeters using Rectifiers, Digital voltmeters, Digital Multimeters, Digital RLC Meter, and Digital Frequency Meter; Storage and Display Devices: Magnetic disk, CRT display, DSO, LED.	7 Hours
Module-5	Transducers and Data Acquisition Systems : Classification of transducers, Selection of transducers, Resistive, Capacitive & Inductive transducers, Piezoelectric, Hall effect, Optical and digital transducers, Elements of data acquisition system, A/D and D/A converters, Introduction to PLC, SCADA, and LabVIEW environment.	8 Hours
	Total	42 Hours

Text Books:

T1. E. W. Golding and F. C. Widdis, *Electrical Measurements and Measuring Instruments*, 5th Edition, Reem Publication, 2015.

- T2. A. K. Sawhney, *A Course in Electrical and Electronics Measurement and Instrumentation*, 19th Edition, 2011.
- T3. R. K. Rajput, Electrical and Electronic Measurement and Instrumentation, S. Chand & Co, 2016.

Reference Books:

- R1. R. S. Sedha, *Electronic Measurements and Instrumentation*, 1st Edition, S. Chand & Co., 2013.
- R2. D. A. Bell, *Electronic Instrumentation and Measurements*, 3rd Edition, Oxford University Press, 2013.
- R3. A. D. Helfrick and W. D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, 1st Edition, Pearson Education, 2015.
- R4. J. B. Gupta, A Course in Electrical and Electronic Measurements & Instrumentation, S. K. Kataria & Sons, 2013..
- R5. R. Mehera and V. Vij, *PLCs and SCADA*, 1st Edition, University Science Press, 2011.

Online Resources:

- 1. https://www.youtube.com/watch?v=11cWFio3h4U
- 2. https://nptel.ac.in/syllabus/108106070/
- 3. http://www.npl.co.uk/upload/pdf/beginners-guide-to-measurement-in-electronic-and-electrical-engineering.pdf
- 4. http://lrf.fe.uni-lj.si/fkkt_ev/Literatura/Electrical_and_Electronics_Measurment.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify the instrument suitable for accurate and precise measurement of current, voltage, power and energy with their construction, theory and operating principle.
CO2	Estimate accurately the values of R, L and C employing suitable bridges.
CO3	Understand the construction, theory and working of Potentiometers and Instrument Transformers and their applications.
CO4	Learn the working principle of various electronic instruments, storage and display devices.
CO5	Understand the working of various transducers and data acquisition systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1									1	1	
CO2	2	1	1	2									1		
CO3	2	1	1	2									1	1	
CO4	2	2	1										1	1	
CO5	1	2	2	2	1								1	1	1

Type	Code	Applied Linear Algebra	L-T-P	Credits	Marks
OE	BTBS-T-OE-027	Applica Eliteat Aligebia	3-0-0	3	100

Objectives	The objectives of this course is to gain mathematical maturity by equipping the students to handle computation with matrices, difference equation and similarity transformation for various engineering applications.
Pre-Requisites	Knowledge of complex numbers, matrix algebra, and vector space is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Geometry of Linear Equations, Gauss Elimination, Concept of Matrices with Applications, Vector Spaces and Subspaces, Echelon Form, Solution in Matrix Method, L.I, Basis & Dimension, Four Fundamental Subspaces, Linear Transformations.	9 Hours
Module-2	Orthogonal Vectors & Subspaces, Cosines & Projections onto Lines, Projections & Least Squares, Orthogonal Bases and Gram-Schmidt Process.	8 Hours
Module-3	Introduction & Properties of Determinants, Formulas for Determinant, Applications of Determinants, Introduction to Eigenvalues & Eigenvectors, Diagonalization of Matrix, Difference Equations, Complex Matrices, Similarity Transformations.	8 Hours
Module-4	Maxima, Minima & Saddle Points, Tests for Positive Definiteness, Singular Value Decomposition, Minimum Principles.	8 Hours
Module-5	Introduction to Computations with Matrices, Matrix Norm & Condition Number, Computation of Eigenvalues, Iterative Methods.	9 Hours
	Total	42 Hours

Text Books:

T1. G. Strang, Linear Algebra and Its Applications, 4th Edition, Cengage Learning, 2007.

Reference Books:

R1. G. Strang, *Introduction to Linear Algebra*, 3rd Edition, Wellesley-Cambridge, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/111/106/111106051/: by Dr. K. C. Sivakumar, IIT Madras
- 2. https://nptel.ac.in/courses/111/102/111102011/: by Dr. R. K. Sharma and Dr. W. Shukla, IIT Delhi
- 3. https://nptel.ac.in/courses/111/108/111108066/: by Prof. V. Rao, IISc Bangalore
- 4. https://nptel.ac.in/courses/111/107/111107106/: by Prof. P. N. Agrawal and Prof. D. N. Pandey, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain and apply matrix methods for solving a system of linear equations.
CO2	Describe orthogonal & projection in vector space and apply it to least square solution.
CO3	Identify and apply Eigen values and Eigen vectors to diagonalization.
CO4	Explain and apply Singular Value Decomposition and to obtain pseudo inverse of a matrix.
CO5	Develop algorithms and write programs to solve linear algebra problems on computers.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2								2	1	1
CO2	3	2	2	3	2								2	1	1
CO3	3	3	2	2	2								2	1	1
CO4	3	3	3	3	3								2	1	1
CO5	3	3	3	3	3								2	1	1

Type	Code	Fluid Mechanics	L-T-P	Credits	Marks
OE	BTBS-T-OE-028	Fluid Mechanics	3-0-0	3	100

Objectives	The objective of this course is to study the properties and behavior of fluids including fluid statics, kinematics, dynamics, inviscid flow, flow of viscous fluids, measuring instruments and fluid motive devices.
Pre-Requisites	Basic knowledge of the material properties of solids, liquids and gases and some knowledge of calculus and differential equations are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on engineering applications.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Fluid Properties - Density, Specific weight, Specific gravity, Viscosity, Vapor pressure, Compressibility, Pressure at a point, Pascal's law, Pressure variation with temperature, Density & altitude, Simple & differential manometers, Piezometer, Pressure gauges, Hydrostatic forces on submerged surfaces, Forces on horizontal & vertical submerged plane surfaces, Buoyancy & flotation, Archimedes' principle, stability of immersed & floating bodies, Determination of metacentric height.	10 Hours
Module-2	Kinematics of fluid flow, Acceleration of fluid particles, Lagrangian and Eulerian descriptions, Conservation of mass - continuity equation, Differential equation of continuity, Stream line, Path line, Streak lines & Stream tube, Classification of fluid flow - Steady & unsteady, uniform & non uniform, Laminar & turbulent, Rotational & irrational, one, two- and three-dimensional flows, Continuity equation in 3D flow, Stream function, Velocity potential function.	8 Hours
Module-3	Dynamics of Inviscid flows, Surface and body forces, Euler's equation, Bernoulli's equation, Applications - Venturi meter, Orifice meter, Current meter, Pitot tube, Momentum balance equation, Control volume approach, Dynamics of Viscous Fluids; Navier-Stokes equations (explanation only), Navier-Stokes equations in Cartesian form, Application to simple geometries, Couette and Poiseuille flow.	8 Hours
Module-4	Pipe flow, Friction losses, Moody's diagram and hydraulic diameter, Water level, Velocity and discharge measurements, Notch and weir, Impact of Jet, and relevant equations.	8 Hours
Module-5	Hydraulic turbines, Impulse turbine - construction and working, Hydraulic turbines, Reaction & Mixed flow turbines - construction and working, Hydraulic pumps, Centrifugal Pumps - construction and working, Hydraulic pumps, Positive Displacement types - construction and working, Principles of Dimensional Analysis and Similarity.	8 Hours
	Total	42 Hours

Text Books:

- T1. S. K. Som, G. Biswas, and S. Chakraborty, *An Introduction to Fluid Mechanics and Fluid Machines*, 3rd Edition, McGraw-Hill, 2012.
- T2. E. Rathakrishnan, *Fluid Mechanics An Introduction*, 3rd Edition, Prentice Hall India, 2012.

Reference Books:

- R1. R. K. Rajput, *Fluid Mechanics and Hydraulic Machines*, 4th Edition, S. Chand Publications, 2008.
- R2. R. K. Bansal, *A Textbook of Fluid Mechanics and Hydraulic Machines*, 9th Edition, Laxmi Publications, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/105/103/105103192/: by Prof. S. Dutta, IIT Guwahati
- 2. https://nptel.ac.in/courses/112/105/112105269/: by Prof. S. Chakraborty, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain and apply the principles of fluid mechanics to solve problems in hydro-statics.
CO2	Describe the principles of fluid mechanics to solve problems in fluid kinematics.
CO3	Apply the concepts to fluid dynamics for the flow measuring devices.
CO4	Analyze and design free surface and pipe flows for real-world applications.
CO5	Design the working proportions of hydraulic machines.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2								1	1	1	
CO2	3	3	2	2								1		1	
CO3	3	2	2	2	1							1	1	2	1
CO4	3	2	3	2	1							1	1	1	1
CO5	3	3	3	3								1	1	2	1

Type	Code	Electronic Devices & Modeling	L-T-P	Credits	Marks
OE	BTEC-T-OE-056	Electronic Devices & Wodering	3-0-0	3	100

Objectives	The objective of this course is to study electronic devices to evaluate & extract their model parameters and modeling of diode, Bipolar Junction Transistor, Metal-Oxide-Semiconductor Transistor and LASER.
Pre-Requisites	Basic knowledge of Semiconductor material, Electronics device and circuits is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	PN-Junction Diode and Schottky Diode : DC Current-Voltage Characteristics, Static Model, Large-Signal Model, Small-Signal Model, Schottky Diode and its Implementation in SPICE2, Temperature and Area Effects on the Diode Model Parameters, SPICE3, HSPICE and PSPICE Models.	8 Hours
Module-2	Bipolar Junction Transistor (BJT) : Transistor Conversions and Symbols, EbersMoll Static Model, Ebers-Moll Large-Signal Model, Ebers-Moll Small-Signal Model, Gummel-Poon Static Model, Gummel-Poon Large-Signal Model, Gummel-Poon Small-Signal Model, Temperature and Area Effects on the BJT Model Parameters, Power BJT Model, SPICE3, HSPICE and PSPICE Models.	9 Hours
Module-3	Metal-Oxide-Semiconductor Transistor (MOST): Structure and Operating Regions of the MOST, LEVEL1 Static Model, LEVEL2 Static Model, LEVEL1 and LEVEL2 Large-Signal Model, LEVEL3 Static Model, LEVEL3 Large-Signal Model, The Effect of Series Resistances, Small-Signal Models, The Effect of Temperature.	9 Hours
Module-4	BJT Parameter Measurements : Input and Model Parameters, Parameter Measurements. MOST Parameter Measurements: LEVEL1 Model Parameters, LEVEL2 Model (Long-Channel) Parameters, LEVEL2 Model (Short-Channel) Parameters, LEVEL3 Model Parameters, and Measurements of Capacitance.	8 Hours
Module-5	Modeling of LASER Diode : Rate equations, Numerical schemes: Small signal modeling and Large signal modeling, Equivalent circuits.	8 Hours
	Total	42 Hours

Text Books:

- T1. G. Massobrio and P. Antognetti, *Semiconductor Device Modeling with SPICE*, 2nd Edition, McGraw-Hill Education, 2010.
- T2. D. K. Schroder, *Semiconductor Material and Device Characterization*, 3rd Edition, John Wiley & Sons, 2006.

Reference Books:

- R1. R. S. Muller, T. I. Kamins, and M. Chan, *Device Electronics for Integrated Circuits*, 3rd Edition, John Wiley & Sons, 2003.
- R2. H. C. Casey, *Devices for Integrated Circuits*: *Silicon and III-V Compound Semiconductors*, 1st Edition, John Wiley & Sons, 1999.

Online Resources:

- 1. https://nptel.ac.in/courses/117106033/: by Prof. S. Karmalkar, IIT Madras
- 2. https://nptel.ac.in/courses/117/101/117101058/: by Prof. A. N. Chandorkar, IIT Bombay
- 3. https://nptel.ac.in/content/storage2/courses/108105066/PDF/L-6(DK)(PE)%20((EE)NPTEL).pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand, extract and implement the static characteristics of Diode including the effect of temperature and area on the Diode Model Parameters.
CO2	Understand, extract and implement the static characteristics of BJT including the effect of temperature and area on the BJT Parameters.
CO3	Formulate the structural behavior of MOSFET with their LEVELs and analyze its effect on series resistances, Small-Signal models & temperature.
CO4	Evaluate and extract the Model parameters of different LEVELs of BJT and MOSFET before implementation in industry.
CO5	Formulate the structural behavior of optoelectronic device LASER, Small-Signal models and Large signal model.

Program Outcomes Relevant to the Course:

	Outcomes here vant to the Course.
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1								2	1	
CO2	3	3	1	1	3								2	2	
CO3	3	3	1	1	3								2	1	
CO4	3	3	1	3	3								3	1	
CO5	3	3	3	3	1	1	1						3	1	

Type	Code	Operating Systems	L-T-P	Credits	Marks
OE	BTCS-T-OE-036	Operating bystems	3-0-0	3	100

Objectives	The objective of this course is to understand the fundamental concepts, techniques				
	& algorithms, and internal working principles of a computer operating system to				
	become a system designer or an efficient application developer.				
Pre-Requisites	Knowledge of computer programming and data structures is required.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are				
	planned to be interactive with focus on problem solving activities.				

T	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10141
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Overview, Evolution of operating system, Types of systems - Batch Processing, Multiprogramming, Time Sharing systems; Personal Computers, Parallel, Distributed, and Real-time Systems; Operating System Services, System components, System calls.	6 Hours
Module-2	Process Management: Process concepts, states, PCB, Process scheduling queues, queuing diagram, Types of schedulers, Operations on process; Interprocess communication - shared memory, message passing, Concept of buffering, Thread overview, Benefits of multi-threaded program, User and kernel threads, Multi-threading models, Issues with multi-threading - thread cancellation, thread pools, thread specific data; CPU Scheduling: Dispatcher, Scheduling - Criteria, Algorithms - FCFS, SJF, SRTF, RR, Priority, Multi-level Queue (MLQ), MLQ with Feedback.	10 Hours
Module-3	Process Synchronization: Background, Bounded-buffer – Shared-memory solution to Producer-consumer problem, Race condition, Critical section problem - Peterson's solution, Synchronization hardware: TestAndSet(), swap() instructions, Semaphores - Counting and binary semaphore, spinlocks, Classical problems of synchronization - Bounded-buffer problem, Readers-writers problem, Dining-philosophers problem, Monitors; Deadlock: System model, characterization, Resource-allocation graph, Methods for handling deadlocks, Deadlock prevention & avoidance, Banker's algorithm, Deadlock detection & recovery.	10 Hours
Module-4	Memory Management: Background, Logical & physical address space, Dynamic loading & dynamic linking, Swapping, Contiguous memory allocation, Dynamic storage allocation problem, Overlays, Paging, Segmentation; Virtual Memory: Background, Demand paging, Page fault, Basic page replacement policy, Page replacement algorithms - FIFO, OPT, LRU, LRU-Approximation, LFU, MFU, Thrashing, Working-set model.	9 Hours

Module-#	Topics	Hours
Module-5	Secondary Storage Structure: Overview of mass storage structure, Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK, Swap-space management, RAID structure; File System: Concept, Access methods, Directory structure, Directory implementation, Allocation methods, Free space management, Access control list; I/O System: Polling, Interrupts, DMA; Case Studies: The LINUX System.	7 Hours
	Total	42 Hours

Text Books:

- T1. A. Silberschatz, P. B. Galvin, and G. Gagne, *Operating System Concepts*, 8th Edition, Wiley, 2009.
- T2. M. Milenković, *Operating Systems: Concepts and Design*, 2nd Edition, Tata McGraw-Hill, 2001.

Reference Books:

- R1. A. S. Tanenbaum, *Modern Operating Systems*, 3rd Edition, PHI, 2009.
- R2. P. B. Prasad, *Operating Systems and System Programming*, 2nd Edition, Scitech Publications, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/106/102/106102132/: by Prof. S. Bansal, IIT Delhi
- 2. https://nptel.ac.in/courses/106/108/106108101/: by Prof. P. C. P. Bhatt, IISc Bangalore
- 3. https://nptel.ac.in/courses/106/106/106106144/: by Prof. C. Rebeiro, IIT Madras
- 4. https://nptel.ac.in/courses/106/105/106105214/: by Prof. S. Chattopadhyay, IIT Kharagpur
- 5. https://www.cse.iitb.ac.in/~mythili/os/: Notes & slides by Prof. M. Vutukuru, IIT Bombay
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explore principles behind various types of operating systems, system components, system calls, protection mechanisms and services.
CO2	Explain different schedulers, scheduling policies, and design new scheduling algorithms for real life problems.
CO3	Describe the significance of process synchronization through classical synchronization problems and deadlock handling mechanisms.
CO4	Describe the working principle of main memory, cache memory and virtual memory organization and solve memory related problems.
CO5	Articulate secondary storage management, and analyze the performance of various disk scheduling algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2									2	2	2	
CO2	3	3	3	2								2	3	3	1
CO3	3	3	3	2	1	1						2	3	3	1
CO4	3	3	3	2	1	1						1	3	3	1
CO5	2	2	3	2	1	1						1	3	3	1

Type	Code	Programming in Python	L-T-P	Credits	Marks
OE	BTCS-T-OE-039	1 logianining in 1 ython	3-0-0	3	100

Objectives	The objective of this course is to study object oriented programming using the Python programming language. Knowledge of Python will be useful for studying Machine Learning, Artificial Intelligence, and Data Science.
Pre-Requisites	Basic analytical & logical skill is required for this course. Prior experience with any other programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with programming & problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Python: Features of Python, Executing a python program, Interactive and non-Interactive modes, Basic syntax, Data types, Variables, Literals, Input/output statements, Keywords, Identifiers, Operators, Precedence & associativity, Expressions, Control statements.	8 Hours
Module-2	Arrays, Strings, and Lists: Operations, Slicing, Built-in list function, List comprehension, Tuples - Introduction, Accessing elements, Operations using built-in tuple functions, Dictionaries - Introduction, Accessing values in dictionaries, Built-in dictionary functions, Sets, Function, Recursion; Modules: Creating modules, Import statement, Packages.	10 Hours
Module-3	Object Oriented Programming: Features, Classes & objects, Creating class & object, Using a class, Methods; Inheritance: Types of inheritance, Overriding methods, Encapsulation & information hiding, Polymorphism, Operator overloading, Method overloading & overriding, Abstract method & class; Exception Handling: Errors, Types of exception, try, except, and finally, assertion.	9 Hours
Module-4	File Handling : Types of files, Opening & closing, Reading & writing, Binary files; Command line arguments; Database Connectivity : Introduction, Connections, Executing queries, Transactions, SQLDB database connection parameters, Insert, Update, Delete.	9 Hours
Module-5	Regular Expression : Match function, Search function, Matching vs. Searching, Quantifiers, Pattern; CGI : Introduction, Architecture, CGI environment variables, GET & POST methods, Cookies, File upload; Graphical User Interface : GUI toolkits, Creating GUI widgets with Tkinter, Creating layouts, Radio buttons, Checkboxes, Dialog boxes.	6 Hours
	Total	42 Hours

Text Books:

- T1. R. N. Rao, *Core Python Programming*, 2nd Edition, DreamTech Press, 2019. T2. P. Barry, *Head First Python*, 2nd Edition, O'Reilly Media, 2010. T3. A. Downey, *Think Python*, 2nd Edition, Green Tea Press, 2015.

Reference Books:

- R1. J. Zelle, Python Programming: An Introduction to Computer Science, 3rd Edition, Franklin, Beedle & Associates, 2016.
- R2. L. Ramalho, *Fluent Python*, 1st Edition, O'Reilly Media, 2015.
- R3. M. Lutz, *Programming Python*, 4th Edition, O'Reilly Media, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106145/: by Prof. M. Mukund, IIT Madras
- 2. https://help.uis.cam.ac.uk/service/help-support/training/downloads/coursefiles/programming-student-files/python-courses/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explore Python syntax and use Python flow control to solve simple problems.
CO2	Implement knowledge of functions and different data structures like list, tuple, and dictionary.
CO3	Develop applications using object oriented programming concepts in Python.
CO4	Apply the concept of file handling and database connectivity in real life problems.
CO5	Implement regular expressions and develop GUI based Python applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1		1						1	1		2
CO2	3	2	1	1		1						1	3		3
CO3	3	2	1	1		1						1	3		3
CO4	3	2	1	1		2						2	2		1
CO5	2	2	1	1		1						2	2		2

Type	Code	Biomedical Instrumentation & Signal	L-T-P	Credits	Marks
OE	BTEI-T-OE-020	Processing	3-0-0	3	100

Objectives	The objective of this course is to study various biomedical instruments, sensors and signal processing techniques, and their applications in diagnosis, therapeutic and surgical procedures.
Pre-Requisites	Knowledge of basic electronics, sensors, and transducers is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-world applications.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Bioengineering : Sources and examples of biomedical signals, Basic medical Instrumentation system, use of microprocessors, general design constraints; Transducers: Classification, Transducers for Biomedical Applications; Sources of Bio-electric Potentials: Resting and Action Potentials; Anatomy of heart, Different types of Biomedical Signals: ECG, PCG, EEG, EMG.	9 Hours
Module-2	Biomedical Electrodes and Recorders : Electrode theory, Recording electrodes, Bio-potential Electrodes for ECG, EEG and EMG, Microelectrodes, ECG recorder, Sources of Artifacts in ECG and their removal methods, EEG & EMG recorder.	8 Hours
Module-3	Patient Care Monitoring: System concepts, Measurement of heart rate, Measurement of pulse rate, Blood pressure and blood flow measurement, Pacemakers and Defibrillators, Electric shock hazards, Leakage currents.	8 Hours
Module-4	X-Ray and Radioisotope Instrumentation : Generation of Ionizing Radiation, Nature and production of X-Rays, Computed Tomography, Magnetic Resonance Imaging System, Ultrasonic Imaging Systems.	8 Hours
Module-5	Adaptive Filters: Principle, the steepest descent algorithm, adaptive noise canceller, cancellation of interference in electrocardiography, applications; Canceling Donor heart Adaptive filters, HF noise in ECG, motion artifact in ECG, maternal interference in Fetal ECG, cancellation of maternal ECG, cancellation of ECG signal from electrical activity of chest muscles, cancellation of HF noise in Electro-surgery.	9 Hours
	Total	42 Hours

Text Books:

- T1. R. S. Khandpur, *Handbook of Biomedical Instrumentation*, 2nd Edition, McGraw-Hill, 2002.
- T2. D. C. Reddy, *Biomedical Signal processing Principles & Techniques*, 1st Edition, McGraw-Hill, 2005.
- T3. R. M. Rangayyan, *Biomedical Signal Analysis A Case Study Approach*, 2nd Edition, John Willey & Sons, 2002.

Reference Books:

- R1. J. L. Cromwell, F. J. Weibell, and E. A. Pfeiffer, *Biomedical Instrumentation and Measurement*, 2nd Edition, Prentice Hall of India, 2017.
- R2. J. J. Carr and J. M. Brown, *Introduction to Biomedical Equipment Technology*, 4th Edition, Pearson Education, 2000.
- R3. H. E. Thomas, *Handbook of Biomedical Instrumentation and Measurement*, 1st Edition, Reston Publishing Company, 1974.

Online Resources:

- 1. https://nptel.ac.in/courses/102101068/: by Prof. S. Srivastava, IIT Bombay
- 2. https://nptel.ac.in/courses/108105101/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 3. https://ocw.mit.edu/courses/biological-engineering/20-010j-introduction-tobioengineering-be-010j-spring-2006/videos/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the principles and design of biomedical instruments and applications of biomedical engineering.
CO2	Explain design considerations for medical equipment with respect to the human physiological system.
CO3	Describe the principle of operation of various medical recording and imaging systems.
CO4	Identify the elements of risk for different instrumentation methods and basic electrical safety.
CO5	Explain different adaptive methods for biomedical signal processing and noise cancellation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

					•	-		-	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1			1	3			1		2	1	2
CO2	1	1	2	3	1			2					2	1	1
CO3	2	2	1	2		1	2	2					1		1
CO4	2	1	2	2		1		3					2		2
CO5	3	2	1	2		2		1					1		

Type	Code	Universal Human Values & Professional	L-T-P	Credits	Marks
MC	BTBS-T-MC-020	Ethics	2-0-0	0	100

Objectives	The objective of this course is to enable the students to become aware of professional ethics and universal human values. It will instill moral and social values and loyalty to appreciate the rights of others. This course also provides the basis for deciding whether a particular action is morally good or bad.
Pre-Requisites	Elementary idea on Psychology, sensitivity to professionalism with respect to morality, judgment, and commitment are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, and planned interactive sessions.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Value Education : Understanding Value Education, Self-exploration as the Process for Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity – Current Scenario, Method to Fulfill the Basic Human Aspirations.	6 Hours
Module-2	Harmony in the Human Being: Understanding Human being as the Coexistence of the Self and the Body, Distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Programme to ensure self-regulation and Health.	6 Hours
Module-3	Harmony in the Family and Society: Harmony in the Family – Family as the Basic Unit of Human Interaction, Values in Human-to-Human Relationship, 'Trust' – the Foundational Value in Human Relationship, 'Trust Deficit' - the concept and its dimensions and implications, 'Respect' as the Right Evaluation, Understanding Harmony in the Society, Vision for the Universal Human Order.	6 Hours
Module-4	Harmony in the Nature or Existence: The Four Orders of Nature, Understanding Harmony in the Nature, Interconnectedness, Self-regulation and Mutual Fulfillment among the Four Orders of Nature, Realizing Existence as Co-existence at all Levels, The Holistic Perception of Harmony in Existence.	4 Hours
Module-5	Implications of the Holistic Understanding – A Look at Professional Ethics: Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production Systems and Management Models-Typical Case Studies, Strategies for Transition towards Value-based Life and Profession.	6 Hours
	Total	28 Hours

Text Books:

- T1. R. R. Gaur, R. Asthana, and G. P. Bagaria, *A Foundation Course in Human Values and Professional Ethics*, 2nd Edition, Excel Books, 2019.
- T2. A. Nagaraj, Jeevan Vidya: Ek Parichaya, Jeevan Vidya Prakashan, 1999.

Reference Books:

- R1. A. N. Tripathi, *Human Values*, 3rd Edition, New Age International Publishers, 2019.
- R2. M. K. Gandhi, Translated by (from Gujarati) M. Desai, *The Story of My Experiments with Truth*, 1st Edition, FingerPrint Publishing, 2009.

Online Resources:

- 1. http://hvpe1.blogspot.com/2016/06/notes-human-values-and-professional.html
- 2. https://examupdates.in/professional-ethics-and-human-values
- 3. http://www.storyofstuff.com
- 4. https://aktu.ac.in/hvpe/ResourceVideo.aspx

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Learn ethical concepts which will enable them to effectively resolve ethical issues in their personal and professional lives.
CO2	Be aware of their duties and responsibilities as professionals towards their organization and society.
CO3	Gather primary knowledge on engineering ethics and its objectives, different parameters of enquiry and engineering as an experiment in society.
CO4	Be conscious about risk and safety while finding a solution to an engineering problem.
CO5	Become attentive of the different global ethical issues.

Program Outcomes Relevant to the Course:

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			1	1	1				1			1
CO2			1			1	1	2	1	1		1		1	1
CO3			1			1		2		1		1		1	1
CO4			1			1	2	1	1			1			1
CO5			1			1	1	1	1	1		1			

Type	Code	Digital Electronic Circuits Lab		Credits	Marks
PC	BTEC-P-PC-011	Digital Electronic Circuits Eab	0-0-2	1	100

Objectives	The objective of the course is to hands-on exposure on logic gates, implementation using Boolean algebra, designing digital circuits like counters, registers and apply the knowledge to formulate digital systems using HDL.		
Pre-Requisites Knowledge of Basic Electronics is required.			
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the faculty with use of ICT as and when required, sessions are planned to be interactive with focus on implementation in hardware / software tools.		

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Digital Logic Gates: Investigate logic behaviour of AND, OR, NAND, NOR, EX-OR,EX-NOR, Invert and Buffer gates, use of Universal NAND Gate.
2	Combinational Circuit Design: Design, assemble and test: adders and subtractors.
3	Combinational Circuit Design: Code Converters, Gray code to Binary and 7 Segment Display.
4	Universal Gates: Design, implement and test a given design example with (i) NAND Gates only (ii) NOR Gates only and (iii) using minimum number of Gates.
5	Multiplexer and De-multiplexer: Design with multiplexers and de-multiplexers.
6	Flip-Flop: Assemble, test and investigate operation of SR, D & J-K flip-flops.
7	Shift Registers: Design and investigate the operation of all types of shift registers.
8	Counters: Design, assemble and test various ripple and synchronous counters - decimal counter, Binary counter with parallel load.
9	Parallel Adder and Accumulator: Design, implement and test.
10	Binary Multiplier: design and implement a circuit that multiplies 4-bit unsigned numbers to produce an 8-bit product.
11	Memory Unit: Investigate the behaviour of RAM unit and its storage capacity – 16×4 RAM: testing, simulating and memory expansion.
12	Clock-pulse generator: Design, implement and test.
13	Verilog/VHDL Simulation and implementation of Experiments 2 to 12.

Text Books:

T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL, VHDL and System Verilog*, 6th Edition, Pearson Education, 2018.

Reference Books:

- R1. A. M. Michelén, *Digital Electronics Laboratory Manual*, Pearson Education, 2000.
- R2. J. W. Stewart and C.-Y. Wang, *Digital Electronics Laboratory Experiments: Using the Xilinx XC95108 CPLD with Xilinx Foundation: Design and Simulation Software*, 2nd Edition, Pearson, 2004.

Online Resources:

- 1. https:
 - //www2.mvcc.edu/users/faculty/jfiore/Resources/DigitalElectronics1LaboratoryManual.pdf
- 2. https://www.elprocus.com/top-digital-electronic-projects-for-electronics-engineering-students/
- 3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-111-introductory-digital-systems-laboratory-spring-2006/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyse the function of logic gates and implementation of Boolean functions.
CO2	Realize Universal gates and Implementation of minimized Boolean Expressions.
CO3	Design and analyze different combinational circuits.
CO4	Design various asynchronous and Synchronous Sequential Circuits.
CO5	Acquire knowledge about internal circuitry and logic behind any digital system.
CO6	Simulate various digital circuits using VHDL in industry standard tool such as Xilinx.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1							3	1	
CO2	2	3	3	3	3	1							3	1	
CO3	2	3	3	3	3	1							3	1	
CO4	2	3	2	3	2	1							3	1	
CO5	2	3	2	3	2	1							3	1	
CO6	2	3	2	3	2	1							3	1	

Type	Code	Electrical Machines Lab	L-T-P	Credits	Marks
PC	BTEE-P-PC-011	Electrical Machines Lab	0-0-2	1	100

Objectives	The objective of the course is to introduce different electrical machines and help understand & verify basic concepts of electrical machines, calculate different parameters like voltage regulation, efficiency & losses and their effect on performance. The laboratory experiments shall go hand-in-hand with the topics taught in the theory class.
Pre-Requisites	Knowledge of Basic Electrical Engineering, Physics and knowledge of Basic Mathematics such as Calculus, ordinary differential equations is required.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the faculty with demonstration and simulation-based verification for the experiments to be conducted.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Speed control of DC Shunt motor by armature voltage & flux control method.
2	Determination of critical resistance and critical speed from No-load test and Plotting of external & internal characteristics of DC Shunt generator.
3	Determination of efficiency of a DC Shunt Motor by brake test and Swinburne's test.
4	Determination of efficiency and voltage regulation by Open Circuit and Short Circuit test on 1- ϕ Transformer.
5	Study of Scott connection of two 1- ϕ Transformer.
6	Parallel operation of two 1- ϕ Transformer.
7	Determination of the voltage regulation of an alternator by synchronous impedance or EMF and MMF method.
8	Study of parallel operation of two alternators.
9	Determination of V-curve and inverted V-curve of a synchronous motor under constant load.
10	No-load & Blocked Rotor Test & determination of the parameters of a 1-ph capacitor start induction run motor.
11	Determination of efficiency, plotting of Torque–slip characteristics of 3-phase slip ring induction motor by electrical loading.
12	Determination of parameters of a 3-ph squirrel cage induction motor from No-load & Blocked rotor test.
13	Speed control of 3-phase induction motor by v/f method.

Text Books:

- T1. A. E. Fitzgerald, C. Kingsley Jr., and S. D. Umans, *Electric Machinery*, 6th Edition, McGraw-Hill Education, 2017.
- T2. S. J. Chapman, *Electric Machinery and Fundamentals*, 4th Edition, McGraw-Hill, 2017.

Reference Books:

- R1. P. S. Bimbhra, *Electrical Machinery*, 7th Edition, Khanna Publishers, 2011.
- R2. D. P. Kothari and I. J. Nagrath, *Electric Machines*, 5th Edition, McGraw-Hill Education, 2017.
- R3. P. K. Mukherjee and S. Chakravorti, *Electrical Machines*, Dhanpat Rai Publications, 2011.
- R4. B. S. Guru and H. R. Hiziroglu, *Electric Machinery and Transformers*, 3rd Edition, Oxford University Press,, 2012.
- R5. B. L. Theraja and A. K. Theraja, *A Textbook of Electrical Technology (Vol.2) AC and DC Machines*, 23rd Revised Edition, S Chand & Co, 2005.

Online Resources:

- 1. https://nptel.ac.in/courses/108105017/
- 2. https://nptel.ac.in/courses/108106072/
- 3. https://nptel.ac.in/courses/108/105/108105131/: by Prof. T. K. Bhattacharya, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108/106/108106072/: by Prof. K. Vasudevan, Prof. G. S. Rao, Prof. P. S. Rao, IIT Madras
- 5. https://swayam.gov.in/nd1noc20ee38/preview
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machines-fall-2013/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Determine different characteristics of DC generator and apply speed control techniques for a DC shunt motor.
CO2	Obtain the equivalent circuit parameters of single-phase transformer and efficiency using various tests and understand the parallel operation of transformers.
CO3	Estimate the voltage regulation of a Synchronous generators by various methods and compare the results for accuracy.
CO4	Demonstrate synchronization of two synchronous generators for sharing a common load.
CO5	Assess the performance of three phase and single-phase induction motor in specific applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1			1	1			2	2	1	
CO2	3	2	1	1	1		1	1	1			2	2	2	
CO3	3	2	1	1	1			1	1			2	2	2	
CO4	2	1	1	1	1			1	2			1	1	1	
CO5	3	2	2		2		2	1	1			2	2	2	1

Type	Code	Measurements & Instrumentation Lab	L-T-P	Credits	Marks
PC	BTEE-P-PC-007	Measurements & Instrumentation Lab	0-0-2	1	100

Objectives	The objective of the course is to cover the constructional features, working principle, testing, and calibration of different measuring instruments and provide an overview of various measuring techniques.
Pre-Requisites	Basic knowledge of different electrical components and different analysis techniques of electrical and magnetic circuits. Topics taught in the theory class are essential to conduct the experiments.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration along with associated safety measures will also be explained.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Measurement of energy of single-phase circuit using Smart Energy Meter.
2	Measurement of Low Resistance using Kelvin's Double Bridge.
3	Measurement of Self Inductance using Anderson's Bridge.
4	Measurement of capacitance using Schering Bridge.
5	Measurement of R, L, and C using Q-meter.
6	Calibration of Voltmeters and Ammeters using Crompton's Potentiometer.
7	Measurement of Power in a single-phase circuit using CT and PT.
8	Study of the characteristics of different types of sensors.
9	Study of Voltage and Current Detection Circuit using Arduino.
10	Study and calibration of a transducer for displacement measurement.
11	Study of different arithmetic operations using LabVIEW.
12	Measurement of Iron Loss from B-H Curve by using CRO.

Text Books:

- T1. E. W. Golding and F. C. Widdis, *Electrical Measurements and Measuring Instruments*, 5th Edition, Reem Publication (Selected portions from Ch. V, VI, VII, VIII, IX, XVII, XVIII), 2015.
- T2. A. K. Sawhney, *A Course in Electrical and Electronics Measurement and Instrumentation*, 19th Edition (Selected portions from Chapter 2, 3, 10, 11, 12, 13, 15, 20, 22, 23, 24, 33), 2011.
- T3. R. K. Rajput, Electrical and Electronic Measurement and Instrumentation, S Chand & Co, 2016.

Reference Books:

- R1. D. A. Bell, *Electronic Instrumentation and Measurements*, 3rd Edition, Oxford University Press, 2013.
- R2. A. D. Helfrick and W. D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, 1st Edition, Pearson Education (Selected portions from Ch. 1, 3, 6, 7, 9, 10, and 13), 2015.

P.T.O

Online Resources:

- 1. https://www.youtube.com/watch?v=11cWFio3h4U
- 2. https://nptel.ac.in/syllabus/108106070/
- 3. http://www.npl.co.uk/upload/pdf/beginners-guide-to-measurement-in-electronic-andelectrical-engineering.pdf
- 4. http://lrf.fe.uni-lj.si/fkkt_ev/Literatura/Electrical_and_Electronics_Measurment.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Estimate accurately the values of R, L, and C employing suitable bridges.
CO2	Measure power and energy with suitable measuring instruments.
CO3	Select appropriate electronic instruments for various measurements.
CO4	Explore the applications of different types of electronic instruments, sensors and transducers.
CO5	Utilize different types of electronic instruments, sensors and transducers in the real world.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1					1				1	1	
CO2	2	1	2	2					1				1	1	1
CO3	2	2	2	2					1				1	1	
CO4	1	1	1						1				1	2	2
CO5	1	1	2	2					1				1	2	2

Type	Code	Corporate Communication Lab	L-T-P	Credits	Marks
HS	BTBS-P-HS-012	Corporate Communication Lab	0-0-2	1	100

Objectives	This laboratory course is designed to learn & practice spoken & written corporate communication such as negotiation, persuasion, making presentations, attending meetings, writing reports, proposals etc., and reaching out to clients.					
Pre-Requisites	Basic knowledge of English grammar and the ability to speak, read and write using the English language.					
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair work, group/team work, individual and group presentations, discussions, role plays, listening to audios, watching videos, business writing and vocabulary enhancement.					

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Communication practices in global business settings: coping with organizational barriers – critical analysis.
2	Persuasive Communication strategies: product launch presentation in teams I.
3	Persuasive Communication strategies: product launch presentation in teams II.
4	Negotiation skills: role-plays.
5	Corporate diction: practice sessions on usage of business jargons and expressions.
6	Listening practice: business and telephone etiquette.
7	Meetings and discussions: role-play on business etiquette.
8	Awareness of Social media etiquette and Writing a Blog: critical analysis of structure, content and style of popular blogs and writing practice.
9	Report Writing I: recognizing types of business report, assignment on report.
10	Report Writing II: writing an executive summary and abstract.
11	Writing a short business proposal.
12	Understanding e-mail etiquette and writing a professional e-mail.
13	Reading Comprehension I: note-making and summarizing.
14	Reading Comprehension II: evaluative comprehension.

Text Books:

- T1. P. Rath, K. Shalini, and D. Ray, *Corporate Communication*, 1st Edition, Cengage Learning, 2018.
- T2. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, Tata McGraw-Hill, 2017.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practice*, 3rd Edition, Oxford University Press, 2015.

Reference Books:

R1. P. A. Argenti and J. Forman, *The Power of Corporate Communication: Crafting the Voice and Image of Your Business*, 1st Edition, Tata McGraw-Hill, 2003.

- R2. S. John, *The Oxford Guide to Writing and Speaking*, 3rd Edition, Oxford University Press, 2013.
- R3. B. K. Mitra, *Effective Technical Communication A Guide for Scientists and Engineers*, 1st Edition, Oxford University Press, 2006.

Online Resources:

- 1. https://archive.nptel.ac.in/courses/109/105/109105144/: by Prof. S. Singh, IIT Kharagpur
- 2. https://archive.nptel.ac.in/courses/109/106/109106129/: by Dr. Ay. I. Viswamohan, IIT Madras
- 3. https://archive.nptel.ac.in/courses/109/104/109104030/: by Dr. T. Ravichandran, IIT Kanpur
- 4. https://www.ef.com/wwen/english-resources/
- 5. https://owl.purdue.edu/owl/purdue_owl.html
- 6. https://www.usingenglish.com/
- 7. http://www.english-test.net

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the global work atmosphere and communication barriers in it to be aware of ways to overcome them.
CO2	Develop spoken and written language skills used for business communication.
CO3	Build vocabulary which are commonly used in corporates and be habituated to them.
CO4	Use social media mindfully to maintain business relations.
CO5	Comprehend vital points from business texts skilfully.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						3		1	2	3	2	3	1	1	2
CO2								2	2	3	2	3	1	2	1
CO3						1			1	3		3	1	1	2
CO4						2		3	1	3		3	2	2	1
CO5									2	3	3	3	2	1	2

Part III 3rd Year B. Tech. (EEE)

Curriculum Structure

Semester V									
Type	Code	Course Title		WCH L-T-P			Credits L-T-P		
	,	THEORY							
HS	BTBS-T-HS-018	Engineering Economics	3	0	0	3	0	0	
PC	BTEE-T-PC-999	Power Electronics	3	0	0	3	0	0	
PC	BTEE-T-PC-005	Control Systems Engineering	3	0	0	3	0	0	
PC	BTEE-T-PC-013	Electrical Power Transmission & Distribution	3	0	0	3	0	0	
PC	BTEC-T-PC-035	Introduction to Digital Signal Processing	3	0	0	3	0	0	
PE	Professional Elective - I				0	3	0	0	
OE	Open Elective - II				0	3	0	0	
		PRACTICAL			•	•			
HS	BTBS-P-HS-021	Soft Skills & Inter-Personal Skills Lab	0	0	4	0	0	2	
PC	BTEE-P-PC-999	Power Electronics Lab	0	0	2	0	0	1	
PC	BTEE-P-PC-006	Control Systems Engineering Lab	0	0	2	0	0	1	
PJ	BTII-P-PJ-002	Summer Internship - II	0 0 0			0	0	1	
		SUB-TOTAL	21 0 8			21	0	5	
		TOTAL	29				26		

	Semester VI								
Туре	Code	Course Title		WCH L-T-P			Credits L-T-P		
	THEORY								
BS	BTBS-T-BS-014	Biology for Engineers	3	0	0	3	0	0	
PC	BTEC-T-PC-037	Fundamentals of Microprocessors & Microcontrollers	3	0	0	3	0	0	
PC	BTEE-T-PC-021	Power Systems Operation & Control	3	0	0	3	0	0	
PE		Professional Elective - II	3	0	0	3	0	0	
PE		Professional Elective - III	3	0	0	3	0	0	
OE		Open Elective - III	3	0	0	3	0	0	
		PRACTICAL							
PC	BTEC-P-PC-038	Fundamentals of Microprocessors & Microcontrollers Lab	0	0	2	0	0	1	
PC	BTEE-P-PC-020	Power Systems Lab	0	0	2	0	0	1	
PJ	BTEE-P-PJ-019	Skill Lab & Project - I	0	0	4	0	0	2	
MC	BTBS-P-MC-018	Yoga / NSS / NCC		0	2	0	0	0	
		SUB-TOTAL	18	0	10	18	0	4	
		TOTAL	28				22		

Note: Courses offered under each elective are given in "List of Electives" on Page 120.

List of Electives

Code	Elective # and Subjects
Profe	essional Elective - I
BTEC-T-PE-058	Advanced Electronic Circuits
BTEI-T-PE-027	Sensors & Circuit Analysis
BTEE-T-PE-034	Renewable Energy Systems
BTEE-T-PE-036	Soft Computing Techniques
Prof	essional Elective - II
BTEC-T-PE-060	Introduction to VLSI Design
BTEE-T-PE-040	Advanced Power Electronics
BTEE-T-PE-042	Electrical Drives
Profe	essional Elective - III
BTEE-T-PE-043	IoT & Applications
BTEC-T-PE-039	Communication Systems Engineering
BTEE-T-PE-049	Smart Grid
BTEE-T-PE-041	Advanced Control Systems
Oper	n Elective - II
BTBS-T-OE-029	[BSH] Numerical Optimization
BTBS-T-OE-030	[BSH] Organizational Behaviour
BTEC-T-OE-042	[ECE] Information Theory & Coding
BTCS-T-OE-040	[CSE] Fundamentals of DBMS
BTCS-T-OE-045	[CSE] Algorithm Design & Analysis
BTEI-T-OE-019	[EIE] Industrial Automation & Control
Орег	n Elective - III
BTBS-T-OE-031	[BSH] Stochastic Process
BTBS-T-OE-032	[BSH] Project Management
BTEC-T-OE-052	[ECE] Adaptive Signal Processing
BTCS-T-OE-041	[CSE] Internet Technology & Applications
BTCS-T-OE-042	[CSE] Advanced Java Programming
BTEI-T-OE-021	[EIE] Virtual Instrumentation

Note: Open Electives are choice-based courses offered by other departments as indicated within brackets.

Type	Code	Engineering Economics	L-T-P	Credits	Marks
HS	BTBS-T-HS-018	Engineering Leonomics	3-0-0	3	100

Objectives	The objective of this course is to familiarize the students with elementary principles of economics, provide the tools needed for analyzing time value of money in engineering decision making, profit/revenue data, and make economic analysis for projects and alternatives.
Pre-Requisites	Basic knowledge on interest formula and derivatives is required.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with focus on real-world problem solving.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	est(s) Assignment(s) Mid-Term End-Term			Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Engineering Economics-its meaning and importance, Basic problems of an economy. The concept of time value of money; Concept of Interest. Time value of equivalence, Compound interest factors; Cash flow diagrams, Calculation of time value of equivalence, Present worth comparison, Future worth comparison, Pay-back period comparison.	9 Hours
Module-2	Equivalent annual worth comparison method, Situations for equivalent annual worth comparison, Rate of return, Internal rate of return, Incremental IRR analysis, Depreciation analysis, Methods of depreciation, Straight line method, Declining balance method, SOYD Method and MACRS method of depreciation; After tax comparison, Analysis of public Project, Cost-benefit analysis.	9 Hours
Module-3	Introduction to Micro Economics and Macro Economics, Theory of demand, Elasticity of demand, Price elasticity of demand, Measurement of elasticity of demand; Income elasticity and cross elasticity of demand, Demand forecasting; Law of supply, Elasticity of supply.	8 Hours
Module-4	Theory of production, Law of variable proportion, Laws of returns to scale, Cost Concepts, Total Costs, Fixed cost, Variable cost, Revenue concepts, Total revenue, Average revenue and marginal revenue, Market (Forms of market), Perfect Competition, Determination of price under perfect competition, Linear Break-even Analysis.	8 Hours
Module-5	Inflation, Meaning of inflation, Types, Causes, Measures to control inflation, Commercial Banks, Functions of Commercial Bank, Central bank, Functions of central Bank; National income, Definitions, Concepts of national Income, Methods of measuring National Income.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. L. Riggs, D. D. Bedworth, and S. U. Randhawa, *Engineering Economics*, 4th Edition, Tata McGraw-Hill, 2004.
- T2. H. L. Ahuja, *Principles of Micro Economics*, 16th Edition, S. Chand & Co, 2008.

T3. R. R. Paul, *Monetary Economics*, 11th Edition, Kalyani Publishers, 2015.

Reference Books:

- R1. C. S. Park, *Contemporary Engineering Economics*, 6th Edition, Pearson Education, 2015.
- R2. D. G. Newnan, T. G. Eschenbach, J. P. Lavelle, and N. A. Lewis, *Engineering Economic Analysis*, 13th Edition, Oxford University Press, 2017.
- R3. A. Koutsoviannis, *Modern Micro Economics*, 2nd Edition, Palgrave Macmillan UK, 2003.
- R4. H. C. Petersen, W. C. Lewis, and S. K. Jain, *Managerial Economics*, 4th Edition, Pearson, 2005.
- R5. N. G. Mankiw, *Macroeconomics*, 7th Edition, Worth Publishers, 2010.
- R6. M. P. Agasty, *Engineering Economics and Costing*, 2nd Edition, Scitech Publication, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/112107209/: Engineering Economic Analysis
- 2. https://www.icai.org/post.html?post_id=10058: Study Materials by ICAI
- 3. http://www.icaiknowledgegateway.org/littledms/folder1/chapter-5-part-2.pdf: National Income Accounting
- 4. http://www.m5zn.com/newuploads/2013/05/28/pdf/ed6f3d1f87b9cd2.pdf: eBook

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand the concepts of economics, engineering economics and its application in engineering.
CO2	Solve problems related to engineering economics and analyze decision alternatives in engineering projects.
CO3	Evaluate how changes in demand and supply affect market and production.
CO4	Assess the effects of changes in costs, selling price and units sold on the break-even point and target profit.
CO5	Analyze the macroeconomic environment of the business and its impact on society and enterprise.

Program Outcomes Relevant to the Course:

8	
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

					•										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1			1		3	1		1	2
CO2						1			1		3	1		1	3
CO3						2	2				3	1		1	2
CO4						2	2		1		3	1		1	3
CO5						2	2		1		3			2	2

Type	Code	Power Electronics	L-T-P	Credits	Marks
PC	BTEE-T-PC-999	rower Electronics	3-0-0	3	100

Objectives	The objective of this course is to provide an overview of different types of power semiconductor devices and their switching characteristics along with the operation & characteristics of various types of power electronic converters.							
Pre-Requisites	Knowledge of physics, basic mathematics, calculus, ordinary differential equations and basic electronics is required.							
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.							

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Power Semiconductor Devices : Switching and V-I characteristic of devices: Power diode, Transistor Family: BJT, IGBT, and MOSFET, Thyristor family: SCR, TRIAC; Series and parallel grouping of SCR, SCR triggering methods, Isolation of gate and base drive, SCR: Over voltage, Over Current, dv/dt , di/dt , Gate Protection, Snubber circuit, Commutation.	10 Hours
Module-2	AC to DC Converter: Principle of phase controlled converter operation, Single phase full converter with R, R-L, and R-L-E load, 3 phase full converter with R, R-L, and R-L-E load, Single phase semi converter with R, R-L, and R-L-E load, Effect of source inductance, Applications.	10 Hours
Module-3	AC to AC Converter: Single phase bi-directional controllers with R and R-L load, Single phase cycloconverters – Step up and Step down, Applications.	6 Hours
Module-4	DC to DC Converter : First quadrant, Second quadrant, First and second quadrant, Third and fourth quadrant converter. Switching mode regulators: Buck regulators, Boost regulators, Buck-Boost regulators, Isolated Converters, Applications.	8 Hours
Module-5	DC to AC Converter : Voltage Source Inverter (VSI): Single phase Bridge Inverters, 3-Phase Inverters - 180° mode conduction, 120° mode conduction, Voltage control of 3-Phase Inverters by Sinusoidal PWM (PWMVSI), Current Source Inverter (CSI); Applications: UPS, SMPS, Induction Heating, AC/DC drives speed control.	8 Hours
	Total	42 Hours

Text Books:

- T1. M. H. Rashid, *Power Electronics: Devices, Circuits, and Applications*, 4th Edition, Pearson Education, 2017.
- T2. P. S. Bhimbra, *Power Electronics*, 6th Edition, Khanna Publishers, 2014.

Reference Books:

- R1. M. D. Singh and K. B. Khanchandani, *Power Electronics*, 2nd Edition, McGraw-Hill, 2017.
- R2. P. C. Sen, *Power Electronics*, 1st Edition, McGraw Hill India, 2001.

Online Resources:

- 1. https://nptel.ac.in/courses/108/102/108102145/: by Prof. G. Bhuvaneshwari, IIT Delhi.
- 2. https://nptel.ac.in/courses/108/101/108101126/: by Prof. V. Agarwal, IISc Bangalore.
- 3. https://nptel.ac.in/courses/108/105/108105066/: by Dr. D. Kastha, Prof. S. Sengupta, Prof. N. K. De, and Prof. D. Prasad, IIT Kharagpur.
- 4. https://nptel.ac.in/courses/108101038/: by Prof. B. G. Fernandes and Prof. K. Chatterjee, IIT Bombay.

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the characteristics of Power semiconductor devices and thyristor family.
CO2	Explain, analyze, and design AC - DC converters for real-world applications.
CO3	Explain, analyze, and design AC - AC converters for real-world applications.
CO4	Explain, analyze, and design DC - DC converters for real-world applications.
CO5	Explain, analyze, and design DC – AC converters for real-world applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	F														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	2	1							1	3	1	1
CO2	3	1	1	2	1							1	3	2	1
CO3	3	1	1	2	1							1	3	2	1
CO4	3	1	1	2	1							1	3	2	1
CO5	3	1	1	2	1							1	3	2	1

Type	Code	Control Systems Engineering	L-T-P	Credits	Marks
PC	BTEE-T-PC-005	Control Systems Engineering	3-0-0	3	100

Objectives	The objective of the course is to create an understanding of how modern-day control systems operate along with a thorough knowledge of mathematical modeling and stability analysis. This course also covers fundamentals of statespace methods.
Pre-Requisites	Mathematical background of differential equation, Laplace transforms, Basic electrical engineering, Dynamic equations of physical systems are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Control Systems: Concept of control system, Definition, Open Loop/Closed-loop, Feedback, Effect of feedback, Review of complex variables, Laplace Transform, Transfer function and impulse response of linear systems, Concepts of State, State Variables and State-space Model; Block diagram, Signal flow graphs, Signal flow graphs, Mason's Gain formula, Mathematical modelling of dynamical systems using transfer function and state space approaches; Control System Components: Potentiometer, Synchros, AC/DC Servo motors.	11 Hours
Module-2	Time Response Analysis: Standard Test Signals, Time response of first order systems, Time Response of Second order systems, Type & order of a system, Steady State Errors and Static Error Constants of different types of systems, Effect of adding pole and zero to a system, Design specification of second order system, Performance indices. Introduction to Controllers: Proportional Derivative Error Control (PD Control), Proportional Integral Controller (PI Control), Proportional, Integral and Derivative Controller (PID Control), Derivative Output Control, Tuning Rules for PID controllers (Z-N Tuning).	8 Hours
Module-3	Concepts of Stability: Necessary conditions for stability, Hurwitz Stability Criterion, Routh Stability Criterion, Relative Stability Analysis; The Root Locus Technique: Introduction, Root locus concepts, Construction of Root locus, Root Contours, Systems with transportation lag.	8 Hours
Module-4	Stability in Frequency Domain: Mathematical Preliminaries, Frequency Response Analysis: Correlation between Time and Frequency Response, Polar plots; Nyquist Stability Criterion, Assessment of Relative stability using Nyquist Criterion, Closed loop Frequency Response, Bode plots, All Pass and Minimum-Phase Systems.	9 Hours

Module-#	Topics	Hours
Module-5	State Variable Analysis : Concept of state, State variable model of dynamic system using physical variable, Phase Variables and Canonical Models, Derivation of Transfer Function, Solution of State Equation, State Transition Matrix, Controllability and Observability, Design of pole placement by state feedback.	6 Hours
	Total	42 Hours

Text Books:

- T1. I. J. Nagrath and M.Gopal, *Control Systems Engineering*, 5th Edition, New Age Intl., 2010.
- T2. K. Ogata, *Modern Control Engineering*, 5th Edition, PHI Learning, 2010.

Reference Books:

- R1. B. C. Kuo, *Automatic Control Systems*, 7th Edition, Prentice Hall India, 2010.
- R2. R. C. Dorf and R. H. Bishop, Modern Control Systems, 8th Edition, Addison Wesley, 2003.
- R3. U. A. Bakshi and V. U. Bakshi, *Control System Engineering*, 1st Edition, Technical Publications, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/108102043/
- 2. https://nptel.ac.in/courses/108106098/
- 3. https://www.youtube.com/channel/UCq0imsn84ShAe9PBOFnoIrg: Lectures by Brian Douglas
- 4. https://ocw.mit.edu/courses/mechanical-engineering/2-04a-systems-and-controls-spring-2013/lecture-notes-labs/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain and apply basic concepts of control systems to develop mathematical models of various physical systems in engineering and study of feedback characteristics.
CO2	Apply standard test signals to determine performance characteristics of first and second-order systems and understand the design of conventional controllers used in industry to control these performance parameters.
CO3	Classify stability using time domain techniques and analyze a system's performance using the graphical approach.
CO4	Identify the methods of frequency domain analysis and apply it to determine different types of stability in the frequency domain.
CO5	Develop an understanding of state-space approach in various forms to model a system and apply the state feedback method to design a controller using pole-placement.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1							1	3	2	2
CO2	3	2	2	1	1								3	1	2
CO3	2	2	1	1	1								3		1
CO4	3	3	1	1	2							1	3	1	2
CO5	3	2	1	1	1								3		1

Type	Code	Electrical Power Transmission &	L-T-P	Credits	Marks
PC	BTEE-T-PC-013	Distribution	3-0-0	3	100

Objectives	The objective of the course is to study the basic concept of power system, its components and parameters, characteristics of power lines for different voltage levels, and the equipment used in power transmission & distribution.
Pre-Requisites	Knowledge of AC and DC circuits, characteristics & response of the electrical parameters (R, L, and C), and elementary idea on electrical power system and components is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s) Assignment(s) Mid-Term End-Term				Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Transmission Line Parameters: Types of conductors, Resistance, Inductance of a conductor due to internal flux, Flux linkages between two points, Inductance Calculation: Composite-conductor, Single-phase line, Three-phase line with equilateral & unsymmetrical spacing, Inductance calculation for Bundled conductors; Skin effect, Proximity effect; Electric field of long & straight conductor, Potential difference between two points due to a charge, Capacitance Calculation:Two-wire line, 3-phase line with equilateral & unsymmetrical spacing, Effect of earth on capacitance, Capacitance calculation for Bundled conductors.	10 Hours
Module-2	Transmission Line Performance : Short & medium transmission lines - representation as π & T model, ABCD parameter, Performance analysis; Long Transmission Lines: Hyperbolic form of equations & its interpretation, ABCD parameters, Equivalent π and T network; Power flow through transmission line, Voltage compensation techniques.	8 Hours
Module-3	Overhead Line Insulators: Insulator materials, Types of insulators; Voltage distribution over insulator string, Improvement of string efficiency, Insulation failure; Mechanical Design of Overhead Transmission Lines: General considerations, Span, Conductor configuration, Spacing and clearances, Sag & tension, Factors affecting sag, Conditions for tower erection; Catenary, Conductor vibration, Corona phenomenon.	8 Hours
Module-4	Distribution Systems : Types, AC 3-phase 4-wire distribution system, Primary & secondary distribution system, Voltage drop in DC & AC distributors, Design of distribution substation, Design of secondary network, Kelvin's economy law & limitations, Causes of low power factor and its effect, Power factor improvement & its economics, Power factor correction by static capacitor.	8 Hours

Module-#	Topics	Hours
Module-5	Underground Cables: Cable insulation, Sheath, Armour & covering, Classification of cables, Pressurized cables, Effective resistance, Inductive reactance & capacitance of single-core & 3-phase belted cables, Breakdown of cables, Cable installation, System operating problems with underground & HVDC cables; Power System Earthing: Types and methods, Earth resistance, Design of earthing grid, Tower footing resistance, Neutral grounding.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. J. Grainger and W. D. Stevenson Jr., *Power System Analysis*, 1st Edition, McGraw Hill, 2017.
- T2. B. R. Gupta, *Power System Analysis and Design*, 3rd Edition (Reprint), S. Chand Publications, 2003.
- T3. H. Cotton and H. Barber, The Transmission and Distribution of Electrical Energy, 4th Edition, Hodder Arnold, 1963.

Reference Books:

- R1. M. S. Naidu and V. Kamaraju, *High Voltage Engineering*, 5th Edition, McGraw Hill, 2013. R2. D. P. Kothari and I. J. Nagrath, *Power System Analysis*, 4th Edition, McGraw Hill, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/108102047/: by Prof. D. P. Kothari, IIT Delhi
- 2. https://nptel.ac.in/courses/117101056/: by Prof. R. K. Shevgaonkar, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Evaluate the resistance, inductance and capacitance present in the power lines and the characteristics of these line parameters.
CO2	Analyze the performance of the transmission lines under different operating conditions.
CO3	Design the mechanical and insulation system of transmission lines.
CO4	Design AC & DC distribution system with capacitors and filters.
CO5	Get an insight of the underground cables, their construction and requirement of earthing.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1								3	1	
CO2	3	1	1	2	2								2	2	1
CO3	3	1	3	2	2	3	1						2	2	1
CO4	3	2	3	3	2	2	2						3	1	
CO5	3	3	2	3	2	2	2						3		1

Type	Code	Introduction to Digital Signal Processing	L-T-P	Credits	Marks
PC	BTEC-T-PC-035	introduction to Digital Signal Processing	3-0-0	3	100

Objectives	The objective of this course is to study various signals and systems in time &				
	spectrum domains, investigate the stability & causality of systems, understand				
	Z-transform, discrete Fourier transform and their properties, and to understand				
	design of IIR & FIR filters.				
Pre-Requisites	Knowledge of complex numbers and elementary calculus is required.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are				
	planned to be interactive with focus on problem solving activities.				

Te	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Signals & Systems: Introduction to Signal, Classification, Convolution of two signals (graphical & analytical); Introduction to System, Classification, Continuous-time & Discrete-time LSI system, System representation through differential & difference equations, Response of LSI system, Convolution Integral, Convolution Sum, Correlation of Discrete-time signals & its properties.	10 Hours
Module-2	Discrete Time Signals: Z-Transform, Region of convergence, Properties of Z-transform, Inverse Z-transform (power series & partial fraction methods); Analysis of LSI systems: causality and stability using Z-transform, polezero concept and pole-zero cancellation, transient and steady state response; Unilateral Z-transform and its properties, solution of difference equations.	8 Hours
Module-3	Discrete Fourier Transform: Basics of Discrete Time Fourier Transform (DTFT), frequency domain sampling and reconstruction of discrete time signals; Discrete Fourier Transform (DFT) and its properties; Linear filtering (overlap add method and overlap save method); Efficient computation of DFT: Fast Fourier Transform (FFT) Algorithm (Radix-2 DIT and Radix-2 DIF).	8 Hours
Module-4	Structure for Realization of Discrete Time Systems: Structure for IIR systems - Direct Form I, Direct Form II, Cascade and Parallel Form, Signal Flow Graph and Transposed Structure; Structure for FIR systems: Direct form, cascade form and frequency sampling structure.	8 Hours
Module-5	Design of Digital Filters: Causality and its implication; Design of FIR filters: symmetric and anti-symmetric, design of Linear Phase FIR filters using Windowing technique and frequency sampling technique; Design of IIR Filters from analog filters using Impulse invariance and bilinear transformation techniques.	8 Hours
	Total	42 Hours

P.T.O

Text Books:

- T1. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, *Signals and Systems*, 2nd Edition, Prentice Hall India, 1992.
- T2. B. P. Lathi, *Principles of Signal Processing and Linear Systems*, 2nd Edition, Oxford University Press, 2009.
- T3. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing: Principles, Algorithms and Applications*, 4th Edition, Prentice Hall India, 2007.
- T4. S. K. Mitra, *Digital Signal Processing: A Computer Based Approach*, 4th Edition, McGraw Hill, 2013.

Reference Books:

- R1. A. Ambardar, *Analog and Digital Signal Processing*, 2nd Edition, Brooks/Cole Publishing Company (an International Thomson Publishing Company), 1999.
- R2. M. J. Roberts, *Signals and Systems Analysis using Transform Methods and MATLAB*, 2nd Edition, McGraw hill, 2003.
- R3. A. N. Kani, *Signals and Systems*, 2nd Edition, McGraw Hill Education, 2010.
- R4. A. N. Kani, *Digital Signal Processing*, 2nd Edition, McGraw Hill Education, 2012.
- R5. P. R. Babu, *Digital Signal Processing*, 4th Edition, SciTech Publication, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/117104074/: by Prof. K. S. Venkatesh, IIT Kanpur
- 2. https://nptel.ac.in/courses/108105065/: by Prof. T. K. Basu, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108104100/: by Prof. A. K. Jagannatham, IIT Kanpur
- 4. https://nptel.ac.in/courses/117101055/: by Prof. V. M. Gadre, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain different types of signals and analyze various types of LSI systems responses.					
CO2	Investigate the systems stability and causality using Z-Transform.					
CO3	Analyze discrete signals and systems using DFT technique.					
CO4	Realize different structures of FIR and IIR discrete time systems.					
CO5	Design IIR and FIR filters using various techniques.					

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6

The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	2	2								2		
CO2	2	1	1	2	2	1							2	1	
CO3	2	1	1		1	1							1	1	
CO4	1	2	3	2	2	2							2	1	
CO5	2	2	2	1	1	2							2	1	

Type	Code	Advanced Electronic Circuits	L-T-P	Credits	Marks
PE	BTEC-T-PE-058	Advanced Electronic Circuits	3-0-0	3	100

Objectives	The objective of this course is to study advanced electronic circuits such as various types of filters, multivibrator circuits, 555 timer, Schimitt trigger, sweep generators etc., and their applications in the real world.
Pre-Requisites	Fundamental knowledge of Basic Electronics and Analog Electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

	To	eacher's Assessme	nt	Written A	ssessment	Total
	Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
ĺ	05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Active Filters: Active Filters and their frequency response; First order and Second Order Low-pass/High Pass Butterworth filter: Filter Design, Frequency Scaling, Band-pass and Band-reject filters (wide & narrow), All-Pass filter; Oscillators: Principles, Types, Quadrature and Voltage Controlled Oscillator, Saw tooth wave generator; Comparators: Basic comparator, zero-crossing detector, Schmitt Trigger, comparator characteristics, limitations of Op-Amp as comparators, voltage limiters.	9 Hours
Module-2	Bistable (Fixed Bias and Self Bias) Multivibrator, Loading, commutating capacitors, Triggering the binary (symmetrical and unsymmetrical through unilateral device), Schmitt Trigger Circuit (Emitter-coupled Bi-stable MV), Monostable Multivibrator (collector coupled and emitter coupled), Gate Width and Waveforms, Triggering of the Monostable MV, Astable Multivibrator (collector coupled and emitter coupled).	9 Hours
Module-3	Wide-band Amplifiers: The Hybrid- π , High-frequency, Small signal Common-emitter Model, RC-Coupled Amplifier, Frequency Response of a Transistor Stage, Short-Circuit Current Gain, Current Gain with Resistive Load, Transistor Amplifier Response taking Source Impedance into Account, Transient Response of a Transistor Stage; Negative Resistance Switching Devices: Voltage Controllable Negative resistance devices, Tunnel Diode operation and characteristics, Monostable, Astable, Bistable operations using tunnel diode, Voltage controlled Negative Resistance Switching circuits.	8 Hours
Module-4	Voltage and Current Time Base Generators: Time-Base Generators, General features of a Time-base signal, Methods of generating a voltage time-base waveform, Exponential sweep circuit, Miller and bootstrap time base generators - Basic principles, Transistor miller time-base generator, Transistor bootstrap time-base generator, Current time-base generators, A simple current sweep, Linearity correction through adjustment of driving waveform, Transistor current time-base generator.	8 Hours

Module-#	Topics	Hours
Module-5	Specialized IC Applications: IC 555 Timer as Monostable and Astable Multivibrator, applications; Phase Locked Loop: Operating principle of PLL, Phase detectors, Exclusive-OR phase detector, Monolithic phase detector, Instrumentation Amplifier and its applications.	8 Hours
Total		42 Hours

Text Books:

- T1. J. Millman and H. Toub, *Pulse, Digital and Switching Waveforms*, 3rd Edition, McGraw Hill Education, 2017.
- T2. R. A. Gayakwad, *Op-Amps and Linear Integrated Circuits*, 4th Edition, Pearson Education, 2015.

Reference Books:

- R1. A. A. Kumar, *Pulse and Digital Circuits*, 2nd Edition, PHI Learning, 2008.
- R2. K. V. Rao, K. R. Sudha, and G. M. Rao, *Pulse and Digital Circuits*, 1st Edition, Pearson Education, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/108/102/108102095/: by Prof. S.C. Dutta Roy, IIT Delhi
- 2. https://nptel.ac.in/courses/117/107/117107094/: by Dr. P. Agarwal, IIT Roorkee
- 3. https://nptel.ac.in/courses/117108038/: by Prof. M. K. Gunasekaran, IISc Bangalore
- 4. https://www.elprocus.com/types-active-filters-and-applications/
- 5. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/108101091/lec69.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the concepts of active filters, oscillators, comparators and signal generators with their applications.
CO2	Describe & distinguish different multivibrators like astable, monostable and bistable multivibrators.
CO3	Design memory circuits, multivibrators, and microwave circuits using wide band amplifiers and negative resistance switching devices.
CO4	Design different types of voltage and current time-base generators for various engineering applications.
CO5	Use instrumentation amplifier in electronic communication circuits and realize specialized chip design for monostable and astable applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1							1	2	1	1
CO2	3	2	3	1	1							1	2	1	1
CO3	2	2	3	1									2		
CO4	3	2	2	1	1								2	1	
CO5	2	1			2								1	1	

Type	Code	Sensors & Circuit Analysis	L-T-P	Credits	Marks
PE	BTEI-T-PE-027	Schools & Circuit Milarysis	3-0-0	3	100

Objectives	The objective of this course is to study the characteristics of different types of
	measurement systems and principles & applications of various sensing elements.
Pre-Requisites	Basic knowledge of physics, mathematics, electrical, and electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on real world examples & case studies.

T	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Basics and functional elements of measurement systems, Types of instruments and applications; Active/passive transducers, Analog/digital mode of operation; Static Characteristics: Systematic characteristics, Statistical characteristics, Calibration; Resistive Sensors: Potentiometers, RTD, Thermistor, Strain Gauge.	8 Hours
Module-2	Capacitive Sensing Elements: Variable separation, Area and dielectric, Sensors for pressure, humidity, and level measurement; Inductive Sensing Elements: Variable reluctance and LVDT; Hall effect sensors, Temperature Sensors: Thermocouples, IC temperature sensors, Radiation pyrometer (Narrow Band & Broad Band), Optical pyrometer.	8 Hours
Module-3	Motion Sensor: Types of motion, Principles & types of accelerometers; Circuit Analysis and Applications: Steady-state acceleration, Vibration and shock; Piezoelectric accelerometers and signal conditioning; Optical Detectors: Photodiodes, Circuit analysis; Miscellaneous Sensors: Ultrasonic, IR, PIR, Microwave radar.	8 Hours
Module-4	Analog Circuit Analysis: Introduction, Principle of analog signal conditioning, Linearization, Conversions, Zero, and span adjustment, Level changing, AC/DC power supply, Filtering and impedance matching, Passive circuits, Divider circuit, Bridge circuits, Operational Amplifier Circuits: Voltage follower, Inverting & non-inverting circuits, Differential amplifier, Integrator, Differentiator, Instrumentation amplifier; Case study: Relay driver circuits, Voltage-to-current converter, Current-to-voltage converter, AC carrier system.	10 Hours
Module-5	Digital Circuit Analysis : Comparators, DAC (bipolar, resolution, characteristics), ADC (bipolar, characteristics, Conversion time, Samplehold, Microprocessor compatible), Frequency-based converters; Data Presentation Elements: Light-emitting diode (LED) displays, Liquid crystal displays (LCDs); Case study: Digital pH meter, Digital tachometer, Fully automatic digital instrument, Digital capacitance meter, Microprocessor-based instruments, IEEE 488 bus.	8 Hours
	Total	42 Hours

Text Books:

- T1. C. D. Johnson, *Process Control Instrumentation Technology*, 8th Edition, Pearson Education, 2014.
- T2. J. P. Bentley, *Principles of Measurement Systems*, 4th Edition, Pearson Education, 2005.
- T3. H. S. Kalsi, *Electronics Instrumentation & Measurements*, 4th Edition, McGraw-Hill Education, 2019.

Reference Books:

- R1. A. K. Sawhney, *A Course in Electrical and Electronics Measurements & Instrumentation*, 1st Edition, Dhanpat Rai & Co., 2015.
- R2. E. O. Doeblin, *Measurement Systems Applications and Design*, 6th Edition, McGraw Hill, 2007.
- R3. C. Rangan, G. Sarma, and V. S. V. Mani, *Instrumentation: Devices and Systems*, 2nd Edition, McGraw Hill, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/108/108/108108147/: By Prof. H. J. Pandya, IISc Bangalore
- 2. https://nptel.ac.in/courses/115107122/: By Prof. S. K. Srivastava, IIT Roorkee
- 3. https://nptel.ac.in/courses/117108038/: By Prof. M. K. Gunasekaran, IISc Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the performance characteristics of measuring instruments and correlate them with resistive-type sensors.
CO2	Explain the principles of capacitive, inductive, and optical sensing elements.
CO3	Identify and utilize various motion sensors used in industrial applications.
CO4	Investigate the design of analog signal conversion circuits in various sensing systems using case studies.
CO5	Investigate the design of digital signal conversion circuits in various sensing systems using case studies.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1								2	1	1
CO2	3	2	2	2	1								3	1	2
CO3	3	2	2	2	1								3	1	2
CO4	3	3	3	2	1								3	1	3
CO5	3	3	3	2	1								3	1	3

Type	Code	Renewable Energy Systems	L-T-P	Credits	Marks
PE	BTEE-T-PE-034	Renewable Energy bystems	3-0-0	3	100

Objectives	The objective of this course is to study various types of renewable energy sources, the technologies for generation, storage, and proper utilization of renewable energy.
Pre-Requisites	Basic knowledge on semiconductor physics, fluid dynamics and electrical machines is required.
Teaching Scheme	Regular classroom lectures with use of ICT as needed, sessions are planned to be interactive with focus on real world examples and case-studies.

Te	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Conventional & non-conventional energy sources, their impact, availability, variability, Indian and world scenario; Solar, Wind, Biomass, Wave, Tidal, Geothermal energy systems; Solar Energy: Solar processes, Composition of solar radiation; Extra-terrestrial & terrestrial radiation, Angles - Azimuth, Zenith, Hour; Irradiance, Solar constant; Solar Thermal Systems & Applications: Solar collectors, Types & performance characteristics, Water heating systems (active & passive), Space heating & cooling systems, Desalination systems, Solar cooker, Solar thermal power plant.	8 Hours
Module-2	Solar Photovoltaic System: Operating principle, Photovoltaic cell concepts, Cell, Module, Array, Losses in solar cell, Effects of partial & complete shadowing, Series and parallel connections, Cell mismatching, PV voltage-current characteristics, Equivalent circuit, Maximum power point tracking; Applications: battery charging, Pumping, Lighting, Peltier cooling.	10 Hours
Module-3	Biomass Power: Principles of biomass conversion, Combustion and fermentation, Anaerobic digestion, Types of biogas digester, Wood gasifier, Pyrolysis, Applications, Biogas, Wood stoves, Bio diesel, Combustion engine, Urban waste to energy conversion, Biomass based power generation.	9 Hours
Module-4	Wind Energy: Wind energy, Variability, Conversion principle; Wind power density, Efficiency limit, Types of converters, Aerodynamics of rotors, Power~Speed and Torque~Speed characteristics, Wind turbine control systems; Conversion to Electrical Power: Induction and synchronous generators, Grid connected & self excited induction generator operation, Constant voltage & constant frequency generation with power electronic control, Single & double output systems, Reactive power compensation, Characteristics of wind power plant, Concepts of DFIG.	10 Hours

Module-#	Topics	Hours
Module-5	Energy Storage Systems: Batteries, Ultra capacitors, SMES; Fuel Cell: Fuel Cell Basics, History of fuel cell technology, Open circuit voltage, Nernst equation analysis, Causes for voltage loss, Types of fuel cell and their efficiency, Applications; Introduction to Hybrid Energy Systems: PV-Wind, PV-Fuel Cell, PV-Diesel.	5 Hours
	Total	42 Hours

Text Books:

- T1. G. Boyel, *Renewable Energy Power for a Sustainable Future*, 3rd Edition, Oxford University Press, 2012.
- T2. B. H. Khan, *Non-Conventional Energy Resources*, 3rd Edition, McGraw Hill Education, 2017.
- T3. S. N. Bhadr, D. Kastha, and S. Banerjee, *Wind Electrical Systems*, 7th Edition, Oxford University Press, 2005.

Reference Books:

- R1. S. A. Abbasi and N. Abbasi, *Renewable Energy Sources and Their Environmental Impact*, 1st Edition, PHI Learning, 2004.
- R2. S. H. Saeed and D. K. Sharma, *Non-Conventional Energy Resources*, 4th Edition, S. K. Kataria & Sons, 2019.
- R3. S. Peake, *Renewable Energy: Power for a Sustainable Future*, 4th Edition, Oxford University Press, 2018.

Online Resources:

- 1. https://nptel.ac.in/courses/103/107/103107157/: by Prof. B. Mondal, IIT Roorkee
- 2. https://nptel.ac.in/courses/108/105/108105058/: by Prof. S. Banerjee, IIT Kharagpur
- 3. https://nptel.ac.in/courses/121/106/121106014/: by Dr. P. Haridoss, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Generalize solar thermal systems and identify various alternate energy sources & their characteristics.
CO2	Analyse and design a solar photovoltaic system for specified applications.
CO3	Evaluate the effectivenss of biomass energy conversion in waste management.
CO4	Design wind energy systems and analyze their operational characteristics.
CO5	Investigate the operation of fuel cell and configuration of different hybrid energy systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

									<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	1	2	2					1	3	1	1
CO2	3	1	2	2	2	1	2					1	2	3	2
CO3	1	1	2	1	1	2	3					1	2	1	1
CO4	3	1	2	2	2	1	3					1	3	2	2
CO5	1	1	2	2	1	1	2					1	2	1	1

Type	Code	Soft Computing Techniques	L-T-P	Credits	Marks
PE	BTEE-T-PE-036	Soft computing reciniques	3-0-0	3	100

Objectives	The objective of this course is to study numerical methods and various techniques used in soft computing to formulate approximate models and find solutions to complex real-life problems.
Pre-Requisites	Basic knowledge of matrix, numerical methods, interpolation, integration and differentiation is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Test(s) Assignment(s) Mid-Term End-Term			
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basic Tools of Soft Computing: Evolution of Computing - Soft Computing constituents, Difference between soft computing and hard computing, Fuzzy logic, Basics of fuzzy logic theory, Crisp and fuzzy sets, Biological background of Neural Networks and its architecture, Basics of Genetic Algorithm and Particle Swarm Optimization, Characteristics of Soft computing and its applications.	7 Hours
Module-2	Fuzzy Logic Systems: Operations on Fuzzy Sets, Membership Functions, Fuzzy relations, Fuzzy rules, Propositions, Implications and inferences, Zadeh's compositional rule of inference, Methods of Defuzzification. Fuzzy Logic Controller: Fuzzy Inference System, Mamdani, Takagi and Sugeno architectures, Examples and applications of fuzzy logic controller. Introduction to fuzzy PI and fuzzy PID control.	12 Hours
Module-3	Artificial Neural Networks: Neural network architectures, Single layer feed forward network, Multi-layer feed forward network, Recurrent networks; Early neural network architectures - Rosenblatt's Perceptron, ADALINE network, MADALINE network, Examples and applications of neural networks.	7 Hours
Module-4	Training of ANN : Back propagation algorithm, Effect of tuning parameters of the back propagation algorithm; Radial Basis Function networks & Least Square training algorithm; Kohenen self–organizing map and learning vector quantization networks; Recurrent neural networks, Simulated annealing neural networks; Adaptive Neuro-fuzzy inference systems (ANFIS)	10 Hours
Module-5	Evolutionary Computing : Concept of Genetics, GA architectures, GA operators- Encoding, Crossover, Selection, Mutation Introduction to other optimization techniques and hybrid evolutionary algorithms.	6 Hours
	Total	42 Hours

Text Books:

T1. J. S. R. Jang, C. T. Sun, and E. Mizutani, *Neuro-Fuzzy & Soft Computing - A Computational Approach* to Learning and Machine Intelligence, 1st Edition, PHI Learning, 2015.

T2. S. Rajasekaran and G. A. V. Pai, *Neural Networks, Fuzzy Systems and Evolutionary Algorithms : Synthesis and Applications*, 2nd Revised Edition, PHI Learning, 2017.

Reference Books:

- R1. F. O. Karry and C. De Silva, *Soft Computing and Intelligent Systems Design Theory, Tools and Applications*, 1st Edition, Pearson Education, 2009.
- R2. S. Haykin, *Neural Networks: A Comprehensive Foundation*, 2nd Edition, Pearson Education, 1997.
- R3. T. J. Ross, Fuzzy Logic with Engineering Applications, 3rd Edition, Wiley, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/127/105/127105006/: by Prof. D. K. Pratihar, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106/105/106105173/: Prof. D. Samanta, IIT Kharagpur
- 3. https://nptel.ac.in/courses/117/105/117105084/: Prof. S. Sengupta, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Get an understanding of different soft computing techniques and their applicability.
CO2	Gain insight on fuzzy principles & inference and their implementation in designing fuzzy systems.
CO3	Apply different types of neural networks in electrical & electronics engineering problems.
CO4	Analyze effectiveness of neural networks for solving complex engineering problems.
CO5	Develop knowledge about evolutionary computation with focus on genetic algorithm.

Program Outcomes Relevant to the Course:

	-
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mappi	triapping of Cos to Fos and Foos (1. Low, 2. Weddam, 5. Fight)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1								2	1	
CO2	3	3	2	2	2							1	2		2
CO3	2	2	2	1	2								2	2	
CO4	3	3	2	2	2							1		2	2
CO5	2	2	2	2	2							1	1	2	2

Type	Code	Numerical Optimization	L-T-P	Credits	Marks
OE	BTBS-T-OE-029	Numerical Optimization	3-0-0	3	100

Objectives	The objectives of this course is to gain mathematical maturity by equipping the students to handle the linear and non linear problems of optimization in different fields of engineering.
Pre-Requisites	Knowledge of coordinate geometry, calculus and matrix algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

ſ	To	eacher's Assessme	Written A	Total			
Ī	Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
Ī	05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Linear Programming: Graphical Method, Simplex Method, Methods of Artificial Variables, Alternate Optima, Redundancy & Degeneracy.	8 Hours
Module-2	Mathematics of Simplex Method (without proof), the Revised Simplex Method, Dual Problem, Construction of Dual, Duality Theorem (without proof), Dual Simplex Method, Post Optimal analysis.	9 Hours
Module-3	Integer Linear Programming: Gomory's cutting Plane Method for All Integer & Mixed Integer Programming, Branch & Bound Method, Convex Function, Convex Programming Problem, Quadratic Programming and Wolfe's Method.	8 Hours
Module-4	Optimality Conditions, Lagrangian & Lagrange Multipliers, KKT Necessary/Sufficient Optimality Conditions, Duality in Non-linear Programming, Unconstrained Optimization: Line Search Methods for Unimodal Functions, Steepest Descent Method, Newton's Method, Modified Newton's Method, Conjugate Gradient Method.	9 Hours
Module-5	Constrained Optimization: Frank Wolfe's Method, Rosen's Gradient Projection Method, Penalty function method, Barrier function method.	9 Hours
	Total	42 Hours

Text Books:

T1. S. Chandra, Jayadeva, and A. Mehera, *Numerical Optimization with Applications*, 1st Edition, Narosa Publisher, 2013.

Reference Books:

- R1. D. G. Luenberger and Y. Ye, *Linear & Nonlinear Programming*, 1st Edition, Springer, 2016.
- R2. S. S. Rao, Engineering Optimization Theory and Practice, 4th Edition, John Wiley & Sons, 2013.
- R3. K. Dev, *Optimization for Engineering Design Algorithms and Examples*, 2nd Edition, PHI, 2012.

Online Resources:

1. https://nptel.ac.in/courses/106108056/: Dr. S. K. Shevade, IISc Bangalore

P.T.O

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply simplex method to solve linear programming problems.
CO2	Explain the concepts behind simplex method and apply it to sensitivity analysis.
CO3	Apply integer programming and convex programming methods in optimization problems.
CO4	Explain the concepts and conditions of non-linear programming problems and its application.
CO5	Solve constrained optimization problems by applying advanced optimization techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1								2	1	1
CO2	3	3	2	1	2								2	1	1
CO3	3	2	3	3	1								2	1	1
CO4	3	3	3	2	3								2	1	1
CO5	3	3	3	2	3								2	1	1

Type	Code	Organizational Behaviour	L-T-P	Credits	Marks
OE	BTBS-T-OE-030	Organizational Denavious	3-0-0	3	100

Objectives	The objective of this course is to understand the human interactions in an organization and develop the skills for leadership, conflict resolution and take rational decisions to attain business goals.
Pre-Requisites	General knowledge of any organization and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples.

To	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Organizational Behaviour (OB): Definition & Meaning, Importance; Learning: Nature, Learning Cycle, Components, Theories; Personality: Meaning & Definition, Determinants of Personality, Personality Traits, Personality and OB.	9 Hours
Module-2	Perception: Meaning & Definition, Perceptual Process, Importance of Perception in OB; Motivation: Nature & Importance, Herzberg's Two Factor Theory, Maslow's Need Hierarchy Theory, Alderfer's ERG Theory.	8 Hours
Module-3	Organizational Behaviour Process: Communication - Importance, Types, Gateways, Barriers, Communication as a tool for improving Interpersonal Effectiveness; Groups in Organizations: Nature, Types, Group Cohesiveness, Group Decision-making, Managerial Implications, Effective Team Building; Leadership: Leadership & Management, Theories of Leadership; Conflict: Nature of Conflict and Conflict Resolution.	9 Hours
Module-4	Organizational Culture: Meaning & Definition, Culture and Organizational Effectiveness; Introduction to Human Resource Management: Selection, Orientation, Training and Development, Performance Appraisal.	8 Hours
Module-5	Organizational Change: Importance of Change, Planned Change and OB techniques; International Organizational Behavior: Trends in International Business, Cultural Differences and Similarities, Individual and Interpersonal Behavior in Global Perspective.	8 Hours
	Total	42 Hours

Text Books:

- T1. K. Davis, *Organisational Behaviour*, 9th Edition, McGraw-Hill, 1992.

 T2. K. Aswathappa, *Organisational Behaviour*, 12th Revised Edition, Himalaya Publishing House, 2016.

Reference Books:

- R1. S. P. Robbins, *Organisational Behaviour*, 8th Edition, Prentice Hall of India, 2018.
- R2. K. B. L. Srivastava and A. K. Samantaray, *Organizational Behaviour*, 1st Edition, India Tech, 2009. R3. K. Singh, *Organizational Behaviour*, 3rd Edition, Pearson, 2015.

Online Resources:

- 1. https://nptel.ac.in/courses/110/105/110105033/: by Dr. S. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/110/105/110105120/: by Prof. K. B. L. Srivastava, IIT Kharagpur
- 3. https://www.studocu.com/en/search/organizational-behaviour: by different universities

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Describe the developments in the field of OB and the micro & macro approaches inside organizations.
CO2	Analyze and compare different models used to explain individual behaviour related to motivation, learning, perception and personality.
CO3	Identify the processes used in developing communication, interpersonal relations and resolving conflicts.
CO4	Explain the role of group dynamics, demonstrate skills required for working in groups, team building and various leadership styles.
CO5	Explain the need of organizational culture and identify the process and barriers for implementing organizational change.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1	1	1	1			1		1	1
CO2						1	1	2	1	1		1		2	1
CO3						1		2	3	3		1		2	2
CO4						1	2	1	3	1		1		3	2
CO5						2	1	1	1	1		1		2	1

Type	Code	Information Theory & Coding	L-T-P	Credits	Marks
OE	BTEC-T-OE-099	information Theory & County	3-0-0	3	100

Objectives	The objective of the course is to study the concepts of information theory, measuring information using traditional & modern coding techniques including linear block, cyclic, and convolutional codes for error control.
Pre-Requisites	Fundamental knowledge of probability theory, random variables and basics of linear algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Information Theory : Information and entropy, Entropy for discrete ensembles, Properties of entropy of a binary memory less source, Measure of information, Source coding, Shannon's noiseless coding theorem, Shannon-Fano coding, Entropy rate of a stochastic process.	8 Hours
Module-2	Source Coding and Decoding Techniques: Kraft-McMillan Inequality and Compact Codes, Huffman codes and uniquely detectable codes, Arithmetic Coding, Predictive Coding, Lempel Ziv coding.	9 Hours
Module-3	Channel Capacity: Markov Source, Joint and Conditional Information Measures, Properties of Joint and Conditional Information Measures and a Markov Source, Differential entropy, Channel models, Channel capacity, Channel coding, Information capacity theorem, the Shannon Limit Theorem, Channel capacity for MIMO systems.	9 Hours
Module-4	Channel Coding : Introduction to cyclic codes, Polynomials, the Division Algorithm for polynomials, Method for generating cyclic codes, Matrix description of cyclic codes, Burst error correction, Fire codes, Golay codes.	8 Hours
Module-5	Error Control Coding : Introduction to convolutional codes, Tree codes & Trellis codes, Polynomial description of convolutional codes, the Generating Function, Matrix description of convolutional codes, Viterbi decoding of convolutional codes.	8 Hours
	Total	42 Hours

Text Books:

- T1. R. Bose, *Information Theory, Coding and Cryptography*, 3rd Edition, Tata McGraw-Hill, 2016.
- T2. N. Abramson, *Information and Coding*, McGraw-Hill Education, 1963.

Reference Books:

- R1. M. Mansurpur, Introduction to Information, McGraw Hill, 1987.
- R2. R. B. Ash, *Information Theory*, Dover Publications, 1990.
- R3. S. Lin and D. J. Costello Jr., Error Control Coding, Prentice Hall, 1983.

Online Resources:

- 1. https://nptel.ac.in/courses/108/103/108103112/: by Prof. P. K. Bora, IIT Guwahati
- 2. https://nptel.ac.in/courses/117/108/117108097/: by Prof. P. S. Nuggehalli, IISc Bangalore
- 3. https://nptel.ac.in/courses/117101053/: by Prof. S. N. Merchant, IIT Bombay
- 4. https://nptel.ac.in/courses/117/104/117104120/: by Prof. A. Banerjee, IIT Kanpur
- 5. https://nptel.ac.in/courses/117/104/117104121/: by Prof. A. Banerjee, IIT Kanpur
- 6. https://nptel.ac.in/courses/117/106/117106031/: by Dr. A. Thangaraj, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the concept of information and entropy of a source.					
CO2 Explain the Shannon's theorem for coding and source coding techniques.						
CO3	CO3 Analyze conditional information measure and Markov source.					
CO4 Analyze different channels and calculation of channel capacity.						
CO5	Apply channel coding techniques for error control.					

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1								2		
CO2	3	3	1	3	1								3		
CO3	3	2	2	2	2								2		
CO4	3	3	2	3	2								3		
CO5	3	2	3	3	3								3		

Type	Code	Fundamentals of DBMS	L-T-P	Credits	Marks
OE	BTCS-T-OE-040	Fulldamentals of DDMS	3-0-0	3	100

Objectives	The objective of the course is to introduce the fundamental aspects involved in the design, implementation, and operation of relational database systems, learn & use data manipulation language, explore the details of transaction processing, concurrency control, and recovery techniques.				
Pre-Requisites	Basic knowledge of data structures, algorithms, and proficiency in any programming language is required.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-world examples.				

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Database Systems: Basic concepts and definitions, three schema architecture, data independence, data models, types of data models, database languages, integrity, database users, Entity-Relationship model, Constraints & Keys, Extended Entity Relationship model, Relational model, Mapping of E-R model to relational schema, System structure of DBMS, Codd's 12 Rules.	10 Hours
Module-2	Query Languages : Relational Algebra, basic operations, join operations, grouping & aggregation, Tuple Relational Calculus, Domain Relational Calculus, Query-By-Example, Structured Query Language (SQL): Create/Alter Tables, Constraints, Selection, Insertion, Modification, Deletion, Functions, Joins, Views.	10 Hours
Module-3	Database Design : Functional dependencies, Armstrong axioms, Attribute closure, Normalization: Dependency & attribute preservation, lossless join; Normal Forms: 1NF, 2NF, 3NF, BCNF, Testing for lossless design, Multi-Valued Dependency (MVD), 4NF and 5NF.	8 Hours
Module-4	Storage Strategies : Storage Architecture, File and Record Organization, Types of Indexes, B-Tree, B+ Tree, Index Files, Hashing; Query processing and optimization: Evaluation of Relational Algebra expressions, Query Optimization.	7 Hours
Module-5	Transaction Processing : Basic concepts, ACID Properties, Serializability, Concurrency Control Schemes – Lock-based & Timestamp-based protocols, Deadlock handling, deadlock prevention, detection and recovery; Database Recovery: types of database failures, Recovery techniques: log-based recovery, checkpoints, shadow paging.	7 Hours
	Total	42 Hours

Text Books:

T1. A. Silberschatz, H. F. Korth, and S. Sudarshan, *Database System Concepts*, 6th Edition, McGraw-Hill, 2013.

- T2. R. Elmasri and S. B. Navathe, *Fundamentals of Database Systems*, 7th Edition, Pearson Education, 2016.
- T3. I. Bayross, SQL, PL/SQL The Programming Language of Oracle, 1st Edition, BPB Publications, 2010.

Reference Books:

- R1. R. Ramakrishnan and J. Gekhre, *Database Management Systems*, 3rd Edition, McGraw-Hill, 2003.
- R2. R. P. Mahapatra and G. Verma, *Database Management Systems*, 1st Edition, Khanna Publishing, 2013.
- R3. C. J. Date, *Introduction to Database Systems*, 8th Edition, Pearson Education, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/106104135/: by Prof. A. Bhattacharya, IIT Kanpur
- 2. https://nptel.ac.in/courses/106105175/: by Prof. P. P. Das, IIT Kharagpur
- 3. https://cs145-fa18.github.io/
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-830-databasesystems-fall-2010/lecture-notes/
- 5. https://docs.oracle.com/database/121/SQLRF/toc.htm: Oracle SQL Reference

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain the significance of database management system, its functional components, create E-R model and relational schema for databases of real world applications.
CO2	Construct queries using Relational Algebra, Relational Calculus, and perform various database operations using structured query language (SQL).
CO3	Design relational databases based on real-world requirements and normalize the designs using different normalization techniques.
CO4	Get an insight to storage structures, various indexing techniques and access methods using those indexes, and devise optimal query execution strategies for efficient query processing.
CO5	Resolve concurrency control issues in transaction processing, and recover a database to its current state in case of failures.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

						-		-	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	1		2						1	3		3
CO2	3	3	3	2	1	1						2	3		3
CO3	3	3	3	2		1						2	3		3
CO4	2	2	2	2	1	1						1	2		2
CO5	2	3	3	2		2						1	2		3

Type	Code	Algorithm Design & Analysis	L-T-P	Credits	Marks
OE	BTCS-T-OE-045	Algorithm Design & Anarysis	3-0-0	3	100

Objectives	The objective of the course is to introduce the classic algorithms in various domains, techniques for designing efficient algorithms to solve computational problems and analyze their complexities.
Pre-Requisites	Knowledge of Discrete Mathematics and Data Structures is essential.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

	Detailed Syllabus	
Module-#	Topics	Hours
Module-1	Introduction, definition, and characteristics of Algorithms, Growth of functions, Asymptotic analysis, Standard notations and common functions, Recurrences, Solution of recurrences by iterative and Master method; Algorithm design techniques, Divide and conquer strategy, Merge sort, Quick sort.	9 Hours
Module-2	Heaps, Building a heap, Heap sort algorithm, Priority Queue & their operations; Dynamic Programming, Elements of dynamic programming, Matrix chain multiplication, Longest Common Subsequence.	8 Hours
Module-3	Greedy algorithms, Elements of greedy strategy, Activity selection problem, Fractional Knapsack problem, Huffman codes; Data structure for disjoint sets, Disjoint set operations, Linked list representation, Path compression, Disjoint set forest.	8 Hours
Module-4	Graph algorithms and their characteristics, Breadth-first and Depth-first search, Minimum spanning trees, Kruskal and Prim's algorithms, Single-source shortest path algorithms (Dijkstra), All-pair shortest path algorithm (Floyd-Warshall).	9 Hours
Module-5	String matching algorithms (Naive, Rabin-Karp); NP-Completeness (Polynomial time, Polynomial time verification, NP-Completeness and reducibility), Examples of NP-Complete problems (without proof) - Circuit satisfiability, 3-CNF satisfiability, Clique, Vertex cover, Hamcycle, Travelling Salesman Problem (without proof); Introduction to Approximation algorithms.	8 Hours
	Total	42 Hours

Text Books:

- T1. T. H.Cormen, C.E.Leiserson, R. L.Rivest, and C. Stein, *Introduction to Algorithms*, 3rd Edition, PHI Learning, 2014.
- T2. E. Horowitz, S.Sahni, and S.Rajasekaran, *Fundamentals of Computer Algorithms*, 2nd Edition, University Press, 2015.

P.T.O

Reference Books:

- R1. J. Kleinberg and E. Tardos, *Algorithm Design*, 1st Edition, Pearson Education, 2013.
- R2. M. T. Goodrich and R. Tamassia, *Algorithm Design: Foundations, Analysis, and Internet Examples,* 1st Edition, John Wiley & Sons, 2001.
- R3. U. Manber, Introduction to Algorithms: A Creative Approach, 1st Edition, Addison-Wesley, 1989.

Online Resources:

- 1. http://www.nptelvideos.in/2012/11/design-analysis-of-algorithms.html
- 2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms
- 3. https://www.geeksforgeeks.org/fundamentals-of-algorithms/
- 4. https://www.tutorialspoint.com/design_and_analysis_of_algorithms/

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Design algorithms, analyze the running time for best, worst, and average-ases, and understand divide & conquer strategy considering quick-sort and merge-sort as examples.
CO2	Compare Heap sort with other comparison based sorting algorithms and develop dynamic programming algorithms.
CO3	Apply disjoint-set data structure and greedy algorithm design techniques in real life problems.
CO4	Model a given engineering problem using graphs and design the corresponding algorithms to solve the problem.
CO5	Compare various pattern matching algorithms, understand NP-Completeness and the need of approximation algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1							2	3	2	2
CO2	3	2	3	3	1	2						1	3	1	2
CO3	3	3	3	3	1	2						1	2	1	1
CO4	3	2	3	3	1	2						1	2	2	2
CO5	2	2	2	3	1	1						2	2	1	1

Type	Code Industrial Automation & Control		L-T-P	Credits	Marks
OE	BTEI-T-OE-019	muustriai Automation & Control	3-0-0	3	100

Objectives	The objective of this course is to study the principles, operation, tuning, configuration, and applications of various process control elements including data acquisition & data presentation units for industrial applications.
Pre-Requisites	Knowledge of basic electrical engineering and control systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Data Acquisitions & Conversion: Introduction, Objective of DAS, Single channel DAS, Multichannel DAS, Data Loggers, Digital Transducer; Signal Processing Elements: ADC (Successive approximation, Dual-slope, Ramp, Flash type), DAC (R-R and R-2R ladder), Sensitive and resolutions of ADC and DAC; Computer and microcontroller systems, Microcontroller and computer software (general idea).	9 Hours
Module-2	Data Presentation Elements : Pointer–scale indicators, Digital display principles, Light-emitting diode (LED) displays, Liquid crystal displays (LCDs), Electroluminescence (EL) displays, Chart recorders, Paperless recorders, Laser printers.	8 Hours
Module-3	Process Control : Introduction to Process Control, Process Definition, Feedback Control; Controller Types: Discontinuous, Continuous, and Composite; PID Controller Tuning: Zeigler-Nichols Tuning Method, Process Reaction Curve; Digital PID Controllers: Position and Velocity algorithm.	8 Hours
Module-4	Final Control Elements : Pneumatic systems – Flapper nozzle system and its characteristics, I/P converter and pneumatic actuators; Electrical actuators: Solenoids, motors, the principle of stepper motors, elements of power electronic devices and driver circuits, Hydraulic actuators; Control valve: Types of control valve, Control valve sizing, Cavitations and flashing.	8 Hours
Module-5	Special Control Structures : Cascade Control, Feed forward Control, Feed forward-Feedback Control Configuration, Ratio Control, Selective Control, and Adaptive Control Configuration.	9 Hours
	Total	42 Hours

Text Books:

- T1. J. P. Bentley, *Principles of Measurement Systems*, 3rd Edition, Pearson Education, 2005.
 T2. S. Bhanot, *Process Control: Principles and Applications*, 1st Edition, Oxford University Press, 2008.
- T3. C. D. Johnson, *Process Control Instrumentation Technology*, 8th Edition, Pearson, 2014.

Reference Books:

R1. K. Kant, Computer-Based Industrial Control, 2nd Revised Edition, PHI Learning, 2011.

- R2. C. A. Smith and A. B. Corripio, *Principles and Practice of Automatic Process Control*, 3rd Edition, John Wiley & Sons, 2006.
- R3. M. Gopal, *Digital Control and State Variable Methods*, 2nd Edition, Tata McGraw-Hill, 2003.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105088/: by Prof. S. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/105/108105062/: by Prof. S. Sen and Prof. S. Mukhopadhyay, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe various data acquisition & signal processing elements used in the industry.
CO2	Present the measured data using various presentation elements in a user-friendly manner.
CO3	Describe the process, characteristics, types of controllers, and PID controller tuning.
CO4	Identify the type of final control elements and explain its working principles.
CO5	Examine & troubleshoot the various controller structures and their configurations.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1							1	1	2	3
CO2	3	3	2	1	1								1	2	2
CO3	3	3	2	2	2	1						1	3	2	1
CO4	2	1	1	1	1								2	2	1
CO5	3	2	2	2	2							1	2	2	1

Type	Code	Soft Skills & Interpersonal Skills Lab		Credits	Marks
HS	BTBS-P-HS-021	Soft Skills & Interpersonal Skills Lab	0-0-4	2	100

Objectives	The objectives of this laboratory course is to practice language skills to become ffective communicators by addressing issues like speaking inhibitions. The l comprises of individual and team activities based on the four skills of langua (LSRW).				
Pre-Requisites	Basic knowledge of English grammar and the ability to speak, read, and write using the English language is required.				
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair and/or team activities with regular assessments, presentations, discussions, role play, audio-visual supplements, writing activities, business writing practices and vocabulary enhancement.				

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

	Detailed Syllabus
Experiment-#	Assignment/Experiment
1	Process of Communication – Group activity.
2	Mock GD 1 – Effective Communication Skills.
3	Mock GD 2 – Subject clarity & group dynamics.
4	Mock GD 3 – Behaviour and Mannerisms.
5	GD: Test – Final Assessment.
6	Presentation Skills 1 (Group Activity: 4-5 students) – Language Fluency, Active Listening, Voice Modulation.
7	Presentation Skills 2 (Group Activity: 2-3 students) – Develop awareness of non-verbal attributes in presenters.
8	Presentation Skills 3 (in pairs) – Subject clarity and knowledge.
9	Presentation Skills: Test 1 – Individual activity.
10	Presentation Skills: Test 2 – Individual activity.
11	Verbal Ability 1 – Activity Sheets: Error identification and correction.
12	Verbal Ability 2 – Activity Sheets: synonyms, antonyms & homonyms, one word substitution, jumbled paragraphs & sentences.
13	Verbal Ability 3 – Activity Sheets: tenses, voice change.
14	Teamsmanship & Leadership Skills 1 – Video.
15	Teamsmanship & Leadership Skills 2 – Group activity.
16	Listening 1 – Correct Pronunciation & Stress.
17	Listening 2 – Video 1.
18	Listening 3 – Video 2.
19	Mock Interview 1 – CV and Cover Letter writing.
20	Mock Interview 2 – Handling FAQ's and language fluency.

Experiment-#	Assignment/Experiment
21	Mock Interview 3 – Assessment.
22	Mock Interview 4 – Assessment.
23	Writing Skill 1 – Essay writing.
24	Writing Skills 2 – Precis writing.
25	Assertiveness Skills – Activity and assessment.
26	Mind Mapping & SWOC – Assessment.
27	Enhancing Reading Skills 1 – Summarising & Note-making.
28	Reading Skills 2 – Comprehension passage.

Text Books:

- T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Edition, Tata McGraw Hill, 2017.
- T2. T. Balasubramaniam, English Phonetics for Indian Students, 3rd Edition, Trinity Press, 2013.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practice*, 3rd Edition, Oxford University Press, 2015.

Reference Books:

- R1. S. Samantray, *Business Communication and Communicative English*, 3rd Edition, Sultan Chand, 2006.
- R2. S. John, *The Oxford Guide to Writing and Speaking*, 3rd Edition, Oxford University Press, 2013.
- R3. B. K. Mitra, *Personality Development and Soft Skills*, 2nd Edition, Oxford University Press, 2016.
- R4. B. K. Das et. al., An Introduction to Professional English and Soft Skills, Cambridge University Press, 2009.
- R5. B. K. Mitra, *Effective Technical Communication A Guide for Scientists and Engineers*, 1st Edition, Oxford University Press, 2006.

Online Resources:

- 1. https://owl.purdue.edu/owl/purdue_owl.html
- 2. https://www.usingenglish.com/
- 3. http://www.english-test.net/
- 4. https://www.ef.com/wwen/english-resources/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Develop the skills to use English language for effective communication.
CO2	Utilise function of language in context of formality, appropriateness and sensitive issues.
CO3	Formulate and structure sentences using grammatically correct English.
CO4	Compose clear and effective business messages for specific purposes.
CO5	Build up a strong personality and develop skills for efficient public speaking.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.								
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.								
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.								

PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						3		1	2	3	2	3	1	3	3
CO2								2	2	3	2	3		3	2
CO3										3		3		2	2
CO4								1	1	3		3		3	3
CO5								1	2	3	1	3		3	3

Type	Code	Control Systems Engineering Lab	L-T-P	Credits	Marks
PC	BTEE-P-PC-006	Control bystems Engineering Lab	0-0-2	1	100

Objectives	The objective of the course is to understand and practice modeling, simulation, and implementation of a physical dynamical system along with an insight to the design of controllers and compensators in modern control system applications.
Pre-Requisites	Knowledge of Dynamic equations of physical systems, Basic Electrical Engineering, Laplace Transform, and Matrix Theory is required.
Teaching Scheme	Regular laboratory experiments to be conducted using hardware and software tools under the supervision of teachers. Demonstration will be given for each experiment in the pre-lab session.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

	Detailed Syllabus
Experiment-#	Assignment/Experiment
1	Study of Position control system using DC Servo motor and determination of its transfer function.
2	Study the characteristics of Synchro Transmitter and Receiver.
3	Observe the time response of a second order process with P, PI and PID controller using process control simulator.
4	Analyze a 2nd order system by plotting its step response using simulation & programming.
5	Verify the effect of P, PI, PD and PID Controller of a 2nd order system using simulation & programming.
6	Study of speed-torque characteristics of two-phase ac servomotor and determination of its transfer function.
7	Determination of controllability and Observability of a given system using Simulation and programming.
8	Stability analysis of a given system using time domain and frequency domain plots using Simulation and programming.
9	Study of frequency response of compensator networks and analysis of system stability with compensator using simulation & programming.
10	Study the frequency response of lead, lag compensator network.
11	Study and validate the controllers (ON/OFF and PID) for a temperature control system.
12	Obtain reduced order model of a higher order system using simulation & programming.

Text Books:

- T1. I. J. Nagrath and M.Gopal, *Control Systems Engineering*, 5th Edition, New Age Intl., 2010. T2. K. Ogata, *Modern Control Engineering*, 5th Edition, PHI Learning, 2010.

Reference Books:

- R1. B. C. Kuo, Automatic Control Systems, 7th Edition, Prentice Hall India, 2010.
- R2. R. C. Dorf and R. H. Bishop, *Modern Control Systems*, 8th Edition, Addison Wesley, 2003.
- R3. U. A. Bakshi and V. U. Bakshi, *Control System Engineering*, 1st Edition, Technical Publications, 2010.

Online Resources:

- 1. https://nptel.ac.in/courses/108102043/: by Prof. M. Gopal, IIT Delhi
- 2. https://nptel.ac.in/courses/108106098/: by Prof. P. Ramkrishna, IIT Madras
- 3. https://www.youtube.com/channel/UCq0imsn84ShAe9PBOFnoIrg: Lectures by Brian Douglas
- 4. https://ocw.mit.edu/courses/mechanical-engineering/2-04a-systems-and-controls-spring-2013/lecture-notes-labs/

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Evaluate the parameters and transfer function of various control components and interpret their application in real world.
CO2	Understand the design of compensators and recognize their use for various applications in interdisciplinary domain.
CO3	Classify between linear and non-linear control actions used in a closed loop system and relate the use of appropriate control scheme for industrial applications.
CO4	Differentiate between Transfer Function and State-space representation of any system dynamics using software tools.
CO5	Analyze and compare the performance of first and second order systems in time domain using hardware and software tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1									3	2	2
CO2	2	3	2	1	2								3	1	2
CO3	2	2	1	1									3		1
CO4	3	3	1	1	2	1						1	3	1	2
CO5	2	1		1	2								3		1

Type	Code	Power Electronics Lab	L-T-P	Credits	Marks
PC	BTEE-P-PC-999	Tower Electronics Lab	0-0-2	1	100

Objectives	The objective of this laboratory is to provide practical exposure on analysis, design & testing of power electronics converters along with application of semiconductor devices for conversion and control of electrical energy.
Pre-Requisites	Knowledge of different electrical components, semiconductor devices and analysis of electrical & magnetic circuits is required. Topics taught in Power Electronics theory class are essential to conduct the experiments.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the faculty. Demonstration and associated safety measures will be explained for each experiment in the pre-lab sessions.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study the V-I characteristics of SCR and to measure the latching and holding current of a SCR.
2	Study of the V-I characteristics of UJT.
3	Study of the V-I characteristics of TRIAC.
4	Study of UJT triggering circuit and cosine controlled triggering circuit.
5	Study of single phase half wave and full wave (Bridge type) controlled rectifier with R and R-L Load.
6	Study of the single phase full wave controlled rectifier (Mid-point type) and semi converter with R and R-L Load.
7	Study of three phase full wave controlled rectifier (Full and Semi converter) with R and R-L Load.
8	Study of the forward converter and Flyback converter.
9	Study of the single-phase voltage source inverter with Sinusoidal pulse width modulation.
10	Study of dual converter in (i) circulating and (ii) non-circulating current modes.
11	Simulate various power electronics converter circuits and study their performance.

Text Books:

- T1. M. H. Rashid, *Power Electronics: Devices, Circuits, and Applications*, 4th Edition, Pearson Education,
- T2. P. S. Bhimbra, *Power Electronics*, 6th Edition, Khanna Publishers, 2014.

Reference Books:

- R1. M. D. Singh and K. B. Khanchandani, *Power Electronics*, 2nd Edition, McGraw-Hill, 2017. R2. P. C. Sen, *Power Electronics*, 1st Edition, McGraw Hill India, 2001.

Online Resources:

- 1. https://nptel.ac.in/courses/108/102/108102145/: by Prof. G. Bhuvaneshwari, IIT Delhi.
- 2. https://nptel.ac.in/courses/108/101/108101126/: by Prof. V. Agarwal, IISc Bangalore.
- 3. https://nptel.ac.in/courses/108/105/108105066/: by Dr. D. Kastha, Prof. S. Sengupta, Prof. N. K. De, and Prof. D. Prasad, IIT Kharagpur.
- 4. https://nptel.ac.in/courses/108101038/: by Prof. B. G. Fernandes and Prof. K. Chatterjee, IIT Bombay.
- 5. https://www.coursera.org/learn/power-electronics

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Interpret the characteristics of SCR, UJT and TRIAC and study the triggering circuit of SCR & TRIAC.
CO2	Analyze various power electronics converters.
CO3	Evaluate the performance of Dual converter and its applications.
CO4	Simulate different power electronic converters.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1						1				2	2	2
CO2	2	3	1	3					1				2	3	2
CO3	2	2	1	2	1				1				3	1	2
CO4	2	2	1	1	2				1			1	2	3	2

Type	Code	Biology for Engineers	L-T-P	Credits	Marks
BS	BTBS-T-BS-014	biology for Engineers	3-0-0	3	100

Objectives	The objective of this course is to integrate the knowledge of traditional engineering and modern biology to solve problems encountered in living systems, allow engineers to analyze a problem from both an engineering and biological perspective, anticipate specific issues in working with living systems, and evaluate possible solutions.
Pre-Requisites	Basic knowledge of biology, chemistry, and physics is adequate.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Importance of Biology for Engineers, Chemical foundations and basic chemistry of cell – Carbon compounds and cell as a unit of life; Physical and chemical principles involved in maintenance of life processes; Cell Structure & Functions (Prokaryotic and Eukaryotic cells), structure and functions of cellular components cell wall, plasma membrane, endoplasmic reticulum. Transport across the cell membrane, Cell signaling, nerve impulse conduction.	8 Hours
Module-2	Metabolisms & Cell Division: Exothermic and endothermic versus endergonic and exergoinc reactions; Concept of Keq and its relation to standard free energy, Spontaneity, ATP as an energy currency, break down of glucose (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis), Energy yielding and energy consuming reactions, Concept of Energy charge. Morphology of Chromosome, Cell theory, Cell cycle and phases; Mitosis and meiosis.	8 Hours
Module-3	Genetics: Laws of heredity (Mendelian and Non-Mendelian), Molecular Genetics: Structures of DNA and RNA, Mutations – Cause, types and effects on species, Bioinformatics - brief idea. Origin of Life: Haldane and Oparins concepts; Evolution: Modern concept of natural selection and speciation – Lamarkism, Darwinism/Neo-Darwinism.	8 Hours
Module-4	Microbiology: Concept of single celled organisms, Ecological aspects of single celled organisms, Concept of species and strains, Identification and classification of microorganisms, Microscopy, Sterilization and media compositions, Growth kinetics. Microbial diseases, epidemiology and public health. Immunology: Human immune mechanism – Types of immunities; Antigen/Antibody reactions – Applications in human health; Immunological disorders: Autoimmune diseases.	9 Hours

Module-#	Topics	Hours
Module-5	Biochemistry : Carbohydrates, Lipids, Nucleic acids, Amino acids & Proteins – Classification based on function and structure; Protein synthesis – Components and regulatory mechanisms; Enzymes – An overview. Biotechnology : Basic concepts on Totipotency and Cell manipulation; Plant & Animal tissue culture – Methods and uses in agriculture, medicine and health. Biological indicators, bio-sensors, bio-chips, nanobiomolecules, biofuel.	9 Hours
	Total	42 Hours

Text Books:

- T1. Wiley Editorial, *Biology for Engineers*, John Wiley & Sons, 2018.
- T2. McGraw-Hill Editorial, *Biology for Engineers*, McGraw-Hill Education, 2013.

Reference Books:

- R1. A. T. Johnson, *Biology for Engineers*, 1st Edition, CRC Press, 2010.
- R2. S. Singh, T. Allen, *Biology for Engineers*, 1st Edition, Vayu Education of India, 2014.
- R3. C. D. Tamparo and M. A. Lewis, *Diseases of the Human Body*, 6th Edition, F. A. Davis Co., 2016.
- R4. N. A. Campbell, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and J. B. Reece, *Biology: A Global Approach*, 10th Edition, Pearson Education, 2014.

Online Resources:

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743984/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239820/
- 2. http://www.euro.who.int/data/assets/pdffile/0013/102316/e79822.pdf
- 3. https://www.tsijournals.com/articles/world-history-of-modern-biotechnology-and-its-applications.html
- 4. https://www.tandfonline.com/doi/full/10.1080/21553769.2016.1162753
- 5. https://www.genome.gov/genetics-glossary/Bioinformatics

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Explain the structure, function & interaction of different types of cells and their components.
CO2	Describe the concepts of metabolism, energy cycle and cell theory.
CO3	Comprehend genetics, origin of life and organic evolution.
CO4	Apply the concepts of microbiology & immunology for diagnosis and treatment of diseases.
CO5	Recognize the biological processes like protein synthesis, action of enzymes and tissue culture.

Program Outcomes Relevant to the Course:

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			1			1	1						1		
CO2			1	1		1	1						1		
CO3			1	2	1	2	2		1	1		1	2	1	1
CO4			1	1	1	2	2		1	1		1	2	1	1
CO5			2	2	1	1	2		1	1		1	2	1	1

Type	Code	Fundamentals of Microprocessors &	L-T-P	Credits	Marks
PC	BTEC-T-PC-037	Microcontrollers	3-0-0	3	100

Objectives	The objective of this course is to study various microprocessors & microcontrollers, develop assembly-level programs, and interface with other external devices as per the requirements.
Pre-Requisites	Basic knowledge of Digital Electronics Circuit is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on theory and programming activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Introduction to 8085 microprocessor & its organization, general architecture, Bus organization, Memory concepts, Pins and Signals, Instruction execution, Timing diagram, Instruction Set & programming, Addressing modes, interrupts, memory & I/O interfacing.	9 Hours
Module-2	Intel 8086 Microprocessor : Bus Interface unit, Execution Unit, Register Organization, Memory Segmentation, Pin architecture, Minimum and Maximum mode system configuration, Physical Memory Organization, Interrupts, Addressing Modes, Instructions.	8 Hours
Module-3	The 8051 Microcontroller : Introduction to Microcontroller, CISC and RISC Processors, MCS-51 Architecture, Registers in MCS-51, 8051 Pin Description, Memory Organization, 8051 Addressing Modes, MCS-51 Instruction Set, 8051 Instructions and Simple Programs, Interrupts in MCS-51, Special function Registers, Assembly language programming.	9 Hours
Module-4	Microcontroller Applications: 8051 Timers and Counters, Serial Communication, I/O Interfacing using 8255, Light Emitting Diodes (LEDs), Push Buttons, Relays and Latch Connections.	8 Hours
Module-5	Interfacing with Peripheral ICs: System level interfacing design with various ICs like 8255 Programmable Peripheral Interface, 8257 DMA Controller, 8259 Programmable Interrupt Controller, 8251 Programmable Communication Interface.	8 Hours
	Total	42 Hours

Text Books:

- T1. M. Rafiquzzaman, *Microprocessors and Microcomputer based System Design*, 2nd Edition, UBS Publications, 2001.
- T2. K. M. Bhurchandi and A. K. Ray, *Advanced Microprocessors and Peripherals*, 3rd Edition, McGraw-Hill Education, 2012.
- T3. M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, *The 8051 Microcontroller and Embedded Systems : Using Assembly and C*, 2nd Edition, Pearson Education, 2011.

Reference Books:

- R1. R. S. Gaonkar, *Microprocessor Architecture, Programming, and Applications with the 8085*, 6th Edition, Penram International Publishing, 2013.
- R2. B. Ram, *Fundamentals of Microprocessors and Microcontrollers*, 9th Edition, Dhanpat Rai Publications, 2019.
- R3. K. Ayala, *The 8086 Microprocessor: Programming & Interfacing the PC*, 1st Edition, Delmar Cengage Learning, 2007.

Online Resources:

- 1. https://nptel.ac.in/courses/106108100/: by Prof. K. Kumar, IISc Bangalore
- 2. https://nptel.ac.in/courses/108/107/108107029/: by Dr. P. Agarwal, IIT Roorkee
- 3. https://nptel.ac.in/courses/108/105/108105102/: by Prof. S. Chattopadhyay, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain the architecture, pins & signals, programming model, instruction execution of 8085 microprocessor and its interfacing with memory and I/O devices.
CO2	Describe the architecture, modes of operation, memory organization, interrupts of 8086 microprocessor and its interfacing with 8255 PPI and 8257 DMA controller.
CO3	Explain the concepts of embedded ICs, RISC and CISC processors and 8051 microcontroller to solve simple problems using assembly language programming.
CO4	Design microcontroller based interfacing for various applications.
CO5	Demonstrate peripheral interfacing with advanced programming of microprocessors and microcontrollers for real-time applications.

Program Outcomes Relevant to the Course:

	-
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1								2	1	1
CO2	3	3	2	3	3							1	3	2	1
CO3	3	3	2	2	3								3	2	1
CO4	3	3	2	2	2							1	3	3	2
CO5	2	2	3	2	3				2	2			2	3	1

Type	Code	Power Systems Operation & Control	L-T-P	Credits	Marks
PC	BTEE-T-PC-021	Tower Systems Operation & Control	3-0-0	3	100

Objectives	The objective of this course is to study different aspects of power system operation and control of single area & interconnected systems, different load flow methods, economical operation of power systems, and methods for maintaining the frequency & voltage within permissible limits.
Pre-Requisites	Basic knowledge of Power system transmission and distribution, electrical machines and circuit theory is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Power Systems: Single Subscript Notation, Double Subscript Notation, Complex Power, The Power Triangle, Direction of Power Flow, Per-Unit System, Single Line diagram, Impedance and Reactance Diagram; Formation YBUS matrix, Modification of YBUS matrix, Gaussian elimination, node elimination, Triangular factorization and sparsity.	10 Hours
Module-2	Power Flow Solution : The Power-Flow Problem, The Gauss-Seidal Method, The Newton-Raphson Method, De-coupled power flow, Power-Flow Studies in System Design and Operations.	9 Hours
Module-3	Economic Operation of Power System : Distribution of Load between Units within a Plant, Distribution of Load between Plants, The Transmission-Loss Equation, An interpretation of Transformation, Classical Economic Dispatch with Losses, Penalty Factor, Unit Commitment, Dynamic programming.	8 Hours
Module-4	ALFC of Single Area Systems: Load Frequency Relation, Speed-Governing System, Hydraulic Valve Actuator, Turbine-Generator Response, Static Performance of Speed Governor, Closing the ALFC Loop, Concept of Control Area, Static & Dynamic Response of ALFC Loop, Physical Interpretation of Results, Secondary ALFC Loop, Economic Dispatch Control; ALFC of Multi-Control-Area Systems: Two Area Systems, Block Diagram Representation of Two Area System, Mechanical Analog of Two Area System, Control of Multi-area Systems.	8 Hours
Module-5	Power System Stability : The Stability Problem, Rotor Dynamics and the Swing Equation, Further Considerations of the Swing Equation, The Power-Angle Equation, Synchronizing Power Coefficient, Equal- Area Criterion for Stability, Further Applications of the Equal-Area Criterion, Multi-machine Stability Studies: Classical Representation.	7 Hours
	Total	42 Hours

Text Books:

- T1. H. Sadaat, *Power System Analysis*, McGraw-Hill Education, 2002. T2. J. J. Grainger and W. D. Stevenson, *Power System Analysis*, 1st Edition, McGraw-Hill, 2017.

T3. A. J. Wood and B. F. Wollenberg, *Power Generation, Operation and Control*, 2nd Edition, John Wiley & Sons, 2006.

Reference Books:

- R1. O. I. Elgerd, *Electric Energy Systems Theory An Introduction*, 2nd Edition, McGraw-Hill, 2017. R2. I. J. Nagrath and D. P. Kothari, *Modern Power System Analysis*, 4th Edition, Tata McGraw-Hill, 2011.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105067/: by Prof. A. K. Sinha, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/107/108107127/: by Dr. V. Pant & Dr. B. Das, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Formulate the admittance matrix and evaluate load, their behavior, and transmission line characteristics.
CO2	Solve power flow problem, determine the losses in the transmission system, and decide economic generation schedule at a snapshot.
CO3	Determine the economic operating schedule of generators.
CO4	Control change in power system dynamics with change in frequency in single and multi-area interconnected system.
CO5	Estimate the critical clearing time for stable power system operation and rotor angle stability analysis.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2									3	2	
CO2	3	2	3	3									3	2	
CO3	3	2	1	3			2						3	2	1
CO4	3	3	3	3									3	2	2
CO5	3	3	3	3									3	3	2

Type	Code	Introduction to VLSI Design	L-T-P	Credits	Marks
PE	BTEC-T-PE-XXX	introduction to VEST Design	3-0-0	3	100

Objectives	The objective of this course is to study design of circuits and systems using integrated micro fabrication technologies and providing an overall state of art knowledge in the area of VLSI Design.
Pre-Requisites	Fundamental knowledge of MOSFET and digital electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	Written A	Total		
Quiz Surprise Test(s)		Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Historical Perspective, VLSI Design Methodologies, VLSI Design Flow, Design Hierarchy, Concept of Regularity, Modularity and Locality, VLSI Design Styles. Fabrication of MOSFETs: Introduction, Fabrication Process Flow – Basic Concepts, The CMOS n-Well Process, Layout Design Rules, Stick Diagrams and Layout of complex CMOS Logic Gates (Euler Method).	8 Hours
Module-2	MOS Transistor: The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS Transistor (MOSFET), MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects, MOSFET Capacitance.	8 Hours
Module-3	MOS Inverter Circuits: Introduction, Voltage Transfer Characteristics, Noise Margin Definitions, CMOS Inverter, Sizing of Inverters. Static MOS Gate Circuits: Introduction, CMOS Gate circuits, Complex CMOS Gates, MUX circuits, Calculation of inverter equivalent for NAND, NOR and other Complex Logic Circuits.	9 Hours
Module-4	Inverter Equivalent : Calculation of inverter equivalent for NAND, NOR, and other Complex Logic Circuits. Interconnect Effects : Introduction, Calculation of Interconnect Parasitics, Calculation of Inter connects Delay (Elmore Delay), Power Dissipation in CMOS Gates, Power and Delay Tradeoffs.	9 Hours
Module-5	Transfer Gate Logic Design : Introduction, Basic Concepts of Pass Transistor, CMOS Transmission Gate Logic. Basics of Semiconductor Memory : DRAM, SRAM Cell Design & Operation, Memory Architecture.	8 Hours
	Total	42 Hours

Text Books:

- T1. S.-M. Kang and Y. Leblebici, *CMOS Digital Integrated Circuits Analysis and Design*, 3rd Edition, TMH, 2002.
- T2. D. A. Hodges, H. G. Jackson, and R. Saleh, *Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology*, 3rd International Edition, McGraw Hill Education, 2004.

Reference Books:

- R1. J. P. Rabaey, A. P. Chandrakasan, and B.Nikolić, *Digital Integrated Circuits: A Design Perspective*, 2nd Edition, Pearson Education, 2016.
- R2. N. H. E. Weste, D. Harris, and A. Banerjee, *CMOS VLSI Design A Circuits and Systems Perspective*, 4th Edition, Pearson Education, 2010.
- R3. R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd Edition, John Wiley & Sons, 2010.
- R4. D. A. Pucknell and K. Eshraghian, *Basic VLSI Design*, 3rd Edition, PHI Learning, 1995.

Online Resources:

- 1. https://nptel.ac.in/courses/117/106/117106092/
- 2. https://nptel.ac.in/courses/117/106/117106093/
- 3. https://nptel.ac.in/courses/117101058/
- 4. https://nptel.ac.in/courses/108/107/108107129/
- 5. https://nptel.ac.in/courses/106/105/106105161/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify suitable method to design circuits and systems using modern tools by following appropriate design flow and fabrication steps.
CO2	Explain the structure and operational analysis of MOSFET under external bias condition before and after scaling.
CO3	Design, implement and investigate Inverter, combinational and sequential logic circuits using CMOS technology.
CO4	Investigate switching characteristics of inverter to estimate its delay time and power consumption.
CO5	Design and analyze transmission gates, various memory cells, acquire the knowledge of different testing techniques and their reliability.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Cont'd...

PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	1	1	1				2	1	2		2
CO2	3	3	1	2	2								2	1	
CO3	3	3	3	2	1							1	3	2	3
CO4	2	2	3	3	2								2	1	2
CO5	3	3	3	3	1							1	3	2	2

Type	Code	Advanced Power Electronics	L-T-P	Credits	Marks
PE	BTEE-T-PE-040	Advanced 1 ower Electronics	3-0-0	3	100

Objectives	The objective of this course is to study different advanced topics in power electronics including rectifiers, inverters, resonant & soft-switching converters, power converter and its industrial applications.
Pre-Requisites	Knowledge of circuit topology, analysis of switching circuits, magnetics, power semiconductor devices, and basic simulation skill is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on advanced topics of power electronics.

To	eacher's Assessme	nt	ssessment	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Non-isolated DC-DC Converters: Buck, Boost, Buck-boost, Cuk, SEPIC (single-ended primary-inductor converter), Isolated DC-DC converters (Switched Mode Power Supplies (SMPSs)): Forward converter, Fly back converter, Half bridge converter, Full bridge converter, Push-pull converter.	12 Hours
Module-2	Resonant Converters: Series Resonant Converters, Parallel Resonant Converters, Zero-voltage-switching (ZVS) resonant converters, Zero-current-switching (ZCS) resonant converters, Resonant DC-link converters.	7 Hours
Module-3	Switched Mode AC Power Supplies: UPS systems, Resonant AC power supplies, Control techniques (PWM controller and isolation in the feedback loop).	5 Hours
Module-4	Inverters: Voltage Source Inverters (VSIs): Pulse width modulation (PWM) techniques: Sine PWM (SPWM), Selected harmonic elimination PWM (SHEPWM), Space vector PWM (SVPWM), Hysteresis band current controlled PWM; Three level inverters, Resonant inverters, Soft switched inverters; Current Source Inverters (CSIs): Load commutated inverters, Forced commutated inverters.	12 Hours
Module-5	AC Voltage Controllers: AC voltage controllers with PWM control; Applications: HVDC transmission, Active harmonic filter, Grid integration of renewable energy sources with energy storage system.	8 Hours
	Total	44 Hours

Text Books:

- T1. M. H. Rashid, *Power Electronics*, 3rd Edition, PHI Learning, 2008.
- T2. N. Mohan, T. M. Undeland, and W. P. Robbin, *Power Electronics: Converters, Applications and Design*, 3rd Edition, Wiley India, 2012.
- T3. B. K. Bose, *Modern Power Electronics and AC Drives*, 1st Edition, Pearson Education, 2005.

Reference Books:

R1. B. W. Flynn and D. E. Macpherson, *Switched Mode Power Supplies : Design and Construction*, 2nd Edition, Universities Press, 1997.

Online Resources:

- 1. https://nptel.ac.in/courses/108/107/108107128/: by Prof. A. Bhattacharya, IIT Roorkee
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/lecture-notes/

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Describe the working of isolation and non-isolation type DC-DC converter with its analysis.
CO2	Explain operations of different types of resonating converters.
CO3	Design and analyse various AC power supplies with their control techniques.
CO4	Identify the operation of advanced converters and switching techniques implemented in recent technology.
CO5	Apply AC voltage controllers and power electronics devices in various real world scenarios.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1							1	3	1	
CO2	3	3	3	3	2							1	2	2	1
CO3	2	2	3	2	1							1	2	2	1
CO4	3	3	3	2	2							1	3	1	
CO5	3	2	3	2	2						·	1	2	2	1

Type	Code	Electrical Drives	L-T-P	Credits	Marks
PE	BTEE-T-PE-042	Electrical Drives	3-0-0	3	100

Objectives	The objective of this course is to study different power electronics converters used for drives and their industrial applications.
Pre-Requisites	Knowledge of power electronics, electrical machines, and basic simulation skill is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on power electronics and machine drives.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s) Assignment(s) Mid-Term End-Term				iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Study of motor drives: Fundamentals of drives and its block diagram, Selection of drives, Classification, Nature and components of load torques, Fundamental torque equations, Determination of equivalent drive parameters, Time and energy calculation in transient operations, Speed-torque conventions and Multi-quadrant operation, Steady-state stability, Load equalizations, Thermal model of motor, Classes of motor duty, Rating based on thermal consideration; Control of Electrical drives: Current limit control, Closed-loop torque control, Closed-loop speed control and closed-loop position control.	12 Hours
Module-2	Performance of DC drives: DC motors and their performances, Starting, Braking, Speed control: Methods of armature voltage control, Controlled rectifier based DC drives, Chopper controlled DC drive.	7 Hours
Module-3	Performance of AC drives: Induction motor drives - Static speed control: Stator voltage control, V/f control, Constant torque and constant power operation, VSI controlled drive, CSI controlled drive, Current regulated VSI control, Static rotor resistance control, Static slip power recovery scheme; Synchronous motor drive - True and self-synchronous mode.	10 Hours
Module-4	Electric traction: Traction system mechanics: Speed-time and distance-time curves, Tractive effort, Effective weight, Train resistance, Adhesive weight, Specific energy output and consumption, Traction motor.	7 Hours
Module-5	Industrial application of drives: Steel rolling mills, Textile mills, Cement mills, Paper mills, etc.; Microprocessor applications in drive systems.	6 Hours
	Total	42 Hours

Text Books:

- T1. G. K. Dubey, *Fundamentals of Electrical Drives*, 3rd Edition, Norasa Publishing, 2010. T2. S. K. Pillai, *First Course on Electrical Drives*, 3rd Edition, New Age International, 2012. T3. V. Subrahmanyam, *Electric Drives*, 2nd Edition, McGraw Hill Education, 2017.

Reference Books:

- R1. M. H. Rashid, *Power Electronics*, 3rd Edition, PHI Learning, 2008.
- R2. B. K. Bose, Modern Power Electronics and AC Drives, 1st Edition, Pearson Education, 2005.

Online Resources:

1. https://nptel.ac.in/courses/108/104/108104140/: by Prof. S. P. Das, IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain classes of electric drive systems, selection of drives, steady-state stability, thermal modeling and control of electrical drives.
CO2	Design & analyze performance of DC drives under steady-state and transient conditions.
CO3	Design & analyze performance of AC drives under steady-state and transient conditions.
CO4	Describe the internals of electrical traction systems and their mechanics.
CO5	Identify appropriate electric drives for industrial use and develop the skills for application of microprocessors in drive systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	1							1	3	2	1
CO2	3	3	2	2	2							1	2	2	
CO3	3	3	2	2	1							1	2	2	
CO4	3	3	3	2	3							1	3	1	
CO5	3	2	2	2	3							1	2	1	1

Type	Code	IoT & Applications	L-T-P	Credits	Marks
PE	BTEI-T-PE-043	101 & Applications	3-0-0	3	100

Objectives	The objective of this course is to study the design, deployment, protocols, networking, and security aspects of Internet of Things. This course also covers IoT system implementation using Arduino and Raspberry Pi, data analytics, and some case studies in various application domains.
Pre-Requisites	Basic knowledge of computer networks, internet technology, basic electronics, analog electronics, digital electronics and computer programming is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions shall focus on design, programming, and applications of IoT.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Introduction to IoT, Physical Design, Logical Design, Enabling Technologies, Levels & Deployments, M2M, Difference between IoT and M2M, IoT Design Methodology, Network Function Virtualization, Need for IoT Systems Management, Simple Network Management Protocol (SNMP) and its limitations, Network Operator Requirements, NETCONF, YANG; Energy harvesting techniques.	9 Hours
Module-2	Domain-Specific IoTs : Overview, Home Automation, Smart Cities, Environment, Retail, Logistics, Agriculture, Industry, Health & Lifestyle IoT in Energy Sectors, Virtual Sensors; Generic Web-Based Protocols (SOAP, REST, HTTP, RESTful, and WebSockets), IoT Application Layer Protocols (CoAP, MQTT, AMQP, REST and XMPP).	7 Hours
Module-3	Sensing Technology : Temperature Sensor (RTD, Thermistor, Thermocouple, IC type), Humidity sensor: Capacitive, Displacement sensor: LVDT, Acceleration sensor (Potentiometric, LVDT, Piezoelectric, variable reluctance type), Pressure sensor (Diaphragm type); ADC concept; S/C Applications: Deflection bridge, amplifier, integrator, and differentiator.	9 Hours
Module-4	IoT using Arduino : Interoperability in IoT, Arduino Programming, Integration of Sensors and Actuators, Microcontrollers, Embedded C programming, Analog Interfacing, Serial, SPI, I2C, Ethernet-based data Communication; DHCP, Web Client, Telnet, MQTT; IoT using Raspberry Pi: Introduction, Linux on Raspberry Pi, Implementation of IoT with Raspberry Pi, Raspberry Pi Interfaces: Serial, SPI, I2C.	10 Hours
Module-5	Data Analytics for IoT: Introduction, Apache Hadoop: MapReduce programming model, MapReduce job execution, job execution workflow, Hadoop cluster setup, YARN, Apache Oozie: setting of Oozie, Oozie workflow for IoT data analysis; Apache Spark, Apache Storm.	7 Hours
	Total	42 Hours

Text Books:

- T1. A. Bahga and V. Madisetti, *Internet of Things: A Hands-On Approach*, 1st Edition, Orient Blackswan, 2015.
- T2. M. Schwartz, *Internet of Things with Arduino Cookbook*, Packt Publishing, 2016.
- T3. C. D. Johnson, *Process Control Instrumentation Technology*, 8th Edition, Pearson Education, 2014.

Reference Books:

- R1. A. K. Ghosh, *Introduction to Measurement and Instrumentation*, 3rd Edition, PHI, 2009.
- R2. R. Kamal, *Internet of Things: Architecture and Design Principles*, 1st Edition, McGraw-Hill, 2017.
- R3. J. P. Bentley, *Principles of Measurement Systems*, 4th Edition, Pearson Education, 2005.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105195/: by Prof. S. Misra, IIT Kharagpur.
- 2. https://nptel.ac.in/courses/108/108/108108098/: by Prof. T. V. Prabhakar, IISc Bangalore
- 3. https://nptel.ac.in/courses/106/105/106105166/: by Prof. S. Misra, IIT Kharagpur
- 4. https://nptel.ac.in/courses/108/105/108105064/: by Prof. A. Barua, IIT Kharagpur
- 5. https://nptel.ac.in/courses/106/106/106106182/: by Prof. S. Iyengar, IIT Madras
- 6. https://nptel.ac.in/courses/115/104/115104095/: by Prof. M. Verma, IIT Kanpur
- 7. https://nptel.ac.in/courses/106/104/106104189/: by Dr. R. Misra, IIT Patna

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Explain the basics of IoT technologies, design methodologies, and network management protocols.
CO2	Evaluate the domain-specific IoT and communication protocols.
CO3	Describe the concepts of sensors, signal conditioning circuits, and their application to IoT.
CO4	Develop programs for IoT Applications using Arduino and Raspberry Pi.
CO5	Understand the concepts of IoT data analytics.

Program Outcomes Relevant to the Course:

0	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1								1	2	1
CO2	3	2	2	1	1								2	2	1
CO3	3	2	3	2	2								3	2	3
CO4	3	3	3	3	3							1	3	3	3
CO5	3	3	1	2	3							1	2	2	2

Type	Code	Communication Systems Engineering	L-T-P	Credits	Marks
PE	BTEC-T-PE-039	Communication bystems Engineering	3-0-0	3	100

Objectives	The objective of this course is to study electronic communication systems, modulation techniques, digital transmission of analog signals, random variables, and sources & filtering of noise.
Pre-Requisites	Knowledge of signals & systems and probability theory is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Total
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Signals and Spectra : An Overview of Electronic Communication Systems, Types of Signal, Fourier Series, Fourier Transform, Properties of Fourier Transform, Orthogonal Signal.	8 Hours
Module-2	Amplitude Modulation Systems: Need for frequency translation, Double Side Band with Carrier (DSB-C), Double Side Band with Suppressed Carrier (DSB-SC), Modulators - Square-law, Switching, Balanced; Detectors: Square-law, Envelope, Synchronous; Single Side Band with Suppressed Carrier (SSB-SC), Frequency & Phase discrimination methods, Coherent detection, Modulation & demodulation of Vestigial Side Band modulation (VSB), Frequency Division Multiplexing, Radio Transmitter & Receiver (super heterodyne receiver).	9 Hours
Module-3	Angle Modulation: Angle Modulation, Narrow band FM, Wide band FM; FM Modulators: Direct method (Varactor diode method), Indirect method (Armstrong method), Simple slope detector, Balanced slope detector, Phase Locked Loop (PLL). Analog Pulse Modulation: Analog to Digital - The need, Sampling Theorem, Natural and Flat-top sampling, Quantization of signals, Quantization error, Pulse Amplitude Modulation, Pulse Width Modulation and Pulse Position Modulation.	9 Hours
Module-4	Digital Pulse Modulation: The PCM system, Bandwidth of PCM system, Delta Modulation (DM), Limitation of DM, Adaptive Delta Modulation, Differential PCM (DPCM), Comparison between PCM, DM, and DPCM. Digital Transmission of Analog Signal: Digital representation of analog signal, Line codes, Companding, Concept of Time Division Multiplexing, Multiplexing of PCM signals.	8 Hours
Module-5	Random Variables and Processes: Probability, Random variables, Useful probability density functions, Useful properties and certain application issues. Mathematical Representation of Noise: Sources of noise, Frequency-domain representation of noise, Superposition of noises, Linear filtering of noise, Noise bandwidth.	8 Hours
	Total	42 Hours

Text Books:

- T1. H. Taub, D. L. Schilling, and G. Saha, *Principles of Communication System*, 4th Edition, Tata McGraw Hill, 2013.
- T2. R. P. Singh and S. D. Sapre, *Communication Systems : Analog and Digital*, 3rd Edition, McGraw Hill Education, 2012.

Reference Books:

- R1. J. G. Proakis and M. Salehi, Communication System Engineering, 2nd Edition, PHI, 2002.
- R2. S. Haykin and M. Moher, *Communication Systems*, 5th Edition, John Wiley & Sons, 2009.
- R3. B. P. Lathi, Z. Ding, and H. M. Gupta, *Modern Digital and Analog Communication Systems*, 4th Edition, Oxford University Press, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/117105143/: by Prof. G. Das, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/104/108104091/: by Prof. A. Jagannathan, IIT Kanpur
- 3. https://nptel.ac.in/courses/117/105/117105144/: by Prof. S. S. Das, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

	•
CO1	Explain different types of signals and their characteristics using Fourier analysis tools.
CO2	Describe the fundamentals of amplitude modulation and demodulation techniques.
CO3	Articulate performance of angle modulation techniques and various analog pulse modulation schemes.
CO4	Explain different types of digital pulse modulation schemes and digital transmission of analog signals.
CO5	Visualize the behavior of random variables, noise signal in frequency domain, and linear filtering of noise.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	2		1
CO2	3	3	3	2	2							1	3		1
CO3	3	3	2	2	2							1	3		1
CO4	3	3	3	2	2							1	3		1
CO5	3	3	2	2	2							1	2		1

Type	Code	Smart Grid	L-T-P	Credits	Marks
PE	BTEE-T-PE-049	Smart Grid	3-0-0	3	100

Objectives	The objective of the course is to study concepts of smart grid, smart metering, problems associated with integration of distributed generation and their solution through smart grid, and evolution of microgrids and their operation.
Pre-Requisites	Basic knowledge of conventional grids, renewable energy systems, power electronics converters, and basics of communication system is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on current trends of smart grid.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Evolution of Electric Grid, Basic concepts of Grid, Need for Smart Grid, Standard concepts & definitions of Smart Grid, Functions, Opportunities, Challenges & benefits, Comparison between conventional and Smart Grid. Smart Grid Components: Smart infrastructure, Communication, Management & protection, Initiatives in Smart Grid.	8 Hours
Module-2	Architecture & Standards: Types of domains in architecture, Standards in Distributed Energy Resources (DERs), Wide Area Situation Awareness, Protection & automation, Time synchronization, Cyber Security. Elements & Technologies: Smart metering, Advanced Metering Infrastructure (AMI), Distribution Automation (DA), SCADA System, Outage Management System (OMS), Plug-in Hybrid Electric Vehicle (PHEV), Vehicle-to-Grid (V2G). Communications Infrastructure & Protocols: WAN, NAN, and HAN, Types of communication technologies - Ethernet, Wireless LANs, Bluetooth, ZigBee, WiMax, and Broadband over Power Line (BPL).	10 Hours
Module-3	Distributed Energy Resources (DERs): Types, Working, Advantages and disadvantages of solar PV system, Solar thermal, Biomass, Wind, Fuel cell, Micro turbine. Energy Storage Technologies: Mechanical, Electrical, Electromagnetic, Electrochemical (Battery Energy Storage System (BESS)), Thermal.	8 Hours
Module-4	Wide Area Measurement System (WAMs): Phasor estimation, Phasor Measurement Units (PMU) – Synchro phasor, PMU device, Operation. Smart Sensors: Intelligent Electronic Devices (IEDs), Geographic Information Systems (GIS), Basics of Demand Side Management (DSM).	8 Hours
Module-5	Microgrid : Introduction, Definitions, Types of Microgrids, Modes of operation, Introduction to Microgrid control & protection, Structure of AC and DC Microgrid, Challenges in Microgrid, Value addition of Microgrid.	8 Hours
	Total	42 Hours

Text Books:

- T1. J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, and A. Yokoyama, *Smart Grid: Technology and Applications*, Student Edition, Wiley, 2012.
- T2. C. W. Gellings, *The Smart Grid: Enabling Energy Efficiency and Demand Response*, 1st Edition, CRC Press, 2009.

Reference Books:

- R1. S. Borlase, Smart Grid: Infrastructure, Technology and Solutions, 1st Edition, CRC Press, 2012.
- R2. A. G. Phadke and J. S. Thorp, *Synchronized Phasor Measurement and their Applications*, Springer, 2008
- R3. J. A. Momoh, Smart Grid: Fundamentals of Design and Analysis, 1st Edition, Wiley-IEEE Press, 2012.
- R4. P. F. Schewe, *The Grid: A Journey through the Heart of our Electrified World*, Joseph Henry Press, 2007.
- R5. S. K. Salman, Introduction to the Smart Grid: Concepts, Technologies and Evolution, IET, 2017.

Online Resources:

- 1. https://www.smartgrid.gov/
- 2. http://www.nsgm.gov.in/
- 3. https://smartgrid.ieee.org/
- 4. https://nptel.ac.in/courses/108/107/108107113/

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Visualize the architecture of Smart grid and its differences from a conventional grid.
CO2	Apply smart metering concepts to industrial and commercial installations and find smart grid solutions using modern communication technologies.
CO3	Formulate solutions in the areas of smart substations, distributed generation and energy storage technologies.
CO4	Explore types of smart sensors and more about wide area measurement systems.
CO5	Gain insight about the evolution of Microgrids, their types and operation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Cont'd...

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		1		2						1	2	1	
CO2	2	2	1	1	1	1						2	2	3	1
CO3	2	1	2	2	1	1						1	3	3	2
CO4	3	2	2	2	1	1						2	2	2	2
CO5	2	2	2	3	2	1						1	2	2	2

Type	Code	Advanced Control Systems	L-T-P	Credits	Marks
PE	BTEE-T-PE-041	Advanced Control Systems	3-0-0	3	100

Objectives	The objective of this course is to study the concepts of discrete-time & non-linear control systems, state-space analysis, design of compensators for control systems, and determine the performance using different measures.
Pre-Requisites	Basic knowledge on mathematics, digital signal processing and control system engineering is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Digital Control System: Sample and Hold, A/D and D/A conversion. Z-transform, Inverse Z-transform, Z-Transform method for solving difference equations, Impulse sampling & Data Hold, Sampling theorem, Folding, Aliasing, Pulse Transfer function, Mapping between s-plane and z-plane, Stability analysis of closed loop systems in the z-plane by use of Bilinear Transformation and Routh's stability criterion, Jury Stability.	10 Hours
Module-2	State Space Analysis: Concept of state and state variables, State model of linear systems, State Space representation using physical, phase, and canonical variables, Derivation of Transfer Function model from State Space Model; Diagonalization: Eigenvalues and Eigenvectors, Solution of State Equations, State Transition Matrix, Cayley-Hamilton Theorem, Controllability and Observability, Pole Placement by State Feedback, State Observer.	8 Hours
Module-3	Phase Plane Analysis: Common Physical Non Linearities - Saturation, Friction, Backlash, Relay and Multivariable Nonlinearity; Phase Plane Method: Basic Concepts, Singular Points, Nodal Point, Saddle Point, Focus Point, Vortex Point; Stability of Non Linear Systems: Limit Cycles, Construction of Phase Trajectories by Analytical Method and Graphical Methods.	10 Hours
Module-4	Describing Function Method: Basic Concepts, Derivation of Describing Functions; Stability Analysis by Describing Function Method: Stability Analysis by Gain-phase Plots, Jump Resonance, Introduction to Liapunov's Stability Criterion.	6 Hours
Module-5	Introduction to Design: Realization of compensators - Lag, Lead, and Lag-Lead compensator; Tuning of PID controller, Feedback compensation, Design of robust control system; Advances in control system: Introduction to optimal control, Performance measures like ISE, ITAE; Quadratic indices, Introduction to fuzzy control.	8 Hours
	Total	42 Hours

Text Books:

- T1. K. Ogata, *Discrete-Time Control System*, 2nd Edition, Pearson Education, 2015.
- T2. I. J. Nagrath and M. Gopal, *Control Systems Engineering*, 6th Edition, New Age International, 2017.

Reference Books:

- R1. R. T. Stefani, B. Shahian, C. J. Savant, and G. H. Hostetter, *Design of Feedback Control Systems*, 4th Edition, Oxford University Press, 2009.
- R2. K. Ogata, *Modern Control Engineering*, 5th Edition, Pearson Education, 2015.
- R3. R. C. Dorf and R. H. Bishop, *Modern Control Systems*, 12th Edition, Pearson Education, 2013.
- R4. M. Gopal, *Control Systems Principles & Design*, 4th Edition, Tata McGraw Hill, 2012.
- R5. N. S. Nise, *Control Systems Engineering*, 5th Edition, Wiley India, 2008.

Online Resources:

- 1. https://www.nptel.ac.in/courses/108103008
- 2. http://www.nptelvideos.in/2012/11/advanced-control-system-design_27.html
- 3. http://web.mit.edu/2.14/www/Handouts/StateSpace.pdf
- 4. https://www.electrical4u.com/state-space-analysis-of--system
- 5. https://www.electrical4u.com/different-types-non-linearities-in-controlsystem

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Implement Z-transform for solving difference equation in discrete time control system and check the system stability in Z-plane by various methods.
CO2	Articulate the concepts of state variables, state space representation in different forms and explain system controllability & observability.
CO3	Develop understanding of physical non-linearities and methods of stability analysis for non-linear systems.
CO4	Analyze the describing function and conduct stability analysis by various methods using advanced techniques.
CO5	Describe the design criteria of controller & compensator and perform stability analysis of the system.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Cont'd...

PO5

Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2								3	1	
CO2	3	3	2	3	1								3	2	1
CO3	3	3	3	2	3								3	1	
CO4	3	3	2	3	2								2	1	
CO5	3	3	3	3	1								3	2	1

Type	Code	Stochastic Processes	L-T-P	Credits	Marks
OE	BTBS-T-OE-031	Stochastic Processes	3-0-0	3	100

Objectives	The objectives of this course is to gain mathematical maturity by equipping the students to handle computing probability in different conditions and studying the concepts of Markov chain & Queuing theory.
Pre-Requisites	Knowledge of Sets, Probability, and Linear Algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Review of basics of Probability - Probability of an event, Conditional probability, Independent event and Bayes' formula, Random variables, Discrete and Continuous, Distribution functions, Joint distribution & independent random variables, Expectation, Variance and covariance, Variance of a sum, Conditional distribution & conditional expectation (discrete case), Conditional distribution & conditional expectation (continuous case), Computing expectation & variance by conditioning, Computing probabilities by conditioning.	8 Hours
Module-2	Stochastic Processes, Markov Chain - Introduction and definition, Chapman-Kolmogorov equations, Classification of states, Limiting probabilities, Some application problems, Mean time spent in transient state, Branching processes, Time reversible Markov chains.	11 Hours
Module-3	Markov decision process, Hidden Markov chain, Exponential distribution and its properties, Counting process & definition of Poisson process, Inter arrival & waiting time distribution, Further properties of Poisson process, Non-homogeneous Poisson process.	8 Hours
Module-4	Continuous-time Markov chain, Birth & death process, The transition probability function, Limiting probabilities, Time reversibility, Computing the transition probabilities.	7 Hours
Module-5	Terms & notations in Queuing Theory, Steady state probabilities, A single server exponential queuing system $(M/M/1)$, $M/M/1$ system with finite capacity, An application problem, The system $M/G/1$, Multiserver queues.	8 Hours
	Total	42 Hours

Text Books:

T1. S. M. Ross, *Introduction to Probability Models*, 10th Edition, Academic Press, 2009.

Reference Books:

R1. J. Medhi, *Stochastic Processes*, 4th Edition, New Age International, 2019.

Online Resources:

- 1. https://nptel.ac.in/courses/110/101/110101141/: by Prof. M. Hanawal, IIT Bombay
- 2. https://nptel.ac.in/courses/111/102/111102111/: by Dr. S. Dharmaraja, IIT Delhi
- 3. https://nptel.ac.in/courses/115/106/115106089/: by Prof. V. Balakrishnan, IIT Madras
- 4. https://nptel.ac.in/courses/111/102/111102098/: by Dr. S. Dharmaraja, IIT Delhi

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply probability models to real life engineering problems.
CO2	Explain Markov chain and classification of states.
CO3	Solve problems using the concepts of hidden Markov chain and Poisson process.
CO4	Apply Markov chain in problems of different field of engineering.
CO5	Apply Queuing theory in engineering and daily life situations.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1								2	1	1
CO2	3	3	2	2	2								2	1	1
CO3	3	2	2	2	2								2	1	1
CO4	3	3	2	2	3								2	1	1
CO5	3	3	3	3	3								2	1	1

Type	Code	Project Management	L-T-P	Credits	Marks
OE	BTBS-T-OE-032	110jeet Management	3-0-0	3	100

Objectives	The objective of this course is to study the fundamental tools and behavioral skills necessary to successfully launch, lead, and realize benefits, develop the skills for planning and controlling, and understanding key factors to drive successful project outcomes.
Pre-Requisites	General knowledge of any organization and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s) Assignment(s) Mid-Term End-Term				iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Objective of Project Management, Types of Projects, Project Life Cycle, project Initiation, project planning, Project Execution, Project closure; Analysis of a project: Market demand analysis, Technical analysis and financial estimation.	9 Hours
Module-2	Commonly used techniques for Project Management, Network techniques - PERT, CPM, Crashing of a project network, Line of balance (LOB): Application area of LOB, Input of LOB, Steps of LOB, Line balancing: Rank Positional weight method. Project Resource Management: Allocation, Leveling and Smoothing methods.	9 Hours
Module-3	Project Selection technique, Investment criteria (NPV, IRR, Benefit Cost Ratio), Project cash flows, Cost of capital, Risk analysis, Sources, Measures and perspectives of risk, Sensitivity analysis, Scenario analysis, Break-even analysis, Simulation analysis, Decision tree analysis, Managing risk, Project selection under risk.	8 Hours
Module-4	Project Financing, Capital structure, Sources of finance, internal accrual, securities, term loans, working capital, Equity and Debt, Venture capital and private equity.	8 Hours
Module-5	Social Cost Benefit Analysis (SCBA): Rationale for SCBA,UNIDO Approach, Net Benefit In terms of Economics (efficiency) Prices. Project Audit: Project failure & reasons for Audit, Phases of Project Audit.	8 Hours
	Total	42 Hours

Text Books:

- T1. P. Chandra, *Projects Planning, Analysis, Selection, Financing, Implementation and Review*, 9th Edition, McGraw-Hill Education, 2019.
- T2. R. Paneerselvam and P. Senthilkumar, *Project Management*, 1st Edition, PHI Learning, 2009.

P.T.O

Reference Books:

- R1. C. Gray, E. Larson, and G. Desai, *Project Management The Managerial Process*, 7th Edition, McGraw Hill, 2013.
- R2. B. Punmia and K. Khandelwal, *Project Planning and Control with PERT and CPM*, 4th Edition, Laxmi Publications, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/110/104/110104073/: by Prof. R. Sengupta, IIT Kanpur
- 2. https://nptel.ac.in/courses/110/107/110107081/: by Prof. S. K. Gupta & Prof. M. K. Barua, IIT Roorkee

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the fundamental project management tools and behavioral skills.
CO2	Explain the basic concept of various network techniques for project management.
CO3	Optimally utilize the resources for successful completion of a project.
CO4	Perform cost-benefit analysis of a project considering various factors involved.
CO5	Plan, monitor, control, and administer projects using computerized PMIS tools.

Program Outcomes Relevant to the Course:

PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1			1		3	1	1		1
CO2					2				1		3		1	1	1
CO3					2	1	1	1	1		3	1	1	1	1
CO4					2		1	1	1		3	1	1	2	1
CO5					3	1	1	1	1		3	1	1	1	1

Type	Code	Adaptive Signal Processing	L-T-P	Credits	Marks
OE	BTEC-T-OE-052	Maptive Signal Processing	3-0-0	3	100

Objectives	The objective of this course is to study the theory of adaptive systems, recursive & non-recursive algorithms for different adaptive problems, and their applications to adaptive systems.
Pre-Requisites	Basic knowledge of mathematics, trigonometry, probability & statistics, and signals & systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Adaptive Systems – Definition and characteristics, General properties, Open and Closed Loop Adaptations, Applications.	7 Hours
Module-2	The Adaptive Linear Combiner: Performance function, Gradient and Mean Square Error, Examples. Theory of Adaptation with Stationary Signals: Properties of the Quadratic Performance Surface, Significance of eigen values, eigen vectors, correlation matrix.	9 Hours
Module-3	Searching the Performance Surface: A simple gradient search algorithm, Stability and Rate of convergence, the learning curve. Gradient Estimation and its Effects on Adoption: The performance penalty, Variance of the gradient estimate, Maladjustment.	9 Hours
Module-4	Adaptive Algorithms and Structures: The LMS Algorithm, Convergence, learning Curve, Performance analysis, Filtered X LMS algorithm.	8 Hours
Module-5	Applications : Adaptive Modeling and System Identification using adaptive filter, Inverse Adaptive Modeling, De-convolution, and equalization using adaptive filter.	9 Hours
	Total	42 Hours

Text Books:

T1. B. Widrow and S. D. Stearns, *Adaptive Signal Processing*, 2nd Edition, Pearson Education, 2009.

Reference Books:

R1. S. Haykin, *Adaptive Filter Theory*, 4th Edition, Pearson Education, 2008.

Online Resources:

1. https://nptel.ac.in/courses/117/105/117105075/: by Prof. M. Chakraborty, IIT Kharagpur

P.T.O

Course Outcomes: At the end of this course, the students will be able to:

CO1	Use probability theory to comprehend design criteria and model adaptive systems.
CO2	Develop mathematical model of linear adaptive processors for performance & stability.
CO3	Use gradient search algorithm for gradient estimation for adaptive systems.
CO4	Apply LMS algorithm for estimating the filter weight & performance analysis.
CO5	Apply various filtering techniques to a given problem and assess the solution & results.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`			,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2							1	3	1	1
CO2	3	3	3	2	2							1	3	1	1
CO3	3	3	3	2	2							1	3	1	1
CO4	3	3	3	3	3							1	3	1	1
CO5	3	2	3	3	3	1	1					1	3	2	1

Type	Code	Internet Technology & Applications	L-T-P	Credits	Marks
OE	BTCS-T-OE-041	internet reciniology & Applications	3-0-0	3	100

Objectives	The objective of the course is to study the technologies behind the Internet including protocols, client-side & server-side programming, and other advanced tools used to develop & deploy professional web applications.
Pre-Requisites	Knowledge of java, networking, and idea on Internet is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on programming activities.

To	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

	Detailed Syllabas	
Module-#	Topics	Hours
Module-1	Introduction to Internet and WWW, Client-Server model, Browsers, IP Addresses, URLs and MIME; Internet Protocols, HTTP Request/Response model; Structure of a Web page, HTML and W3C, Elements, Attributes and Tags; Basic HTML Tags, Text and Lists, Links and Tables, Images and Colors, Forms, Interactive and Multimedia Tags in HTML. Document Type Definition.	10 Hours
Module-2	Cascading Style Sheets: Introduction, Advantages, Adding CSS, Browser compatibility, Page layout, Selectors. CSS Background, CSS Border, CSS Box Model, CSS Display and Float, CSS Tables, CSS Pseudo class and elements; CSS3: Additional features (Box, Shadow and Effects).	9 Hours
Module-3	JavaScript: Introduction, Variables, Literals, Operators, Conditional Statements, Arrays, Functions, Objects (Built-in and User-defined); JavaScript and HTML DOM: Window, Location, Navigator objects, Events and Event Handlers, Navigating the DOM tree, Creating, Adding, Inserting, Removing and Replacing nodes, Document Object properties; Accessing and Validating the Form fields.	9 Hours
Module-4	XML: Use, Declaration, Elements, Attributes, Validation, Display; XML DTD: XML Schema, Validation, Using DTD in an XML Document; XML DOM and XML Transformation; AJAX: Use and benefits, Asynchronous communication, Processing steps, Sending and Retrieving information; JSP: Introduction and life cycle, JSP Service Methods, Elements in a JSP Page, JSP Objects, JSP Tags, JSP Exceptions, JSP Example.	9 Hours
Module-5	Web Services: Evolution, Purpose and Standards, Programming Models, WSDL, SOAP based web services, REST based web services; E-Commerce and Security, Digital Signature and Authentication.	5 Hours
	Total	42 Hours

Text Books:

- T1. M. Srinivasan, *Web Technology: Theory and Practice*, 2nd Edition, Pearson Education, 2012. T2. U. K. Roy, *Web Technologies*, 1st Edition, Oxford University Press, 2016.

Reference Books:

- R1. T. A. Powell, HTML & CSS: The Complete Reference, 5th Edition, McGraw-Hill Education, 2017.
- R2. B. A. Forouzan, *Data Communication and Networks*, 4th Edition, McGraw-Hill Education, 2017.
- R3. T. A. Powell and F. Schneider, *JavaScript 2.0 The Complete Reference*, 4th Edition, McGraw-Hill Education, 2017.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105084/: by Prof. I. Sengupta, IIT Kharagpur
- 2. https://www.w3schools.com/html/default.asp
- 3. https://www.w3schools.com/css/default.asp
- 4. https://www.tutorialspoint.com/javascript/index.htm

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the basics of Internet Technology and the structure of the world wide web.					
CO2	Design professional web pages using HTML and CSS.					
CO3	Create interactive web pages using Java script and XML.					
CO4	Use server side programming to create dynamic web applications.					
CO5	Explore & make use of web services and investigate security issues in Internet.					

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1							2	2	1	3
CO2	3	2	2	1	2							2	1	1	2
CO3	3	3	2	2	3							2	1	1	2
CO4	2	3	2	2								2	1	1	2
CO5	2	2	2	3									1	1	3

Type	Code	Advanced Java Programming	L-T-P	Credits	Marks
OE	BTCS-T-OE-042	Mavaneca java i rogramming	3-0-0	3	100

Objectives	The objective of the course is to learn advanced features of the Java programming language, various frameworks in J2EE for rapid development, and apply these to develop enterprise applications.
Pre-Requisites	Knowledge of object oriented programming using Java is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on programming activities.

	To	eacher's Assessme	nt	Written A	Total	
	Quiz	Surprise Test(s)	rise Test(s) Assignment(s) Mid-Term		End-Term	iotai
ĺ	05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to J2EE Environment: Overview of J2EE and J2SE. J2EE Architecture JDBC: The Concept of JDBC, JDBC Driver Types, JDBC Packages, Database Connection, CRUD Operations using JDBC, Transaction Processing, Metadata; Web Applications and Programming: Web application architecture, Client, Server (Apache Tomcat/WebLogic), HTML5, CSS3; Client Side Programming: JavaScript, JQuery; Introduction to XML/JSON.	9 Hours
Module-2	Servlets: Introduction, Servlet Architecture, Environment Setup, Life Cycle, Form Data processing, Client HTTP Request, Server HTTP Response, HTTP Status Codes, Exception Handling; Advanced Features of Servlets: Handling Cookies, Session Tracking, URL rewriting, Database access, File uploading, Date handling, Page redirection, Sending email, Packaging, Debugging, Internationalization.	8 Hours
Module-3	Java Server Pages (JSP): Advantages of JSP over Servlet, Lifecycle of a JSP page, JSP API, Scriptlet tag, Implicit objects, Directives, Exception handling, Action tags, Expression Language (EL); Advanced Features of JSP: Session Tracking, MVC, JSTL, Custom Tags, CRUD operations; JSP Sample Code: Pagination, Registration Form, File Uploading.	8 Hours
Module-4	Enterprise JavaBeans (EJB): Introduction, Session Bean, JMS (Java Message Service), Message Driven Bean (MDB), Entity Bean; Struts Framework: Introduction, Features, Model 1 and Model 2 (MVC) Architecture, Interceptors, Struts 2 Architecture & Flow, Action, Configuration File, Validation, Ajax Validation, JSON Validation, Interceptor, Zero Configuration.	8 Hours
Module-5	Java Mail API: JavaMail Architecture, Sending emails, Sending email through Gmail Server, Receiving emails, Emails with HTML content, Forwarding, Deleting; Hibernate Framework: Introduction, Architecture, Web Application with Hibernate (using XML), Generator classes; Spring Framework: Introduction, Modules, Examples, Dependency Injection, AOP, JDBC Template.	9 Hours

Cont'd...

Module-#	Topics	Hours
	Total	42 Hours

Text Books:

- T1. J. Keogh, *J2EE*: *The Complete Reference*, 11th Edition, McGraw Hill, 2017.
- T2. Kogent Learning Solutions, *Java Server Programming: Java EE 7 (J2EE 1.7) Black Book*, 1st Edition, DreamTech, 2014.

Reference Books:

- R1. DT Editorial Services, *J2EE 1.7 Projects Black Book*, 1st Edition, DreamTech, 2015.
- R2. Kogent Learning Solutions, *Web Technologies: HTML, Javascript, PHP, Java, JSP, XML and Ajax, Black Book*, 2nd Edition, DreamTech, 2009.

Online Resources:

- 1. https://www.tutorialspoint.com/ejb/index.htm
- 2. https://www.javatpoint.com/hibernate-tutorial
- 3. https://www.javatpoint.com/spring-tutorial
- 4. https://www.javatpoint.com/struts-2-tutorial

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain concepts of J2EE and fundamentals of web application development.
CO2	Design web applications using JSP and Servlet technologies.
CO3	Design and develop complex enterprise applications using EJB frameworks.
CO4	Integrate email support in web applications using J2EE mail API.
CO5	Create enterprise J2EE application using Hibernate and Spring frameworks.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

									0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2									1	1		2
CO2	3	2	2		2							1	2	1	2
CO3	2	3	2		2							1	2	1	2
CO4	3	2	2	1	2							1	2	1	2
CO5	2	2	2	1	1							1	2	1	2

Type	Code	Virtual Instrumentation	L-T-P	Credits	Marks
OE	BTEI-T-OE-021	virtual instrumentation	3-0-0	3	100

Objectives	The objective of this course is to study fundamentals, programming techniques,		
	data acquisition systems, communication buses, and various other aspects to		
	design & develop virtual instrumentation systems for different applications.		
Pre-Requisites	Knowledge of sensors, transducers, actuators, analog & digital electronics, and		
	computer programming is required.		
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are		
	planned to be interactive with focus on design & programming activities.		

Teacher's Assessment			Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	lotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Historical perspectives, advantages, block diagram & architecture of a virtual instrument, Conventional instruments vs. Traditional instruments, Data-flow techniques, Graphical programming in data-flow, Comparison with conventional programming, Distributed system using LabVIEW.	7 Hours
Module-2	VI Programming: Structures in LabVIEW, Loop behavior & inter-loop communication, Local & Global variables, Shift registers, Feedback, Auto-indexing, Loop timing, Timed loop; Other Structures: Sequence structures, Case structures, Formula node, Event structure; Arrays & Clusters, Graphs & Charts, File Input/Output, String Handling: String functions, LabVIEW string formats, Parsing of strings.	10 Hours
Module-3	Data Acquisition : Introduction, Classification of Signals, Analog interfacing: Sampling Theorem, Over-sampling, and Inter-channel Delay, ADCs, DACs Connecting signals to the DAQ: DI, RSE, NRSE, Practical vs. Ideal interfacing, Bridge Signal Sources; PC Buses: Local busses - PCI, RS232, RS422, RS485; Interface Buses: USB, PCMCIA, VXI, SCXI, PXI.	10 Hours
Module-4	Machine Vision : Basics of IMAQ vision: Digital Images, Display; Image analysis, Image processing techniques, Particle Analysis: Thresholding, Binary Morphology, Particle Measurement; Machine Vision: Edge Detection, Pattern Matching, Geometric Matching, Dimensional Measurement, Color Inspection, OCR; Machine Vision Hardware and Software.	7 Hours
Module-5	Motion Control: Motors: Servomotors, Brushless Servomotors, Stepper Motors, Linear Stepper Motors; Calculation of trajectory, Selecting the right motion controller; Move Types: Single-Axis, Point-to-Point Motion, Coordinated Multi-Axis Motion, Electronic Gearing; Motor Amplifiers and Drivers: Simple Servo Amplifiers, Stepper Motor Amplifiers, AC Servo Amplifiers, DC Servo Amplifiers.	8 Hours
	Total	42 Hours

Text Books:

- T1. G. Johnson, LabVIEW Graphical Programming, 4th Edition, McGraw Hill, 2006.
- T2. S. Gupta and J. John, *Virtual Instrumentation using LabVIEW*, 2nd Edition, McGraw-Hill, 2010.
- T3. J. Jerome, *Virtual Instrumentation using LabVIEW*, 1st Edition, PHI Learning, 2010.

Reference Books:

- R1. K. James, *PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control*, 1st Edition, Newnes, 2000.
- R2. G. W. Johnson and R. Jeninngs, *LabVIEW Graphical Programming*, 4th Edition, McGraw-Hill Education, 2019.
- R3. P. A. Blume, *The LabVIEW Style Book*, 1st Edition, Prentice Hall, 2017.

Online Resources:

- 1. http://www.nitttrchd.ac.in/sitenew1/nctel/electrical.php
- 2. http://iota.ee.tuiasi.ro/~master/Signals%20&%20DAQ.pdf
- 3. http://www.setsunan.ac.jp/~shikama/LabVIEW_Elvis_Multisim/060803_Introduction_to_LabVIEW_8_in_6_Hours.pdf
- 4. http://www.ece.mtu.edu/labs/EElabs/EE3010/Lecture%20Notes/Chapter%2009.pdf
- 5. http://ece-research.unm.edu/jimp/415/labview/LV_Intro_Six_Hours.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the fundamentals of Virtual Instrumentation developments and design.	
CO2	Apply programming skills for Virtual Instrumentation system design.	
CO3	Correlate data acquisition & communication for the design of indigenous Virtual Instruments.	
CO4	Understand the use of machine vision techniques in Virtual Instrumentation.	
CO5	Know the operation and drive of various motors as well as gears using Virtual Instrumentation for specific industrial applications.	

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Cont'd...

PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1	1							1	2	
CO2	3	2	3	2	3				1			1	3	2	2
CO3	3	3	3	1	3				1			1	3	2	3
CO4	2	3	2	2	3							1	2	1	3
CO5	3	2	2	2	3	2						2	3	3	3

Type	Code	Fundamentals of Microprocessors &	L-T-P	Credits	Marks
PC	BTEC-P-PC-038	Microcontrollers Lab	0-0-2	1	100

Objectives	The objective of the course is to provide hands-on practice on programming of different microprocessors and microcontrollers and their interfacing with external devices.
Pre-Requisites	Basic analytical & logical understanding including basic knowledge and usage of Digital Electronics is required.
Teaching Scheme	Regular laboratory experiments to be conducted using hardware and software tools under the supervision of the teacher; the experiments shall consist of programming assignments.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment					
1	Program for arithmetic operations using 8085.					
2	Program for finding the largest and smallest from a set of numbers using 8085.					
3	Program for arranging numbers in ascending and descending order using 8085.					
4	Programs for 16 bit arithmetic operations using 8086.					
5	Programs for Sorting and Searching (using 8086).					
6	Programs for String manipulation operations (using 8086).					
7	7 Interfacing ADC and DAC.					
8	Parallel Communication between two MP Kits using Mode-1 and Mode-2 of 8255.					
9	Programming using Arithmetic, Logical and Bit Manipulation instructions of 8051 microcontroller.					
10	Programming and verifying Timer, Interrupts and UART operations in 8051 microcontroller.					
11	Interfacing and Programming of Stepper Motor and DC Motor Speed control.					
12	Programming and verifying Timer, Interrupts and UART operations in 8051 microcontroller.					
13	Communication between 8051 Microcontroller kit and PC.					
14	A design problem using 8051 (such as, multi-parameter data acquisition system, voltmeter, power meter, frequency counter, traffic simulation, digital clock, etc.)					

Text Books:

- T1. M. Rafiquzzaman, *Microprocessors and Microcomputer based System Design*, 2nd Edition, UBS Publications, 2001.
- T2. K. M. Bhurchandi and A. K. Ray, *Advanced Microprocessors and Peripherals*, 3rd Edition, McGraw-Hill Education, 2012.
- T3. M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, *The 8051 Microcontroller and Embedded Systems : Using Assembly and C*, 2nd Edition, Pearson Education, 2011.

Reference Books:

- R1. D. Hall, *Microprocessors and Interfacing*, 3rd Edition, McGraw-Hill Education, 2017. R2. K. J. Ayala, *The 8051 Microcontroller*, 3rd Edition, Cengage Learning, 2007.
- R3. K. Kant, Microprocessors and Microcontrollers: Architecture, Programming and System Design 8085, 8086, 8051, 8096, 2nd Edition, Prentice Hall India, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/108105102/7
- 2. https://nptel.ac.in/courses/108107029/
- 3. https://nptel.ac.in/courses/108105102/38

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the fundamentals of evolution, operating concept, and assembly language programming & instruction sets of 8086 Microprocessor.				
CO2 Develop and apply assembly language programs using loop, branch, arithmetic, rotate, array & String operations.					
CO3	Develop simple assembly level programs such as finding largest/smallest numbers, check existence of data, etc.				
CO4	Experiment with assembly level programming of 8051 microcontroller & its functions for various applications.				
CO5	Analyze the modes of operation of 8255 PPI and its interfacing with peripheral devices.				

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

									<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1								2	1	
CO2	3	2	3	2	2							1	2	1	1
CO3	3	2	3	2	3								2	2	
CO4	3	2	3	3	3							1	3	1	1
CO5	3	2	2	2	2							1	2	1	1

Type	Code	Power Systems Lab	L-T-P	Credits	Marks
PC	BTEE-P-PC-020	Tower Systems Lab	0-0-2	1	100

Objectives	The objective of this laboratory course is to practically investigate the operational principles, calculate different components of equipment & line flows, and use software analysis for problem solving in power systems.
Pre-Requisites	Basic knowledge of power system transmission & distribution, characteristics of different types of lines, and real & reactive power requirements is necessary.
Teaching Scheme	Regular laboratory experiments should be conducted under supervision of the teacher. Demonstration and necessary safety measures will be explained for each experiment in the pre-lab sessions.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study of the Ferranti Effect, voltage profile in overhead transmission line.
2	Determination of A, B, C, D parameters of long Transmission line.
3	Study of different types of compensation in transmission line.
4	Determination of the positive, negative & zero sequence synchronous reactance of an alternator.
5	Formation of the YBUS matrix from line data.
6-7	Study of load flow analysis using Gauss-Seidel Method.
8	Determination of the transient and sub-transient direct axis and quadrature axis reactance of an alternator.
9	Study of the characteristics of over current & 3- ϕ differential relay.
10	Determination of the string efficiency of a chain insulator.
11	Determination of the breakdown strength of transformer oil.
12	Determination of the earth resistance.
13	Design of automatic power factor correction unit with fixed capacitor.
14	Study of the corona effect in high voltage overhead transmission line.

Text Books:

- T1. H. Sadaat, *Power System Analysis*, McGraw-Hill Education, 2002.
- T2. J. J. Grainger and W. D. Stevenson, *Power System Analysis*, 1st Edition, McGraw-Hill, 2017.
- T3. A. J. Wood and B. F. Wollenberg, *Power Generation, Operation and Control*, 2nd Edition, John Wiley & Sons, 2006.
- T4. P. Kundur, *Power System Stability and Control*, 1st Edition, McGraw-Hill, 2006.

Reference Books:

- R1. L. P. Singh, *Advanced Power System Analysis and Dynamics*, 6th Edition, New Age International, 2012
- R2. T. K. Nagsarkar and M. S. Sukhija, *Power System Analysis*, 2nd Edition, Oxford University Press, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105067/: by Prof. A. K. Sinha, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/107/108107127/: by Dr. V. Pant & Dr. B. Das, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the characteristics of long short and medium transmission line.
CO2	Analyze power flow through any line in a steady state condition.
CO3	Determine optimal utilization of resources distributed through the system.
CO4	Simulate different types of frequency control mechanisms.
CO5	Analyze different components of equipment and line flows in the power systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

1 1					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1						1				2	2	1
CO2	2	3	1	3					1				2	3	1
CO3	2	2	1	2	1				1				2	2	1
CO4	2	2	1	1	2				1				2	3	1
CO5	2	3	1	3	2				1				2	3	1

Type	Code	Skill Lab & Project-I	L-T-P	Credits	Marks
PJ	BTEE-P-PJ-019	Skill Eub & Hoject I	0-0-4	2	100

Objectives	The objective of the laboratory course is to enhance the software & hardware skills of students, design electrical/electronic circuits for specific applications by utilizing the knowledge gained in previous semesters, analyze & optimize the designs through simulation, introduce latest research areas in electrical & electronics engineering.
Pre-Requisites	Basic electrical engineering, basics of software, circuit theory, control systems, power electronics, renewable energy systems, etc., are required.
Teaching Scheme	Regular laboratory experiments should be conducted under supervision of the teacher. Demonstration and necessary safety measures will be explained for each experiment in the pre-lab sessions.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Detailed Syllabds								
Experiment-#	Assignment/Experiment							
	Software Skills							
1	Introduction to Programming & Simulation software.							
2	Verification of Network Theorems: Superposition, Thevenin, Norton, Reciprocity & Maximum Transfer Theorem. Study of Series/Parallel Resonance Circuit.							
3	Design of PID Controller using Ziegler-Nichols tuning method and automated tuning method.							
4	Design of Compensator networks for given frequency domain specification.							
5	Study of uncontrolled & controlled 1-phase rectifier for R, RL, RLE load.							
6	Study of uncontrolled & controlled 3-phase rectifier for R, RL, RLE load.							
7	Model of PV module and study of I-V and P-V characteristics using Simulation techniques.							
8	Study of Transmission line performance using ABCD parameter approach.							
	Hardware Skills							
1	Design of variable DC supply.							
2	Study of House Wiring with energy calculation.							
3	Design and control of PE converters using microcontrollers.							
4	Speed Control of Universal Motor using triac circuit.							
5	Transformer Design: Shell type, 12-0-12 V, 5A center tapped transformer.							
6	Study and design of Fan winding.							
	Project Work							
1	Software-based Project, presentation & viva-voce							
2	Hardware-based Project, presentation & viva-voce							

Text Books:

- T1. S. Attaway, *MATLAB: A Practical Introduction to Programming and Problem Solving*, 3rd Edition, Butterworth-Heinemann, 2013.
- T2. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 6th Edition, McGraw Hill Education, 2019.
- T3. M. H. Rashid, *Power Electronics: Devices, Circuits and Applications*, 4th Edition, Pearson Education, 2017.
- T4. K. Ogata, *Modern Control Engineering*, 5th Edition, PHI Learning, 2010.

Reference Books:

- R1. A. K. Tyagi, *MATLAB and Simulink for Engineers*, Pap/Cdr Edition, Oxford, 2011.
- R2. J. Pyrhonen, T. Jokinen, and V. Hrabovcova, *Design of Rotating Electrical Machines*, 2nd Edition, Wiley, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105066/
- 2. https://nptel.ac.in/courses/108/107/108107115/
- 3. https://nptel.ac.in/courses/108/106/108106075/
- 4. https://nptel.ac.in/courses/108/106/108106098/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop programs in MATLAB for different application in electrical engineering.
CO2	Design different controllers and compensators used in control system applications.
CO3	Acquire the skill for designing power electronics devices using appropriate hardware and software.
CO4	Conceive innovative project ideas in different electrical & electronics applications.
CO5	Design and troubleshoot the winding of cell type transformers and domestic fans.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3		1	3			2	1	2	2	2	2	3	2
CO2	2	2		3	2	1		2	3	1	2	3	3	3	2
CO3	2	1		2	3	2		2	3	2	1	2	3	2	3
CO4	2	2		2	2	3		3	2	2	1	3	2	2	2
CO5	3	2		2		2		2	2	1	1	2	2	3	2

Part IV 4th Year B. Tech. (EEE)

Curriculum Structure (Regular)

	Semester VII										
Type	Code	Course Title		,	WCE	I	C	redi	ts		
Type	Code	Course Title		L-T-P]	L-T-P			
	THEORY										
PE		Professional Elective - IV		3	0	0	3	0	0		
OE		Open Elective - IV		3	0	0	3	0	0		
00		MOOC - I		0 0 0			3	0	0		
		PRACTICAL									
PE	BTEE-P-PE-023 /	Emerging Technologies Lab /		0	0	4	0	0	2		
	BTBS-P-PE-024	Entrepreneurship Project		0		T	U	U			
PJ	BTII-P-PJ-003	Summer Internship - III		0	0	0	0	0	1		
			SUB-TOTAL	6	0	4	9	0	3		
			TOTAL		10			12			

		Semester VIII								
Type	Code	Course Title	WCH L-T-P			Credits L-T-P				
	THEORY									
PE		Professional Elective - V	3	0	0	3	0	0		
PE		Professional Elective - VI	3	0	0	3	0	0		
OO		MOOC - II 0 0 0					0	0		
		PRACTICAL								
PJ	BTEE-P-PJ-025	Presentation Skills & Technical Seminar	0	0	4	0	0	2		
PJ	BTEE-P-PJ-028	Project - II	0	0	16	0	0	8		
VV	BTEE-P-VV-024	Comprehensive Viva	0	0	0	0	0	1		
		SUB-TOTAL	6	0	20	9	0	11		
		TOTAL	26 20			·				

	GRAND TOTAL (8 SEMESTERS)	198	162

Note:

- 1. Approved list of courses for MOOC-I & II (self study) shall be published by the department.
- 2. Courses offered under each elective are given in "List of Electives" on Page 221.

Curriculum Structure (PS-7) (For Students opting for Practice School / Industry Internship in the 7th Semester)

	Semester VII										
Type	Code	Course Title	WCH L-T-P			Credits L-T-P					
	THEORY										
00		MOOC - I					0	0			
		PRACTICAL									
PS	BTII-P-PS-004	Practice School / Industry Internship	0	0	0	0	0	16			
PJ	BTII-P-PJ-003	Summer Internship - III	0	0	0	0	0	1			
		SUB-TOTAL	0	0	0	3	0	17			
		TOTAL	0 20								

	Semester VIII										
Type	Code	Course Title	WCH L-T-P				Credits L-T-P				
	THEORY										
PE		Professional Elective - IV	3	0	0	3	0	0			
OE		Open Elective - IV	3	0	0	3	0	0			
00		MOOC - II 0 0 0					0	0			
		PRACTICAL									
PE	BTEE-P-PE-023 / BTBS-P-PE-024	Emerging Technologies Lab / Entrepreneurship Project	0	0	4	0	0	2			
VV	BTEE-P-VV-024	Comprehensive Viva	0	0	0	0	0	1			
		SUB-TOTAL	6	0	4	9	0	3			
		TOTAL	10		12						
		GRAND TOTAL (8 SEMESTERS)		172		162					

Note:

- 1. Approved list of courses for MOOC-I & II (self study) shall be published by the department.
- 2. Courses offered under each elective are given in "List of Electives" on Page 221.

Curriculum Structure (PS-8) (For Students opting for Practice School / Industry Internship in the 8th Semester)

	Semester VII										
Type	Code	Course Title		WCH L-T-P		_	Credits L-T-P				
	THEORY										
PE		Professional Elective-IV		3	0	0	3	0	0		
OE		Open Elective-IV		3	0	0	3	0	0		
00		MOOC - I		0 0 0			3	0	0		
		PRACTICAL									
PE	BTEE-P-PE-023 / BTBS-P-PE-024	Emerging Technologies Lab / Entrepreneurship Project		0	0	4	0	0	2		
PJ	BTII-P-PJ-003	Summer Internship - III		0	0	0	0	0	1		
			SUB-TOTAL	6	0	4	9	0	3		
			TOTAL		10			12			

	Semester VIII										
Typo	Code	Course Title	,	WCE	I	Credits					
Type	Code	Course Title	L-T-P]	L-T-P				
	THEORY										
00		MOOC - II 0 0 0					0	0			
		PRACTICAL									
PS	BTII-P-PS-004	Practice School / Industry Internship	0	0	0	0	0	16			
VV	BTEE-P-VV-024	Comprehensive Viva	0	0	0	0	0	1			
		SUB-TOTAL	0	0	0	3	0	17			
		TOTAL	0			20					
			•			•					

	GRAND TOTAL (8 SEMESTERS)	172	162

Note:

- 1. Approved list of courses for MOOC-I & II (self study) shall be published by the department.
- 2. Courses offered under each elective are given in "List of Electives" on Page 221.

List of Electives

Code	Elective # and Subjects
Profe	essional Elective - IV
BTEC-T-PE-049	Embedded System Design
BTEC-T-PE-044	Digital Image & Video Processing
BTEE-T-PE-052	Power System Protection
BTEE-T-PE-046	Flexible AC Transmission System
Profe	essional Elective - V
BTEC-T-PE-046	Fiber Optic Communications
BTEC-T-PE-024	Microwave Engineering
BTEE-T-PE-047	Power Quality
BTEE-T-PE-048	PLC & SCADA
Profe	essional Elective - VI
BTEC-T-PE-048	Mobile Communication & Networks
BTEE-T-PE-045	HVDC Transmission
BTEE-T-PE-050	High Voltage Engineering
Орег	n Elective - IV
BTBS-T-OE-038	[BSH] Simulation & Modeling
BTBS-T-OE-039	[BSH] Power Plant Engineering
BTBS-T-OE-034	[BSH] Entrepreneurship Development
BTBS-T-OE-035	[BSH] Security Analysis, Investment & Trading
BTEC-T-OE-054	[ECE] Satellite Communication Systems
BTEC-T-OE-043	[ECE] Robotics & Robot Applications
BTCS-T-OE-043	[CSE] Artificial Intelligence
BTCS-T-OE-044	[CSE] Introduction to Machine Learning
BTEI-T-OE-022	[EIE] Industrial Instrumentation

Note: Open Electives are choice-based courses offered by other departments as indicated within brackets.

Type	Code	Embedded System Design	L-T-P	Credits	Marks
OE	BTEC-T-OE-049	Embedded System Design	3-0-0	3	100

Objectives	The objective of this course is to study the components, programming, integration, and life cycle management of hardware & firmware to design & develop embedded systems for real-world applications.
Pre-Requisites	Knowledge of microprocessor & microcontrollers, basic electronics, digital electronic circuits and operating systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	Teacher's Assessment Written Assessment				Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Embedded Systems, Processor embedded into a system, Embedded hardware units and devices, Embedded software, Examples, Embedded SoC and use of VLSI, Design process and examples, Classification of embedded systems, Skills required for a designer; Typical Embedded System: Core, Memory, Sensors & Actuators, Communication interface, Embedded firmware.	8 Hours
Module-2	Characteristic & Quality Attributes: Application and domain specific embedded systems; Designing with Microcontrollers, Factors to consider for selecting a controller; Hardware Software Co-Design and Program Modeling: Fundamental issues in Hardware Software Co-Design, Computational models in embedded design, Introduction to UML, Hardware Software Trade-offs.	9 Hours
Module-3	Embedded Hardware Design & Development: Analog Electronic Components, Digital Electronic Components, VLSI and Integrated Circuit Design, Electronic Design Automation (EDA) Tools; Embedded Firmware Design & Development: Design Approaches, Development Languages.	8 Hours
Module-4	Real Time Operating System (RTOS) based Design: Operating system basics, Types of operating systems, Tasks, Process & Threads, Multiprocessing & Multitasking, Task Scheduling, Task Communication, Task Synchronization, Choosing an RTOS.	8 Hours
Module-5	Integration & Testing: Integration of Hardware & Firmware, Board Power up; Embedded System Development Environment: Integrated Development Environment (IDE), Types of files generated on cross-compilation, Disassembler/Decompiler, Simulators, Emulators & Debugging, Target Hardware Debugging; Product Enclosure Design & Development: Tools, Development Techniques, Embedded Product Development Life Cycle (EDLC): Definition and Objectives of EDLC, Phases of EDLC, EDLC Approaches (Modeling the EDLC).	9 Hours

Module-#	Topics	Hours
	Total	42 Hours

Text Books:

- T1. K. V. Shibu, *Introduction to Embedded Systems*, 1st Edition, Tata McGraw-Hill, 2009.
- T2. R. Kamal, *Embedded Systems Architecture, Programming and Design*, 12th Edition, Tata McGraw-Hill, 2007.

Reference Books:

- R1. D. E. Simon, *An Embedded Software Primer*, 1st Edition, Addison Wesley, 1999.
- R2. J. Ganssle, *The Art of Designing Embedded Systems*, 2nd Edition, Elsevier, 2008.
- R3. K. Short, *Embedded Microprocessor System Design*, 1st Edition, Prentice Hall, 1998.
- R4. C. Baron, J. Geffroy, and G. Motet (Eds), Embedded System Applications, Springer, 1997.
- R5. D. Gajski, Embedded System Design: Modeling, Synthesis and Verification, Springer, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/106105159/: by Prof. A. Basu, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108102045/: by Prof. S. Chaudhary, IIT Delhi

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the fundamental building blocks of a typical embedded system.
CO2	Explain the quality attributes of embedded systems and the co-design approach for embedded hardware and firmware development.
CO3	Explain the elements of embedded hardware and their design principles and development steps.
CO4	Understand the need for an operating system and internals of RTOS based embedded firmware design.
CO5	Integrate, test, and manage an embedded system development life cycle (EDLC).

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

						-		-	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1		1						2	3	1		2
CO2	3	2	3		1		2			1	2	2	2	1	2
CO3	1	2	1	1	1		1				3	2	1	1	2
CO4	2	1	1	1	2	1					2	3	1	1	2
CO5	2	3	3	1	2	1	1			2	2	2	3	1	2

Type	Code	Digital Image & Video Processing	L-T-P	Credits	Marks
PE	BTEC-T-PE-044	Digital image & video i focessing	3-0-0	3	100

Objectives	The objective of this course is to study the fundamentals, transformation, filtering, restoration, compression, and segmentation of images & videos, and their applications in various real life problems.
Pre-Requisites	Basics of matrices, 1-D convolution & filters, DSP, DFT, DCT, etc. are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

	To	eacher's Assessme	nt	Written A	ssessment	Total
	Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
ĺ	05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Image Fundamentals : Fundamental steps in digital image processing, Image sensing and acquisition, Image formation model. Image sampling and quantization, Spatial and intensity resolution, Relationship between pixels, Distance measure. Basic Intensity Transformation Functions : Image negative, Log transformation, Power-law transformations, Piecewise linear transformation functions, Contrast stretching, Intensity-level slicing, Bitplane slicing, Histogram Processing, Histogram equalization.	8 Hours
Module-2	Spatial & Frequency Domain Filters : Mechanics of spatial filtering, Spatial correlation and convolution, Smoothing spatial filters, Sharpening spatial filters, Unsharp masking and high-boost filtering, Filtering in frequency domain, Image smoothing and sharpening in frequency domain using ideal, Butterworth, Gaussian, and Homomorphic filters.	8 Hours
Module-3	Image Restoration: A model of image degradation / restoration process, Noise models, Restoration in the presence of noise, Order statistics filters, Linear position invariant degradations, Estimating the degradation function, inverse filtering. Color Image Processing: Color fundamentals, Color models, Color conversions, Pseudo-color processing, Basics of full color image processing.	8 Hours
Module-4	Image Segmentation : Point, line and edge detection, Edge linking and boundary detection, Thresholding, Global, Adaptive and region-based segmentation. Image Compression : Fundamentals, Redundancy, Entropy, Some basic compression methods, Huffman coding, Arithmetic coding, LZW coding, Block transform coding, Predictive coding, Lossy predictive coding.	9 Hours
Module-5	Video Coding : Inter-frame redundancy, Motion estimation, Motion prediction, Elements of a video encoder and decoder; Video coding standards – MPEG-4 and H.264. Video Segmentation : Temporal segmentation – Shot boundary detection, Motion-based spatial segmentation; Video object detection & tracking.	9 Hours
	Total	42 Hours

Text Books:

- T1. R. C. Gonzalez and R. E. Woods, *Digital Image Processing*, 3rd Edition, Pearson Education, 2008.
- T2. M. Tekalp, *Digital Video Processing*, 2nd Edition, Prentice Hall of India, 2015.

Reference Books:

- R1. A. K. Jain, *Fundamentals of Digital Image Processing*, 2nd Edition, Prentice Hall of India, 2004.
- R2. S. Sridhar, *Digital Image Processing*, 2nd Edition, Oxford University Press, 2014.
- R3. A. L. Bovik, A Handbook of Image and Video Processing, 2nd Edition, Academic Press, 2000.
- R4. S. Jayaraman, S. Esakkirajan, and T. Veerakumar, *Digital Image Processing*, 2nd Edition, McGraw-Hill Education, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/117105079/: by Prof. P. K. Biswas, IIT Kharagpur
- 2. https://nptel.ac.in/courses/117105135/: by Prof. P. K. Biswas, IIT Kharagpur
- 3. https://nptel.ac.in/courses/106105032/: by Dr. G. Harit, IIT Kharagpur
- 4. https://nptel.ac.in/courses/117/104/117104069/: by Prof. S. Gupta, IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe fundamental concepts of image processing, its scope and applications.
CO2	Explain 2D convolution in spatial & frequency domain and their implications in developing various high-pass & low-pass filters.
CO3	Restore images using various schemes & adaptive filters and process color images.
CO4	Segment and compress images using various techniques as per application requirement.
CO5	Perform video coding and segmentation using various techniques & standards.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

									<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	2							1	2		1
CO2	3	2	2	2	2							1	2		1
CO3	2	2	1	2	2							2	2		1
CO4	2	1	1	1	2							1	2		1
CO5	1	1	2	2	2							2	2		1

Type	Code	Power System Protection	L-T-P	Credits	Marks
PC	BTEE-T-PE-052	1 ower bystem 1 forcetion	3-0-0	3	100

Objectives	The objective of this course is to study different aspects of power system protection, identify symmetrical/unsymmetrical fault conditions, calculate the fault current, breaking the circuit and limit the faulted zone.
Pre-Requisites	Basic knowledge of power system transmission & distribution, characteristics of different types of lines, and real & reactive power requirements is necessary.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Faults & Fault Analysis: Introduction, Causes & effects of faults, Zones of protection, Primary & backup protection, Desirable qualities of protective relaying, Connection of trip circuit; Symmetrical & unsymmetrical faults, LLL & LLL-G fault, Positive, negative and zero sequence components, Fault calculation, LG fault, LL & LLG fault, Short circuit analysis.	10 Hours
Module-2	Relaying & Protection : Classification of relays, Relay pick up, Reset or drop out, pick up/ drop off ratio, Construction & working principles of electromagnetic relays, Theory of induction relay torque, General equation of electromagnetic & comparator relays; Over current protection, Differential protection, Distance protection, Carrier-aided protection of transmission lines.	8 Hours
Module-3	Apparatus Protection: Transformer Protection – Types of faults, Percentage differential protection, Inrush phenomenon, High resistance ground faults, Inter-turn faults, Incipient faults; Generator Protection – Various faults & abnormal operation conditions, Stator & rotor faults, Transverse differential protection, Unbalanced loading, Over speeding, Loss of excitation, Loss of prime mover; Induction Motor Protection – Various faults & abnormal operation conditions, Starting of induction motor, Protection of small & large induction motor.	8 Hours
Module-4	Circuit Breaking : Fundamentals, Circuit breaker rating, Circuit constants & circuit conditions, Re-striking voltage transients, Characteristics of restriking voltage, Interaction between the breaker & circuit, Current chopping, Duties of switchgear; Conventional & Modern Circuit Breakers: Types of circuit breaker – Automatic switch, Air-break circuit breakers, Oil circuit breakers, Air-blast circuit breakers, SF ₆ circuit breaker, vacuum circuit breaker & DC circuit breaker.	8 Hours

Module-#	Topics	Hours
Module-5	Static Relays: Comparators and different relays, Amplitude comparator, Phase comparator, Coincidence type phase comparator, Basic elements of a static relay, O.C. relays, Differential protection, Static distance protection; Numerical Relays – Block diagram, Numerical over-current protection, Numerical transformer differential protection, Numerical distance protection of transmission line.	8 Hours
	Total	42 Hours

Text Books:

- T1. Y. G. Parithankar and S. R. Bhide, *Fundamentals Of Power System Protection*, 2nd Edition, PHI Learning, 2010.
- T2. B. Ravindranath and M. Chander, *Power System Protection and Switchgear*, 2nd Edition, New Age International, 2018.

Reference Books:

- R1. A. G. Phadke and J. S. Thorp, *Computer Relaying for Power Systems*, 2nd Edition, Wiley, 2012.
- R2. S. S. Rao, Switchgear and Protection, 1st Edition, Khanna Publishers, 2019.

Online Resources:

1. https://nptel.ac.in/courses/108/101/108101039/: by Prof. S. A. Soman, IIT Bombay

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply symmetrical component to analyze different type of faults in power system.
CO2	Analyze various type of relay and their use cases in power system protection.
CO3	Estimate the requirement of protection for different equipment.
CO4	Describe the operation of different circuit breakers and obtain the type & rating of circuit breakers for protection.
CO5	Explore the modern trends in relaying for power system protection.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6

The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3		3							3	2	
CO2	3	3	3	3		2							2	2	1
CO3	3	2	3		2	3							2	2	1
CO4	3	2	2	3		2							2	2	1
CO5	3	1	1		3	2							3	2	1

Type	Code	Flexible AC Transmission Systems	L-T-P	Credits	Marks
PE	BTEE-T-PE-046	Tiexible fie fluidinission by stems	3-0-0	3	100

Objectives	The objective of this course is to study the reactive power control techniques, shunt & series compensation, static VAR compensators and their applications, including Thyristor controlled series capacitors, STATCOM devices, and FACTS controllers.
Pre-Requisites	Knowledge of Power Electronics and Power Systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	FACTS Concept & General System Considerations: Power Flow and Dynamic Stability Considerations of a Transmission Interconnection, Relative Importance of Controllable Parameters, Basic Types of FACTS Controllers, Basic Description and Definitions of FACTS Controllers.	6 Hours
Module-2	Static Shunt Compensation: Objectives of Shunt Compensation, Methods of Controllable VAR Generation, Static VAR Compensators, SVC and STATCOM.	11 Hours
Module-3	Static Series Compensators: Objective of Series Compensation, TSSC, TCSC, Variable Impedance Type Series Compensators, Switching Converter Type Series Compensators (SSSC).	11 Hours
Module-4	Static Voltage and Phase Angle Regulators: Objectives of Voltage and Phase Angle Regulators, Approaches to Thyristor Controlled Voltage and Phase Angle Regulators: TCVR and TCPAR.	10 Hours
Module-5	Combined Compensators: Introduction, Unified Power Flow Controller (UPFC), Interline Power Flow Controller (IPFC).	4 Hours
	Total	42 Hours

Text Books:

T1. N. G. Hingorani and L. Gyugyi, *Understanding FACTS: Concepts & Technology of Flexible AC Transmission Systems*, 2nd Edition, IEEE Press, Standard Publishers Distributors, 2004.

Reference Books:

- R1. K. R. Padiyar, *Facts Controllers in Power Transmission and Distribution*, 2nd Edition, New Age International, 2016.
- R2. E. Acha, C. F. Esquivel, H. A. Pérez, and C. A. Camacho, *Modelling & Simulation in Power Networks*, 1st Edition, Wiley India, 2012.

Online Resources:

1. https://nptel.ac.in/courses/108107114/: by Prof. A. Bhattacharya, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Illustrate the concept of dynamic stability of transmission line and relative controllable parameters.
CO2	Analyze the static shunt compensation methods and study the working of SVC and STATCOM.
CO3	Learn the working of TSSC, TCSC, Variable Impedance Type Series Compensators and Switching Converter Type Series Compensators (SSSC) for series compensation.
CO4	Develop understanding of the concepts and methods of voltage and phase angle regulation and use of TCPAR and TCVR for voltage and phase angle regulation.
CO5	Interpretthe working of different combined compensators for series and shunt compensation using IPFC & UPFC.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1							1	2	2	1
CO2	3	3	2	1	2							1	2	3	1
CO3	3	3	2	2	1							1	2	3	1
CO4	3	3	3	2	3							1	2	3	1
CO5	3	3	2	2	2							1	2	3	1

Type	Code	Fiber Optic Communications	L-T-P	Credits	Marks
PE	BTEC-T-PE-046	Tibel Optic Communications	3-0-0	3	100

Objectives	The objective of this course is to study various modes, configurations and transmission characteristics of optical fibers including fiber fabrications, optoelectronic sources, photo detectors, optical modulators, optical amplifiers and various types of optical networks.
Pre-Requisites	Basic knowledge of physics, particularly ray optics, and electromagnetic wave propagation through waveguides is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

	To	eacher's Assessme	nt	Written A	Total	
	Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
Ì	05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Fundamentals of fiber optics, Different generations of optical fiber communication systems, Optical fiber structure, Fiber types, Step index fiber, Graded index fiber, Basic optical laws & definitions, Ray propagation, Total internal reflection, Numerical aperture, Acceptance angle, Wave propagation in planar waveguides, Wave propagation in a cylindrical waveguides, Modal concept, V-number, Power flow in step & graded index fibers.	9 Hours
Module-2	Transmission Characteristics: Attenuation (absorption, scattering and bending) and dispersion (inter and intramodal, chromatic, wave guide and polarization), Dispersion shifted and Dispersion flattened fibers; Optical Fiber Cables and Connections: Fiber fabrication, Double crucible method, Fiber optic cables, Connector and splice, Losses during coupling between source to fiber, fiber to fiber; Schemes for coupling improvement.	9 Hours
Module-3	Optical Sources & Detectors: Sources - Intrinsic and extrinsic materials - direct and indirect band gaps, LED: LED structures, Surface emitting and edge emitting LED, LED quantum efficiency, Modulation response of an LED, Injection LASER Diodes (ILDs) - Threshold conditions, LASER modes, Modulation response of ILDs, Optoelectronic Detectors - PIN AND APD, Responsivity, Band width, Detector noise equivalent circuit and SNR calculation.	8 Hours
Module-4	Opto-electronic Modulators: Basic principles, Electro-optic modulators - Electro-optic effect, Longitudinal modulator, Transverse modulator; Acousto-optic modulators - Raman-Nath modulator, Bragg modulator; Optical Amplifiers: Introduction, General applications of optical amplification, Semiconductor optical amplifier (SOA) - Characteristics, Limitations, Basic principles and Optical gain, Erbium-doped fiber amplifier (EDFA) - Characteristics, Operating principle and Optical gain.	8 Hours

Module-#	Topics	Hours	
Module-5	WDM Components & Optical Switching: WDM concept, Couplers, Isolators, Circulators, Filters, Optical Cross-connect (OXC), Optical Add/Drop Multiplexing (OADM); Optical Networks: Elements of optical Networks - SONET/SDH, Optical interfaces, SONET/SDH Rings, SONET/SDH Networks, Optical Ethernet.	8 Hours	
Total			

Text Books:

- T1. G. Keiser, *Optical Fiber Communications*, 4th Edition, Tata McGraw-Hill, 2013.
- T2. J. M. Senior, *Optical Fiber Communication: Principles and practice*, 3rd Edition, Prentice Hall of India, 2009.

Reference Books:

- R1. G. P. Agarwal, *Fiber-Optic Communication Systems*, 4th Edition, John Wiley & Sons, 2011.
- R2. R. P. Khare, Fiber Optics and Optoelectronics, Oxford University Press, 2004.

Online Resources:

- 1. https://nptel.ac.in/courses/108/104/108104113/: by Dr. P. Kumar, IIT Kanpur
- 2. https://nptel.ac.in/courses/117/101/117101002/: by Prof. R. K. Shevgaonkar, IIT Bombay
- 3. https://nptel.ac.in/courses/117104127/: by Dr. P. Kumar, IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe fundamentals of fiber optics, its structure, types and wave propagation through fiber.
CO2	Estimate the losses and analyze the propagation characteristics of an optical signal in different types of fibers.
CO3	Describe and compare the basic principles and characteristics of different types of optical sources and detectors.
CO4	Analyze the performance of different types of optical modulators and amplifiers.
CO5	Summarize the applications of different WDM components, optoelectronic switching circuits and optical networks.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	1	1					2	2	1	1
CO2	3	3	3	2	3	2	2					2	3	1	2
CO3	3	3	3	2	3	2	1					2	3	1	2
CO4	3	2	3	1	2	1	1					3	3	1	2
CO5	3	3	3	2	3	2	2					2	3	2	1

Type	Code	Microwave Engineering	L-T-P	Credits	Marks
PE	BTEC-T-PE-024	Microwave Engineering	3-0-0	3	100

Objectives	The objective of this course is to study microwaves, their frequency bands, microwave tubes, amplifiers, components, microwave solid state devices, principles of radar, and scanning & tracking techniques.
Pre-Requisites	Basic knowledge of Circuit Theory, Electromagnetic Theory, and Solid State Physics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10(a)	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Microwave Tubes: Introduction, frequency bands, applications, Conventional tubes - vacuum diode, triode, tetrode, pentode; Limitations of conventional tubes, Reflex Klystron - construction, operation, velocity modulation, power output, efficiency, electronic admittance, Magnetron - construction, operation, cyclotron angular frequency, resonant modes, Hull's cutoff magnetic flux density & cutoff voltage.	9 Hours
Module-2	Microwave Amplifiers : Klystron Amplifier - construction, operation, reentrant cavities, velocity modulation, output power, beam loading, efficiency, mutual conductance, Travelling Wave Tube (TWT) - Slow wave structures, construction, amplification process.	8 Hours
Module-3	Microwave Components : Analysis using s-parameters, Junctions (E-Plane, H-Plane, Magic Tee), Directional coupler; Bends and corners; Microwave posts, S. S. tuners, Attenuators, Phase shifter, Ferrite devices (Isolator, Circulator, Gyrator); Cavity resonator.	8 Hours
Module-4	Radar Systems: Principles & operation; Range equation; Pulse repetition frequency (PRF) & range ambiguities; Doppler Radars - Determination of velocity, Continuous Wave (CW) radar and its limitations, Frequency Modulated Continuous Wave (FMCW) radar, Moving Target Indicator (MTI) radar, Delay line cancellers, Blind speeds & staggered PRFs; Scanning & Tracking - horizontal, vertical, spiral, palmer, raster, nodding; Angle tracking systems - Lobe switching, Conical scan, Mono pulse.	9 Hours
Module-5	Microwave Solid State Devices: Limitations of conventional solid state devices at microwaves; Transistors, Diodes (Tunnel, Varactor, PIN), Transferred electron devices (Gunn diode); Avalanche transit time effect (IMPATT, TRAPATT, SBD); Microwave Amplification by Stimulated Emission of Radiation (MASER).	8 Hours
	Total	42 Hours

Text Books:

T1. D. M. Pozar, *Microwave Engineering*, 4th Edition, Wiley Publications, 2011.

- T2. S. Liao, *Microwave Devices and Circuits*, 3rd Edition, Pearson Education, 2006.
- T3. M. I. Skolnik, *Introduction to Radar Systems*, 3rd Edition, McGraw-Hill Education, 2001.

Reference Books:

- R1. G. S. Rao, *Microwave and Radar Engineering*, 1st Edition, Pearson Education, 2014.
- R2. R. E. Collin, *Foundation of Microwave Engineering*, 2nd Edition, John Wiley & Sons, 2007.
- R3. M. Kulkarni, *Microwave Devices and Radar Engineering*, 5th Edition, Umesh Publications, 2014.

Online Resources:

- 1. https://nptel.ac.in/courses/108/101/108101112/: by Prof. G. Kumar, IIT Bombay
- 2. https://nptel.ac.in/courses/108/103/108103141/: by Prof. R. Bhattacharjee, IIT Guwahati
- 3. https://nptel.ac.in/courses/117/105/117105138/: by Prof. A. Bhattacharya, IIT Kharagpur
- 4. https://nptel.ac.in/courses/117/105/117105130/: by Prof. A. Bhattacharya, IIT Kharagpur
- 5. https://nptel.ac.in/courses/117/105/117105122/: by Prof. A. Bhattacharya, IIT Kharagpur
- 6. https://nptel.ac.in/courses/117/101/117101119/: by Prof. J. Mukherjee, IIT Bombay

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe conventional vacuum tubes, their limitations, microwaves, and their sources.
CO2	Explain the principle of operation of various microwave amplifiers.
CO3	Identify, describe, and explain different microwave components.
CO4	Explain the basic principle of Radar, various scanning and tracking techniques.
CO5	Understand the principle of microwave generation using solid state devices.

Program Outcomes Relevant to the Course:

•	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3	1							1	3	1	1
CO2	3	3	1	3	1							1	3	1	1
CO3	2	2	1	3	1							1	2	1	1
CO4	2	3	1	3	1							1	2	1	1
CO5	2	2	1	3	3							1	2	1	1

Тур	Code	Power Quality	L-T-P	Credits	Marks
PE	BTEE-T-PE-047	Tower Quarity	3-0-0	3	100

Objectives	The objective of this course is to introduce various power quality problems observed in a power system, their sources & causes, and modern methods to
	improve the overall quality of electrical power.
Pre-Requisites	Basic knowledge of mathematics and power system transmission & distribution is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	10(a)	
05	05	05	25	60	100	

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Power Quality: Introduction, Terms and definitions, Overloading - Under voltage, Over voltage, Transients - Short duration, Long duration, Sags & swells - Voltage sag, swell, imbalance, fluctuation, Frequency variations; International standards of power quality, CBEMA curve; Voltage Sags and Interruptions: Sources, Estimating voltage sag performance, Thevenin's equivalent source, Analysis & calculation of various faulted conditions, Voltages sag due to induction motor starting, Estimation of sag severity, Mitigation of voltage sags, Active series compensators, Static & fast transfer switches.	10 Hours
Module-2	Overvoltages: Sources - Capacitor switching, Lightning, Ferro-resonance, Mitigation of voltage swells - Surge arresters, Low pass filters, Power conditioners, Lightning protection – Shielding, Line arresters, protection of transformers & cables; Computer analysis tools for transients, PSCAD and EMTP.	7 Hours
Module-3	Harmonics: Harmonic sources from commercial & industrial loads, Locating harmonic sources, Power system response characteristics - Harmonics vs. transients, Effect of harmonics – Harmonic distortion, Voltage & current distortion, Harmonic indices, Inter-harmonics resonance, Harmonic distortion evaluation - Devices for controlling harmonic distortion, Passive & active filters, IEEE and IEC standards.	7 Hours
Module-4	Power Quality Monitoring : Monitoring considerations, Monitoring and diagnostic techniques for various power quality problems, Modelling of power quality (harmonics and voltage sag) problems by mathematical simulation tools, Power line disturbance analyzer, Quality measurement equipment, Harmonic/ spectrum analyzer, Flicker meters, Disturbance analyzer, Applications of expert systems for power quality monitoring.	8 Hours

Module-#	Topics	Hours
Module-5	DSTATCOM & UPQC : Reactive Power Compensation, Harmonics and unbalance mitigation in distribution systems using DSTATCOM and shunt active filters, Synchronous reference frame extraction of reference currents, Current control techniques for DSTATCOM; Voltage Sag/Swell Mitigation: Dynamic voltage restorer, Working principle and control strategies; Series Active Filtering; Unified Power Quality Conditioner (UPQC): Working principle, capabilities and control strategies.	10 Hours
	Total	42 Hours

Text Books:

- T1. R. C. Dugan, M. F. McGranaghan, S. Santoso, and H. W. Beaty, *Electrical Power Systems Quality*, 3rd Edition, McGraw-Hill, 2017.
- T2. J. Arrillaga, N. R. Watson, and S. Chen, *Power Systems Quality Assessment*, 1st Edition, John Wiley & Sons, 2011.
- T3. C. Sankaran, *Power Quality*, 1st Edition, CRC Press, 2001.
- T4. M. H. Bollen, *Understanding Power Quality Problems*, 1st Edition, Wiley India, 2011.

Reference Books:

- R1. G. T. Heydt, *Electric Power Quality*, 2nd Edition, West Lafayette, 1994.
- R2. G. J. Wakileh, *Power Systems Harmonics Fundamentals, Analysis and Filter Design*, 1st Edition, Springer, 2007.
- R3. E. Aeha and M. Madrigal, *Power System Harmonics: Computer Modelling and Analysis*, 1st Edition, Wiley India, 2012.
- R4. R. S. Vedam and M. S. Sarma, *Power Quality: VAR Compensation in Power Systems*, 1st Edition, CRC Press, 2013.

Online Resources:

- 1. https://nptel.ac.in/courses/108/107/108107157/: by Prof. A. Bhattacharya, IIT Roorkee
- 2. https://nptel.ac.in/courses/108/106/108106025/: by Dr. M. Kumar, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify the power quality issues in electrical distribution network and classify power quality problems.
CO2	Evaluate the severity of overvoltage in a power system and identify suitable method to overcome the effect.
CO3	Estimate the effect of harmonics on power quality.
CO4	Develop monitoring techniques for power quality issues.
CO5	Design power electronics circuits to mitigate power quality issues.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1										2	2	1
CO2	3	2	1	2	3	1						1	2	2	1
CO3	2	3	2	2	2	1					1	1	2	3	2
CO4	2	2	2	2	3						1	1	3	3	2
CO5	2	2	2	3	3	1					1	1	3	3	2

Type	Code	PLC & SCADA	L-T-P	Credits	Marks
PE	BTEE-T-PE-048	TEC & SCADA	3-0-0	3	100

Objectives	The objective of this course is to study programming & applications of Programmable Logic Controllers (PLC), data acquisition systems, SCADA systems, and their applications in power systems.
Pre-Requisites	Knowledge of programming, control systems, and power systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

	To	eacher's Assessme	nt	Written A	Total	
	Quiz	Surprise Test(s)	End-Term	iotai		
ĺ	05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Programmable Logic Controllers (PLCs): Introduction, Block diagram, PLC operations, Comparison with relays circuit, Basic instructions, Examples, Level control application, Latch instructions, Counters, Timers, Shift registers; PLC Hardware Components: The I/O section, Discrete I/O modules, Analog I/O modules, Special I/O modules, I/O specifications, The CPU, Memory design, Memory types, Programming devices, Selection of wire types and size.	8 Hours
Module-2	Fundamentals of Logic : Hardwired logic vs. programmed logic, Ladder diagram, Functional block diagram, Instruction list, Structured text, Common elements of programming languages, Variables and data types, Functions, Function blocks, Timers - ON, OFF, PULSE, Counters - increment, decrement; Introduction to Ladder logic; Programming word level logic instructions; Converting relay schematics and boolean equation into PLC ladder programs.	10 Hours
Module-3	I/O Devices & Interfacing with PLC: Types of input devices, Switches - Push button switches, Toggle Switches, Proximity switches, Temperature switch, Pressure switch, Level switch, Flow switches, Motor starters, Transducers and sensors, Transmitters etc. Types of output devices - Electromagnetic control relays, Latching relays, Contactors, Motors, Pumps, Solenoid valves etc.	9 Hours
Module-4	SCADA: Need of SCADA system, Distributed control Systems (DCS), General definition and SCADA components; Hardware architecture, Software architecture, Protocol detail, Discrete and analog control; Interfacing PLC with SCADA; PLCs vs. RTUs, RTU block diagram, MTU communication interface, Future trends, Internet based SCADA display system, Components of control systems in SCADA.	9 Hours
Module-5	SCADA in Power Systems: Main task in power systems - Planning, Operation, Accounting, Tasks of National & Regional control centres, Generating station control room, AGC-SCADA, SCADA in generation, power distribution, and power grid.	6 Hours

Module-#	Topics	Hours
	Total	42 Hours

Text Books:

- T1. S. Bhanot, *Process Control: Principles and Applications*, 1st Edition, Oxford University Press, 2011.
- T2. D. Patranabis, *Principles of Process Control*, 6th Reprint, McGraw-Hill Education, 2012.
- T3. M. Mitra and S. S. Gupta, *PLC and Industrial Application*, 2nd Edition, Penram International, 2017.
- T4. S. A. Boyer, *SCADA Supervisory Control and Data Acquisition*, Instrument Society of America, 2004.

Reference Books:

- R1. F. D. Petrusella, *Programmable Logic Controller*, 4th Edition, Tata McGraw-Hill, 2017.
- R2. R. Mishra and V. Vij, PLC & SCADA Theory and Practice, 1st Edition, Laxmi Publications, 2011.
- R3. M. S. Thomas and J. D. McDonald, *Power System SCADA and Smart Grids*, 1st Edition, CRC Press, 2015.
- R4. J. W. Webb and R. A. Reis, *Programmable Logic Controllers: Principles and Applications*, 5th Edition, PHI Learning, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/108105062/: by Prof. S. Sen & Prof. S. Mukhopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/106/108106022/: by Dr. K. S. Swarup, IIT Madras
- 3. http://www.plcmanual.com/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the fundamentals of PLC and its hardware components.
CO2	Apply basic programming concepts and various logical instructions of PLC in industrial applications.
CO3	Interface different types of I/O devices with PLC as per application requirements.
CO4	Integrate SCADA with PLC with proper interfacing for creating industrial control systems.
CO5	Explore applications of SCADA for automation of power systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO7

Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

P.T.O

									<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1											3	1	
CO2	3	3	2	2									3	2	1
CO3	2	1											2	1	
CO4	3	2	2	1									3	1	
CO5	3	1	1				1						2	1	1

Type	Code	Mobile Communication & Networks	L-T-P	Credits	Marks
PE	BTEC-T-PE-048	Mobile Communication & Networks	3-0-0	3	100

Objectives	The objectives of this course is to study the concepts of communication networks, wireless communication with its challenges & developments, wireless application protocols & standards, and Bluetooth technology.
Pre-Requisites	Basic knowledge of computer networking & wireless transmission is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on examples and latest trends.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Communication Networks : LANs, MANs, WANs, Switching techniques, Wireless ATM networks, TCP/IP protocol architecture, OSI protocol architecture, Internetworking.	8 Hours
Module-2	Wireless Communication Technology : Propagation modes, LOS transmission, Fading in the mobile environment, Free-space Attenuation, Attenuation over Reflecting Surfaces, Radio wave Propagation, Propagation Path-loss Models, Cost 231 Model.	8 Hours
Module-3	Cellular Wireless Networks: Principles of cellular network, first, second and third Generation systems; Multiple Access Technologies: Basic features of FDMA, TDMA, and CDMA, Mobile IP and wireless Access Protocol: Mobile IP, Wireless Application Protocol, Internet control message protocol, Message authentication, Service primitives and parameters.	9 Hours
Module-4	Wireless LAN Technology: Overview, Infrared LANs, Spread spectrum LANs, Narrowband microwave LANs. IEEE 802.11 Wireless LAN: IEEE 802 protocol architecture, IEEE 802.11 architecture and services, IEEE 802.11 MAC, IEEE 802.11 physical layer.	9 Hours
Module-5	Bluetooth : Overview, Radio specification, baseband specification, Link manager specification, Logical Link control and adaptation protocol; Wi-MAX standards, Wi-Fi standards, Zig-bee.	8 Hours
	Total	42 Hours

Text Books:

- T1. U. Dalal, *Wireless Communication and Networks*, 1st Edition, Oxford University Press, 2015.
- T2. I. S. Misra, *Wireless Communication and Networks: 3G and Beyond*, 2nd Edition, McGraw-Hill Education, 2017.

Reference Books:

- R1. V. K. Garg, Wireless Communication and Networking: Essential Reading, Morgan Kaufman, 2008.
- R2. T. S. Rappaport, *Wireless Communications*, 2nd Edition, Pearson Education, 2010.
- R3. D. Tse and P. Viswanath, *Fundamentals of Wireless Communication*, Cambridge University Press, 2005.

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105082/: by Prof. A. Pal, IIT Kharagpur
- 2. https://nptel.ac.in/courses/106/108/106108098/: by Prof. H.S. Jamadagni, IISc Bangalore
- 3. https://nptel.ac.in/courses/106/105/106105081/: by Prof. S. Ghosh, IIT Kharagpur
- 4. https://nptel.ac.in/courses/106/105/106105183/: by Prof. S. Chakraborty and Prof. S. K. Ghosh, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the fundamentals of mobile communication networks and various prototols.
CO2	Analyze radio propagation, fading, attenuation, channel modeling and other path losses.
CO3	Explain & compare various wireless application protocols & mobile IP implementations.
CO4	Explain the technical features of IEEE wireless LAN standard.
CO5	Describe the technical details of different IEEE wireless communication protocols.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1_1	0				`	,		,	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1								2		
CO2	3	3	2	3	2							1	3		1
CO3	3	2	3	3	3								3		
CO4	3	3	2	2	2							1	2		1
CO5	3	3	3	3	3								3		

Type	Code	HVDC Transmission	L-T-P	Credits	Marks
PE	BTEE-T-PE-045	HVDC Transmission	3-0-0	3	100

Objectives	The objective of this course is to study various aspects of power transmission through high-voltage DC including control, conversion, harmonics, faults, and other engineering design considerations.
Pre-Requisites	Knowledge of circuit topology, analysis of switching circuits, magnetics, power semiconductor devices, and basic simulation skill is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Comparison of AC and DC transmission systems, Reliability and application of DC transmission, Types of DC links, Typical layout of a HVDC converter station. HVDC converters, Pulse number, Converter bridge characteristics, Equivalent circuits of rectifier and inverter configurations of twelve pulse converters.	8 Hours
Module-2	HVDC Transmission: 6-Pulse Converter Operation and Analysis – Configuration, Output voltage, Analysis with overlap angle, Equivalent circuit of rectifier & inverter, 12-pulse Converter Operation and Analysis, Power flow in HVDC link, VSC Converter Operation and analysis.	10 Hours
Module-3	Control of HVDC Converter and Systems: Mechanism of AC power transmission, Principle of control, Necessity of control in case of a DC link, Rectifier control, Compounding of rectifiers, Power reversal in a DC link, Voltage dependent current order limit (VDCOL), Characteristics of the converter, System control hierarchy and Basic philosophy, Inverter extinction angle control (EAG), Pulse phase control, Starting and stopping of a DC link, Constant power control, Control systems for HVDC converters, Inverter operation problems, Control of VSC converters.	8 Hours
Module-4	Harmonics in HVDC Systems: Importance of harmonic study, Generation of harmonics by converters, Characteristic harmonics on the DC Side, Characteristic current harmonics, Characteristic variations of harmonic currents with variation of α & μ , Effect of control modes on harmonics, Noncharacteristic harmonics, Harmonics in VSC converters; Valve configuration, Converter theory, Types of DC links, Converter station, Priniciple of DC link control and characteristics.	8 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Harmonic Suppression in HVDC System Filters: Harmonic model & equivalent circuit, Use of filters, Filter configurations, Design of Band-Pass & High-Pass filters, Protection of filters, DC filters; Faults and Protection Schemes: Nature and types of faults, Faults on AC side of converter stations, Converter faults, Faults on DC side of the system, Protection against over currents/voltages, Protection of filter units; Multi-terminal HVDC Systems: Types, Parallel operation aspects, Paralleling (Disconnecting) of units or converter, Control of power, VSC multi-level DC systems; Types of converter faults, Converter station protection against faults, Harmonics and filters, Starting, Stopping and power flow reversal.	8 Hours
	Total	42 Hours

Text Books:

T1. K. R. Padiyar, *HVDC Power Transmissions Systems : Technology & Systems Interaction*, 3rd Edition, New Age Publication, 2017.

Reference Books:

- R1. S. Kamakshaiah and V. Kamaraju, HVDC Transmission, TMH Education, 2011.
- R2. M. H. Rashid, *Power Electronics*, 3rd Edition, PHI Learning, 2008.

Online Resources:

- 1. https://nptel.ac.in/courses/108/104/108104013/: by Dr. S. N. Singh, IIT Kanpur
- 2. https://www.cet.edu.in/noticefiles/229_HVDC_NOTE.pdf

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain HVDC Transmission Systems and converter circuits.			
CO2	Examine and analyse different converter circuits.			
CO3	Design and analyse various control techniques for HVDC converters.			
CO4	Evaluate harmonics in HVDC transmission system and their effect.			
CO5 Develop harmonic suspension and protection systems for HVDC transmission.				

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Cont'd...

PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

						-		-	0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	1							1	3	1	
CO2	2	2	3	2	2							1	2	1	1
CO3	2	2	3	2	2							1	2	2	1
CO4	3	3	3	2	2							1	3	1	
CO5	3	2	3	2	2							1	3	1	

Type	Code	High Voltage Engineering	L-T-P	Credits	Marks
PE	BTEE-T-PE-050	ingh voluge Engineering	3-0-0	3	100

Objectives	The objective of the course is to study the basic concepts and recent trends in the field of high voltage engineering, high voltage testing of various insulators and determination of their dielectric strengths.
Pre-Requisites	Knowledge of physics, chemistry, material science & power systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Conduction & Breakdown in Gases: Gases as insulating media, Ionization and decay processes, Townsend's first & second ionization coefficients, Secondary electron emission by photon impact; Transition from non-self-sustained discharges to breakdown: Streamer mechanism of spark, Sparking voltage – Paschen's law, Breakdown in non-uniform fields - Partial breakdown, Corona discharges; Post breakdown phenomena and applications, practical considerations in using gases for insulation purposes.	10 Hours
Module-2	Conduction & Breakdown in Dielectrics: Liquid dielectrics – Pure liquids and commercial liquids, conduction and breakdown in pure liquids; Sold dielectrics – Intrinsic breakdown, Electromechanical breakdown, Thermal breakdown, breakdown of solid dielectrics in practice.	8 Hours
Module-3	Generation of high voltages: Direct voltages, Half and full wave rectifier circuits, Voltage multiplier circuits, Van de Graff generators, Electrostatic generators, Alternating voltages, Impulse voltages, Standard lightning & switching surge, Design & construction of impulse generator circuits, Marx circuit operation.	8 Hours
Module-4	Measurement of High Voltages & Currents : Measurement of high DC and Impulse voltages, Measurement of high DC, AC and Impulse currents, Cathode ray oscillographs for impulse voltage and current measurement.	8 Hours
Module-5	High Voltage Testing : Non-destructive testing of materials and electrical apparatus – Introduction, Measurement of DC resistivity, Measurement of dielectric constant and loss factor, Partial discharge measurements; High voltage testing of electrical apparatus – Testing of insulators and bushings, Testing of isolators and circuit breakers, Cables, Testing of transformers, Surge Diverter Radio Interference measurements.	8 Hours
	Total	42 Hours

Text Books:

T1. M. S. Naidu and V. Kamaraju, *High Voltage Engineering*, 5th Edition, McGraw-Hill Education, 2017.

Reference Books:

- R1. E. Kuffel. W. S Zaengel, and J. Kuffel, *High Voltage Engineering Fundamentals*, Newnes (Elsevier), 2008.
- R2. C. L. Wadhwa, *High Voltage Engineering*, 3rd Edition, New Age International, 2015.

Online Resources:

1. https://nptel.ac.in/courses/108/104/108104048/: Prof. R. Arora, IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to*:

CO1	Comprehend the concepts of break down phenomena in gas as a dielectric.				
CO2 Provide deep insight on the break down phenomena in solid and liquid as dielectrics.					
CO3	Design and analysis of various circuits for generation of high voltage & currents.				
CO4	Analyze various measurement methods of high voltage and high currents.				
CO5	Perform testing of high voltage circuits using various high voltage electrical apparatus.				

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1							1	3	2	
CO2	3	3	2	2	1							1	3	2	1
CO3	3	2	1	1	1							1	3	2	2
CO4	2	3	2	2	1							1	2	3	2
CO5	3	2	2	2	1							1	3	3	3

Type	Code	Simulation & Modelling	L-T-P	Credits	Marks
OE	BTBS-T-OE-033	Simulation & Modelling	3-0-0	3	100

Objectives	The objective of this course is to learn the basic concepts and steps of statistical simulation along with some modeling problems for engineering, scientific,
	business, and social science processes in the real life.
Pre-Requisites	Basic knowledge of probability and statistics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basic concepts of Queue, M/M/1 and M/M/s queues, Queues involving non exponential distributions, Inventory models, Deterministic Continuous review model, Deterministic Periodic review model.	8 Hours
Module-2	Random number generation and its application to integration, Estimation of π and other problems, Generating discrete random variable: Inverse Transform Method, Generating geometric random variable and Bernoulli Random variable, Generating Poisson and Binomial random variable, The Acceptance Rejection method, The composition Approach, Programming for Generation of discrete random variable.	9 Hours
Module-3	Generation of Continuous random variable: The inverse transform method, The rejection Method, Generating Normal random variable by different methods, Generating Poisson Process, Simulating a single server queuing system, A queuing system with two servers in series, A queuing system with two servers in parallel, An inventory Model, An Insurance Risk model.	10 Hours
Module-4	Simulation of A Repair model, Programming for simulation model, Reduction of Variance using Antithetic variables, Estimation of system reliability using antithetic variables, Application Problems, Reduction of variance using Control Variates, Application Problems, Variance by conditioning, Application Problems.	8 Hours
Module-5	Stratified Sampling, Reduction of variance using stratified sampling, Goodness of Fit for Discrete Data, Kolmogorov-Smirnov Test for Continuous Data, Goodness of Fit test when some parameters are unspecified, Two sample problem.	7 Hours
	Total	42 Hours

Text Books:

- T1. F. S. Hillier and G. J. Lieberman, *Introduction to Operations Research*, 8th Edition, McGraw-Hill, 2005.
- T2. S. M. Ross, *Simulation*, 5th Edition, Academic Press, 2012.

Reference Books:

- R1. A. M. Law and W. D. Kelton, *Simulation Modeling and Analysis*, 4th Edition, McGraw-Hill Higher Education, 2005, Online: https://fac.ksu.edu.sa/sites/default/files/index.pdf.
- R2. H. A. Taha, *Operations Research*, 8th Edition, Pearson Education, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/110106062/: by Prof. G. Srinivasan, IIT Madras
- 2. https://nptel.ac.in/courses/111/107/111107128/: by Prof. Kusumdeep, IIT Roorkee
- 3. https://nptel.ac.in/courses/112/106/112106134/: by Prof. G. Srinivasan, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand the queue and inventory model and solve related problems.
CO2	Create discrete random variable.
CO3	Generate continuous random variable and simulate queues and inventory models.
CO4	Understand and apply the variance reduction methods in simulation.
CO5	Test the goodness of a simulation by analyzing the simulated data.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	1								2	1	1
CO2	3	3	3	1	2								2	1	1
CO3	3	3	3	1	2								2	1	1
CO4	3	3	3	1	3								2	1	1
CO5	3	3	3	1	2								2	1	1

Type	Code	Power Plant Engineering	L-T-P	Credits	Marks
OE	BTBS-T-OE-039	1 ower Flant Engineering	3-0-0	3	100

Objectives	The objective of this course is to impart a basic understanding of the different types of power plants, site selection criteria, cooling tower operations etc., and basics of hydroelectric, diesel, and nuclear power generation.
Pre-Requisites	Basic knowledge of thermodynamics, fluid mechanics, environmental sciences and engineering chemistry is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Te	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction : Energy sources for generation of electric power, types of power plants, their special features and applications; Steam Power Plant Cycles: Rankine cycle, modified Rankine cycles, reheat cycles, regenerative cycles.	8 Hours
Module-2	Steam Power Plant : Selection of sites, general layout of modern steam power plant, pollution control equipment, high pressure boilers, super heater and air preheater, fluidized bed boilers, fuel and ash handling equipments, water treatment plant, spray ponds and cooling towers, steam condenser type and calculation.	9 Hours
Module-3	Steam Turbines and Nozzle: Introduction to Steam Flow through Nozzles, Steam Turbines. Types of nozzles, Isentropic flow through nozzles, Effect of friction, Nozzle efficiency, Critical Pressure ratio and maximum discharge, throat and exit area. Classification of turbines: impulse and reaction turbines, types of power in steam turbine, steam turbine governing and control.	9 Hours
Module-4	Hydroelectric Power Station: Potential power with reference to rainfall and catchments area, Water storage, Equipment used in hydroelectric power stations, Characteristics of hydraulic turbines; Diesel power stations – Application of Diesel in power sector, Comparison of the factors governing the cost of hydro, steam and diesel power stations.	8 Hours
Module-5	Nuclear Power Plant : Classifications and essential component of nuclear reactors, heavy water moderator and cooled reactors, CANDU reactors, light water reactor, gas cooled reactors, liquid metal cooled reactors, disposal of nuclear waste.	8 Hours
	Total	42 Hours

Text Books:

- T1. P. K. Nag, *Power Plant Engineering*, 2nd Edition, Tata McGraw-Hill, 2019. T2. M. M. El-Wakil, *Power Plant Technology*, 2nd Edition, Tata McGraw-Hill, 2010.

Reference Books:

- R1. S. Domkundwar and C. Arora, *Power Plant Technology*, 6th Edition, Dhanapat Rai & Sons, 2011.
- R2. M. Verma, *Power Plant Engineering*, 3rd Edition, Metropolitan Book Company, 1976.

Online Resources:

- 1. https://nptel.ac.in/courses/112/107/112107216/: by Prof. R. Kumar, IIT Roorkee
- 2. https://nptel.ac.in/courses/112/103/112103277/: by Dr. V. Kulkarni, IIT Guwahati
- 3. https://nptel.ac.in/courses/127/106/127106135/: Prof. T. N. C. Anand, IIT Madras
- 4. https://www3.nd.edu/~powers/ame.20231/notes.pdf

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the concepts of power cycles, sources of energy, their principles and applications.
CO2	Evaluate the different criteria of power plant layout and site selection and be familiar with the working principles of the various components of power plant and their uses.
CO3	Analyze the principle of steam turbines, nozzles, and their industrial applications.
CO4	Evaluate the design layout and working of hydroelectric & diesel power plants.
CO5	Explain the principles and working of nuclear power plants.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1							1	2	2	1
CO2	3	3	2	2	2							1	3	2	1
CO3	3	3	2	2	1							1	3	2	2
CO4	3	2	2	1	1							1	3	2	1
CO5	3	2	2	1	1							1	2	3	1

Type	Code	Entrepreneurship Development	L-T-P	Credits	Marks
OE	BTBS-T-OE-034	Entrepreneurship Development	3-0-0	3	100

Objectives	The objective of this course is to learn various aspects of becoming an entrepreneur by starting own business and making it successful so as to adopt entrepreneurship as a career option for graduating engineers.
Pre-Requisites	General knowledge of any business and its operations is sufficient.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with real-life examples & case studies.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Concept of Entrepreneurship, Characteristics of successful entrepreneur, Growth of entrepreneurship in India. Role of Entrepreneurship in Economic Development, The Entrepreneurial Process, Entrepreneurial Motivation. Entrepreneurial Competencies. Developing Entrepreneurial Competencies.	8 Hours
Module-2	Ideas to Reality, creativity, innovation and Entrepreneurship, Identifying and recognizing Opportunities, Techniques for generating Ideas, Encouraging and Protecting the new ideas and selecting the right project, Ensuring your market, Market survey and Research.	8 Hours
Module-3	Business Plan - Meaning, Contents and significance, Formulation, Presentation to the investors, Techno-economic Feasibility Assessment - A preliminary Project Report, Details Project Report, Project Appraisal, Methods of Project Appraisal.	9 Hours
Module-4	Creating a successful financial plan, Basic financial statements, Ratio Analysis, Break-even Analysis; Marketing Management of SMEs, Problems of HRM – Relevant Labour – laws, Forms of Business ownership, Institutional Finance to entrepreneurs, Source of financing, Institutional support to entrepreneurs.	9 Hours
Module-5	The importance of Intellectual Property, Patents, Trade Mark, Copyrights, Trade secrets, Intellectual property audit, Start up Policy of Centre, State, and MSME sectors, Problems of MSME, Sickness in small scale enterprises, Govt. policies on revival of sickness and remedial measures.	8 Hours
	Total	42 Hours

Text Books:

- T1. B. R. Barringer and R. D. Ireland, *Entrepreneurship*, 2nd Edition, Pearson Education, 2008.
- T2. Z. Thomas and S. Norman, Essentials of Entrepreneurship and Small Business Management, 5th Edition, PHI Learning, 2009.
- T3. S. S. Khanka, *Entrepreneurial Development*, 4th Edition, S. Chand & Co., 2010.

Reference Books:

- R1. P. Chavantimath, *Entrepreneurship Development and Small Business Enterprises*, 3rd Edition, Pearson Education, 2018.
- R2. H. D. Robert and P. M. Shephard, *Entrepreneurship*, 6th Edition, McGraw-Hill Education, 2007.
- R3. P. C. Jain, *Hand Book for New Entrepreneurs*, 4th Edition, Oxford University Press, 2004.
- R4. J. A. Timmons and S. Spinelli Jr., *New Venture Creation: Entrepreneurship for the 21st Century*, 8th Rev. Edition, Tata McGraw-Hill, 2009.
- R5. R. Roy, Entrepreneurship Management, 1st Edition, Oxford University Press, 2008.

Online Resources:

- 1. https://nptel.ac.in/courses/110/106/110106141/: by Prof. C. B. Rao, IIT Madras
- 2. https://nptel.ac.in/courses/127/105/127105007/: by Prof. M. K. Mondal, IIT Kharagpur
- 3. https://nptel.ac.in/courses/110/107/110107094/: by Prof. V. Sharma & Prof. R. Agrawal, IIT Roorkee

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the importance of entrepreneurship as a tool for development and discern distinct entrepreneurial traits.
CO2	Analyse the business environment to identify business opportunities and understand the systematic process to select and screen a business idea.
CO3	Prepare a proper business plan and project report.
CO4	Apply the tools necessary to create sustainable and viable businesses.
CO5	File and obtain patents for their innovative ideas to protect the rights of their business.

Program Outcomes Relevant to the Course:

PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						2			2		3	1		2	1
CO2						1			2		3	1		2	3
CO3						1	2		2		3	1		1	2
CO4						2	2		2		3	1		1	2
CO5						2	2		2		3	1		3	3

Type	Code	Security Analysis, Investment & Trading	L-T-P	Credits	Marks
OE	BTBS-T-OE-035	became many sis, investment & maning	3-0-0	3	100

Objectives	The objective of this course is to equip the students with the knowledge of analyzing equities, indices, commodities and other securities by the help of advanced technical analysis tools and techniques.
Pre-Requisites	Basic knowledge of mathematics and skill in spreadsheets is required.
Teaching Scheme	Regular classroom lectures with use of ICT as needed; sessions shall be interactive with problem solving activities and real-life examples with demonstration.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Capital Market: Bonds, Equities, Currencies, Funds, etc., Players in the space – FII, DII, Prop Desk, Retail, Regulatory Bodies - SEBI, Rules and Regulations; Trading Platforms – Trading View, Chart IQ, Multiple Broker Platforms like Zerodha, Fyers, ICICI Direct, Dhan, Alice Blue; Types of Activities – Long Term, Short Term, Swing, Day Trading, Scalping, High Frequency Trading (HFT).	8 Hours
Module-2	Security Analysis : Fundamental Analysis – Qualitative and Quantitative Analysis; Technical Analysis, Dow Theory, Wycoff Theory, Candlestick Patterns – Single, Double and Tripple candles.	7 Hours
Module-3	Chart Patterns: Rounding Top & Bottom, Head & Shoulder and Inverse, Price Action Approaches - Gap Up & Down, Price Rejections, Technical Indicators — Pivot, Exponential Moving Average (EMA), Super Trend, Bollinger Band, Parabolic Stop & Reverse (PSAR), Volume Weighted Average Price (VWAP).	10 Hours
Module-4	Oscillators: Relative Strength Index (RSI), Stochastics, Moving Average Convergence / Divergence (MACD), Commodity Channel Index (CCI), Average True Range (ATR), Average Directional Index (ADX), Trading Strategy Development, Screener Development, Back Testing and Optimization.	11 Hours
Module-5	Advanced Techniques: Fibonacci Trading Approach, Fundamentals of Options, Option Chain Analysis, Algorithmic Trading and AI in FinTech, Capital Management, Best Practices and Success Factors.	6 Hours
	Total	42 Hours

Text Books:

- T1. R. Chakrabarty and S. De, *Capital Markets in India*, 1st Edition, SAGE Response, 2010.
- T2. B. Graham and D. Dodd, *Security Analysis*, 6th Edition, McGraw-Hill Education, 2008. T3. M. J. Pring, *Technical Analysis Explained: The Successful Investor's Guide to Spotting Investment Trends and Turning Points*, 5th Edition, McGraw-Hill Education, 2014.

Reference Books:

- R1. J. J. Murphy, *Technical Analysis of Financial Markets*, New York Institute of Finance, 1999.
- R2. B. Graham, *The Intelligent Investor: The Definitive Book on Value Investing*, 1st Revised Edition, Harper Brothers, 2003.
- R3. C. Boroden, *Fibonacci Trading: How to Master the Time and Price Advantage*, 1st Edition, McGraw-Hill Education, 2008.
- R4. A. Damodaran, *Damodaran on Valuation: Security Analysis for Investment and Corporate Finance*, 2nd Edition, Willey Finance, 2006.

Online Resources:

- 1. https://in.tradingview.com/
- 2. https://www.investing.com/
- 3. https://chartink.com/
- 4. https://www.valueresearchonline.com/
- 5. https://www.screener.in/
- 6. https://www.investopedia.com/terms/t/technicalanalysis.asp
- 7. https://zerodha.com/varsity/
- 8. https://www.moneycontrol.com/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the capital market structure and describe the rules and regulations.
CO2	Utilize fundamental analysis tools to screen securities for investment and trading.
CO3	Apply technical analysis tools to identify and evaluate investment and trading opportunities.
CO4	Combine different technical analysis tools and techniques to identify high probability trades.
CO5	Apply technical analysis to create screeners& strategies and back tests for optimization.

Program Outcomes Relevant to the Course:

	,
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Cont'd...

PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2		1				1	1		2	1	1	1
CO2			1					1				2	1	1	1
CO3		1		1		1	1	1				2	2	2	2
CO4	1		1		1						2	2	2	3	2
CO5			1		1		1	1	2	1		2	2	3	2

Type	Code	Satellite Communication Systems	L-T-P	Credits	Marks
OE	BTEC-T-OE-054	Satemite Communication Systems	3-0-0	3	100

Objectives	The objective of this course is to study modern satellite based communication systems for designing different downlinks, uplinks, along with preparation of link budgets to avoid signal outage for effective communications via satellites.
Pre-Requisites	Basics of analog & digital communication, and microwaves are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

To	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

	Detailed Syllabus	
Module-#	Topics	Hours
Module-1	Architecture: Principles and architecture of satellite communication, Brief history, advantages, disadvantages, applications, and frequency bands used for satellite communication. Orbital Analysis: Orbital equations, Kepler's laws of planetary motion, Apogee and Perigee for an elliptical orbit, evaluation of velocity, orbital period, angular velocity etc., of a satellite, Locating satellites with respect to earth, Look angles determination.	9 Hours
Module-2	Satellite Sub-systems : Architecture and roles of various sub-systems of a satellite system such as telemetry, tracking, command, and monitoring (TTC & M), Altitude and orbit control system (AOCS), Communication sub-system, Power sub-systems, Antenna sub-system, Equipment reliability, and space qualifications.	8 Hours
Module-3	Typical Phenomena in Satellite Communication : Solar Eclipse on satellite, its effects, remedies for Eclipse, Sun Transit Outage phenomena, its effects and remedies, Doppler frequency shift phenomena and expression for Doppler shift, Range variations and remedies, orbital perturbations.	8 Hours
Module-4	Satellite Link Budget : Flux density and received signal power equations, Calculation of System noise temperature for satellite receiver, noise power calculation, Drafting of satellite link budget and C/N ratio calculations in clear air and rainy conditions, Case study of Personal Communication system (satellite telephony) using LEO.	9 Hours
Module-5	Modulation and Multiple Accessing Techniques : Analog FM transmission by satellite, Digital transmission, TDM, FDMA, TDMA, CDMA, Typical case studies of VSAT, DBS-TV satellites, GPS.	8 Hours
	Total	42 Hours

Text Books:

- T1. T. Pratt, C. Bostian, and J. Allnutt, *Satellite Communications*, 2nd Edition, Wiley India, 2010.
- T2. W. L. Pritchard, H. G. Suyderhoud, and R. A. Nelson, *Satellite Communication Systems Engineering*, Pearson Education, 2003.

Reference Books:

- R1. T. T. Ha, *Digital Satellite Communications*, 2nd Edition, Tata McGraw-Hill, 2009.
- R2. D. Roddy, Satellite Communications, 4th Edition, Tata McGraw-Hill, 2008.
- R3. A. K. Maini and V. Agrawal, Satellite Communications, Willey, 2019.

Online Resources:

- 1. https://nptel.ac.in/courses/117/105/117105131/: by Prof. K. Bandyopadhyay, IIT Kharagpur
- 2. https://nptel.ac.in/courses/101/105/101105077/: by Dr. M. Sinha, IIT Kharagpur
- 3. https://nptel.ac.in/courses/105/107/105107194/: by Prof. A. K. Saraf, IIT Roorkee

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe the fundamentals and orbital mechanics of satellite communication systems.						
CO2	EO2 Explain different satellite subsystems for effective communication.						
CO3	Analyze and solve problems related to orbital effects of satellites.						
CO4	Optimize practical satellite links considering various atmospheric propagation effects.						
CO5	Analyze and optimize different modulation and MAC techniques in case studies.						

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

					`				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	2		1
CO2	3	3	3	2	3	1						1	3	1	1
CO3	3	3	3	2	3	1						1	3	1	1
CO4	3	3	3	2	3	2						1	3	1	1
CO5	3	3	3	2	2	2						1	3	1	1

Type	Code	Robotics & Robot Applications	L-T-P	Credits	Marks
OE	BTEC-T-OE-043	Robotics & Robot Applications	3-0-0	3	100

Objectives	The objective of this course is to learn the fundamental concepts of robotics, such as manipulators, kinematics, trajectory planning, control techniques, sensors etc., and basic robot programming for various industrial applications.
Pre-Requisites	Basics of Engineering Mathematics, Digital Electronics, Microprocessors & Microcontrollers, Automation & Control etc., are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on programming & applications.

Te	eacher's Assessme	nt	Written A	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Robot Fundamentals: History of robotics, Basic concepts, Robot Anatomy, Robot Specification and work volume, Type of robot drives, Basic robot motions, Robot Manipulators, Kinematics, Precision movement.	9 Hours
Module-2	End Effectors : Introduction, Classification, Mechanical, Magnetic, Vacuum and Adhesive gripper, Gripper force analysis & design, Problem on gripper design and force calculation, Robot control - Unit control system concept, Servo & non-servo control of robot joints, Adaptive and optimal control.	8 Hours
Module-3	Sensors : Sensor devices, Types of sensors - contact, position and displacement sensors, force and torque sensors, Proximity and range sensors, Acoustic sensors, Robot vision systems - sensing and digitizing, Image processing and analysis.	8 Hours
Module-4	Robot Programming : Robot language, Classification, Programming methods, Lead through method, Teach pendent method, VAL systems and language, Simple program, Welding robot program, Program on loading/unloading.	9 Hours
Module-5	Industrial Applications: Application of robots, Material handling, Machine loading and unloading, Assembly robot, Inspection, Mobile robot, Microbots, Recent developments in robotics, safety considerations.	8 Hours
	Total	42 Hours

Text Books:

- T1. S. R. Deb and S. Deb, *Robotics Technology and Flexible Automation*, 2nd Edition, Tata McGraw-Hill, 2009.
- T2. J. J. Crag, *Introduction to Robotics: Mechanics and Control*, 3rd Edition, Pearson, 2004.
- T3. S. K. Saha, *Introduction to Robotics*, 2nd Edition, Tata McGraw-Hill, 2009.

Reference Books:

- R1. R. K. Mittal and I. J. Nagrath, *Robotics and Control*, 1st Edition, Tata McGraw-Hill, 2003.
- R2. K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, *Robotics: Control, Sensing, Vision and Intelligence*, 1st Edition, McGraw-Hill, 1987.

R3. N. Odrey, M. Weiss, M. Groover, R. N. Nagel, and A. Dutta, *Industrial Robotics: Technology, Programming and Application*, 2nd Edition, McGraw-Hill, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/112/107/112107289/: by Prof. N. Sukavanam and Prof. M. F. Orlando, IIT Roorkee
- 2. https://nptel.ac.in/courses/112/105/112105249/: by Prof. D. K. Pratihar, IIT Kharagpur
- 3. https://nptel.ac.in/courses/112/101/112101099/: by Prof. P. Seshu, Prof. P. S. Gandhi, Prof. K. K. Issac, Prof. B. Seth, and Prof. C. Amarnath, IIT Bombay

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe robot fundamentals, drives, Manipulators, movements and kinematics.
CO2	Explain various classes of end effectors and robot control techniques.
CO3	Describe the working of sensors and vision systems and analyze the sensed data.
CO4	Write programs to make the parts of a robot function as per the needs.
CO5	Design & develop robots for various industrial applications in the real world.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2	2							1	2		1
CO2	3	3	3	2	3	1						1	3	1	1
CO3	3	3	3	2	3	1						1	3	1	1
CO4	3	3	3	2	3	2						1	3	1	1
CO5	3	2	3	2	2	2	1					1	2	1	1

Type	Code	Artificial Intelligence	L-T-P	Credits	Marks
OE	BTCS-T-OE-043	Antimetal Intelligence	3-0-0	3	100

Objectives	The objective of the course is to provide a strong foundation of fundamental concepts and goals, methods & techniques of Artificial Intelligence (AI) to build intelligent systems with perception, reasoning, and learning abilities.
Pre-Requisites	Knowledge of basic mathematics, algorithms & data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

T	eacher's Assessme	nt	Written A	ssessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Artificial Intelligence: Introduction; Intelligent Agents: Agents and Environment, Good Behavior, Nature of Environments, Structure of Agents; Problem Solving: Solving Problems by Searching - Problem-Solving Agents, Example Problems, Searching for Solutions, Uninformed search strategies, Searching with Partial Information.	8 Hours
Module-2	Informed Search & Exploration: Informed (Heuristic) search strategies, Heuristic functions, Local Search Algorithms & Optimization Problems; Constraint Satisfaction Problems: Introduction, Backtracking search for CSPs, Local Search for CSPs; Adversarial Search: Games, Optimal Decisions in Games, Alpha-Beta Pruning; Knowledge & Reasoning: Knowledge-Based Agents, The Wumpus World.	10 Hours
Module-3	Knowledge and Reasoning: Logic, Propositional Logic, Reasoning Patterns in Propositional Logic; First-Order Logic: Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic; Inference in First-Order Logic: Propositional vs. First-Order Logic, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution; Knowledge Representation: Ontological Engineering, Categories and Objects, Semantic Nets, Frames.	8 Hours
Module-4	Planning: The Planning Problem, Planning with State-Space Search, Partial-Order Planning, Planning Graphs; Uncertain Knowledge & Reasoning: Acting under Uncertainty, Bayes Rule and its use; Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, Semantics of Bayesian Networks.	8 Hours
Module-5	Learning: Learning from Observations, Forms of Learning, Inductive Learning, Learning Decision Trees; Statistical Learning, Instance Based Learning, Neural Networks; Reinforcement Learning: Passive and Active Reinforcement Learning; Expert Systems: Introduction, Architecture, Representations.	8 Hours
	Total	42 Hours

Text Books:

- T1. S. Russell and P. Norvig, *Artificial Intelligence A Modern Approach*, 3rd Edition, Pearson Education, 2016.
- T2. D. W. Patterson, *Introduction to Artificial Intelligence & Expert Systems*, 1st Edition, Pearson Education, 2015.

Reference Books:

- R1. E. Rich, K. Knight, and S. B. Nair, *Artificial Intelligence*, 3rd Edition, McGraw Hill Education, 2009.
- R2. G. F. Luger, *Artificial Intelligence: Structures and Strategies for Complex Problem Solving*, 6th Edition, Pearson Education, 2008.
- R3. M. Negnevitsky, *Artificial Intelligence: A Guide to Intelligent Systems*, 3rd Edition, Addison Wesley, 2.
- R4. N. J. Nilson, Principles of Artificial Intelligence, Narosa, 2002.
- R5. E. Charniak and D. McDermott, *Introduction to Artificial Intelligence*, 1st Edition, Addison-Wesley, 1985.

Online Resources:

- 1. https://nptel.ac.in/courses/106/102/106102220/: by Prof. Mausam, IIT Delhi
- 2. https://nptel.ac.in/courses/112/103/112103280/: by Prof. S. M. Hazarika, IIT Guwahati
- 3. https://nptel.ac.in/courses/106/106/106106140/: by Prof. D. Khemani, IIT Madras
- 4. https://nptel.ac.in/courses/106/106/106106126/: by Prof. D. Khemani, IIT Madras
- 5. https://nptel.ac.in/courses/106/105/106105079/: by Prof. P. Dasgupta, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explore agents, environments, and search goal state using uninformed techniques in a state space.
CO2	Apply search techniques for game playing and solving constraint satisfaction problems.
CO3	Interpret logic, inference rules for decision making, and represent knowledge using semantic nets & frames.
CO4	Apply planning and reasoning to handle uncertainty in real life problems.
CO5	Use learning to solve complex real-life problems and design expert systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Cont'd...

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

							1						1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3								1	2	1	1
CO2	2	3	2	3								1	3	1	2
CO3	3	2	2	3								1	3	1	1
CO4	3	2	2	2		1						1	3	1	1
CO5	2	2	2	2		2						1	3	1	2

Type	Code	Introduction to Machine Learning	L-T-P	Credits	Marks
OE	BTCS-T-OE-044	introduction to watchine Learning	3-0-0	3	100

Objectives	The objective of this course is to study various supervised, unsupervised, and reinforcement learning techniques & algorithms to discover patterns in data and make predictions based on the patterns for solving business problems.
Pre-Requisites	Knowledge of engineering mathematics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

	To	eacher's Assessme	nt	Written A	ssessment	Total
	Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	iotai
Ī	05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Overview of supervised learning, K-nearest neighbour, Multiple linear regression, Shrinkage methods (Ridge regression, Lasso regression), Subset selection, Linear Discriminant Analysis, Logistic regression.	9 Hours
Module-2	Bias, Variance, and model complexity, Cross-validation, Bootstrap methods, Regression and classification trees, Boosting methods, AdaBoost and Random forest.	8 Hours
Module-3	Generative model for discrete data (Bayesian concept learning, Naïve Bayes classifier), SVM for classification, Reproducing Kernels, SVM for regression.	8 Hours
Module-4	Clustering (K-means, spectral clustering), Feature Extraction (Principal Component Analysis (PCA), kernel based PCA, Independent Component Analysis (IDA), Non-negative matrix factorization).	9 Hours
Module-5	Introduction to Reinforcement learning, Single State Case: K-Armed Bandit, Elements of Reinforcement Learning, Model-Based Learning (Value Iteration, Policy Iteration).	8 Hours
	Total	42 Hours

Text Books:

- T1. T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning Data Mining, Inference, and Prediction*, 2nd Edition, Second Edition, 2009.
- T2. S. Haykin, *Neural Networks and Learning Machines*, 3rd Edition, Pearson Education, 2009.
- T3. E. Alpaydın, *Introduction to Machine Learning*, 2nd Edition, Prentice Hall of India, 2010.

Reference Books:

- R1. Y. G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction to Statistical Learning with Applications in R*, 2nd Edition, Springer, 2013.
- R2. T. M. Mitchell, *Machine Learning*, 1st Edition, McGrow-Hill Education, 2013.
- R3. C. M. Bishop, *Pattern Recognition and Machine Learning*, 1st Edition, Springer, 2006.

Online Resources:

- 1. https://nptel.ac.in/courses/106/106/106106139/: by Dr. B. Ravindran, IIT Madras
- 2. https://nptel.ac.in/courses/106/105/106105152/: by Prof. S. Sarkar, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply supervised machine learning models to solve related real life problems.
CO2	Analyze and select the best suitable supervised models among many.
CO3	Apply classification and regression models such as SVM and decision tree based models.
CO4	Extract important features from the given data set and apply clustering techniques.
CO5	Apply reinforcement learning models to solve related real life problems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PP-	724 p 116 01 00 to 1 00 that 1 000 (11 2011) 21 110 that 11 011)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1							1	3	1	2
CO2	3	2	3	1	1							1	3	1	3
CO3	3	3	3	2	1							1	3	1	2
CO4	3	2	2	2	1							1	3	1	2
CO5	2	3	2	2	1							1	3	1	3

Type	Code	Industrial Instrumentation	L-T-P	Credits	Marks
OE	BTEI-T-OE-022	maustrial instrumentation	3-0-0	3	100

Objectives	The objective of the course is to study the processes, characteristics, functionalities, instrument analysis, telemetry systems, and power plant instrumentation along with industrial hazards & safety considerations.						
Pre-Requisites	Basic knowledge of Electronics, Electrical Engineering, Communication Engineering and Internet Technology is required.						
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on programming & applications.						

To	eacher's Assessme	Written A	Total		
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai
05	05	05	25	60	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Functional Units, Classification, Performance Characteristics, Dynamic Calibration, Errors: An Overview, Statistical Error Analysis, Reliability and related topics; Transducers: Pressure Transducers, Electrical and vacuum type, Pirani gauge, Thermocouple gauge, Ionization gauge, Flow meter – Turbomagnetic, Electromagnetic, Ultrasonic type, Level sensor – Electrical type (contact & non-contact).	10 Hours
Module-2	Instruments for Analysis : Introduction, Gas Analysers, Liquid Analysers, X-ray Methods, Chromatography – Gas and Liquid, Nuclear Magnetic resonance spectroscopy, Electron spin resonance spectroscopy, Mass spectroscopy, Sampling techniques.	9 Hours
Module-3	Telemetry : Introduction, Pneumatic Means, Electrical Means - voltage, position and synchro transmitters & receivers, Frequency Telemetring, Multiplexing, Modulation, Modulation of Digital Data, Types of Transmission Channels and characteristic, Briefing of a Telemetry System in Operation, Wireless I/O.	8 Hours
Module-4	Power Plant Instruments : Introduction, The Power Plant Scheme, Pressure, Temperature, Flow and Level, Vibration and Expansion, Analysis – Conductivity, Silica, Sodium, pH, DO, Turbidity and Hydrazine, Flue Gas Analysis.	8 Hours
Module-5	Hazards and Safety : Initial consideration, Enclosures – NEMA type, IP type, Intrinsic Safety, Prevention of Ignition, Methods of Production; Analysis, Evaluation and Construction – Intrinsically safe installation, Unbalanced and balanced schemes.	7 Hours
	Total	42 Hours

Text Books:

- T1. D. Patranabis, *Principle of Industrial Instrumentation*, 3rd Edition, McGraw-Hill, 2012. T2. R. S. Khandpur, *Handbook of Analytical Instruments*, 3rd Edition, Tata McGraw-Hill, 2015.

Reference Books:

- R1. B. G. Liptak, *Process Measurement and Analysis*, 3rd Edition, Chilton Book Company, 1995.
- R2. J. P. Bentley, *Principles of Measurement Systems*, 4th Edition, Pearson Education, 2005.
- R3. A. K. Ghosh, *Introduction to Measurement and Instrumentation*, 3rd Edition, PHI Learning, 2009.
- R4. D. Patranabis, Sensors and Transducers, 2nd Edition, PHI Learning, 2010.
- R5. D. V. S Murthy, *Transducers and Instrumentation*, 4th Edition, PHI Learning, 2000.

Online Resources:

- 1. https://nptel.ac.in/courses/108/105/10810506/: by Dr.A. Barua, IIT Kharagpur
- 2. https://nptel.ac.in/courses/108/105/108105062/: by Prof. S. Mukhopadhyay and Prof. S. Sen, IIT Kharagpur
- 3. https://nptel.ac.in/courses/108/105/108105088/: by Prof. S. Mukhopadhyay, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the characteristics of instruments and uses of transducers in industry.
CO2	Identify the instruments for the analysis of chemical composition in industry.
CO3	Explain the principles & working of telemetry systems and their industrial applications.
CO4	Describe the various components of power plant instrumentation and its usage.
CO5	Realize hazards in industry and practice safety principles in instrumentation.

Program Outcomes Relevant to the Course:

U	
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO12	Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.T.O

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	1	2	1							1		2
CO2	2	1	2	2	3		2						1		2
CO3	2	2	2	2	2	1							1	1	2
CO4	2	3	2	2	1	2	1					1	1		2
CO5	2	1	1	1	1	2	1	1					1	2	1

Type	Code	Emerging Technologies Lab	L-T-P	Credits	Marks
PE	BTEE-P-PE-023	Emerging recimologies Eur	0-0-4	2	100

Objectives	The objective of this course is to introduce advanced concepts and recent trends in Electrical & Electronics Engineering. The course will prepare the students to design electrical machines, power electronics converters using latest technologies and analyze power systems through modern software tools.
Pre-Requisites	Knowledge of Network Theory, Electrical Machine, Power Electronics Power Systems Analysis, and Engineering Mathematics is required.
Teaching Scheme	Regular laboratory experiments executed by the students under supervision of the teacher. Demonstration as required shall be given for each experiment.

Attendance	Daily Performance	Lab Record	Lab Test/ Mini Project	Viva-voce	Total	
10	30	15	30	15	100	

Detailed Syllabus

Experiment-#	Assignment/Experiment
1-6	Computer aided design of electrical machines using AutoCAD/Ansys/MATLAB etc.
7-12	Design (using PSIM/MATLAB etc.), implementation and control of power electronic converters.
13-18	Design (using MiPower/PSCAD/MATLAB etc.), installation and integration of distributed renewable energy sources in distribution systems with IoT based monitoring & control.
19-23	Static and dynamic analysis of interconnected power systems using classical machine model using programming.
24-26	Performance analysis of DSP based electric drive systems.
27-28	Mini Project.

Reference Books:

- R1. M. A. Pai, Computer Techniques in Power System Analysis, 3rd Edition, McGraw-Hill, 2017.
- R2. M. H. Rashid, *Power Electronics: Devices, Circuits and Applications*, 4th Edition, Pearson Education, 2017
- R3. R. K. Chauhan and K. Chauhan, *Distributed Energy Resources in Microgrids*, 1st Edition, Elsevier, 2019
- R4. D. K. Tyagi, *Design, Installation, and Operation of Solar PV Plants*, 1st Edition, Magnolia Publication, 2019.
- R5. V. Rajini and V. S. Nagarajan, *Electrical Machine Design*, 1st Edition, Pearson Education, 2018.
- R6. B. K. Bose, *Modern Power Electronics and AC Drives*, 1st Edition, Pearson Education, 2005.
- R7. P. Kundur, *Power System Stability and Control*, 1st Edition, McGraw-Hill Education, 2006.
- R8. M. V. Deshpande, Design and Testing of Electrical Machines, 3rd Edition, Prentice Hall India, 2009.

Online Resources:

- 1. https://nptel.ac.in/courses/108106023: by Prof. K. Vasudevan, IIT Madras
- 2. https://nptel.ac.in/courses/103103206: by Prof. V. V. Goud, IIT Guwahati
- 3. https://nptel.ac.in/courses/108102157: by Prof. A. Das, IIT Delhi

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design electrical machines and create machine drawings using computer aided tools.
CO2	Design, develop, and implement power electronics converters.
CO3	Design and integration of renewable energy sources in distributed systems.
CO4	Analyze the static and dynamic characteristics of power systems.
CO5	Analyze the performance of electric drives through simulation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
PO2	Problem Analysis : Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

					•				0 /						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1											3	1	
CO2	3	1	3	3	3								3	1	
CO3	3	2	3	2	1					1			3	2	
CO4	3	1	1										3	2	
CO5	3	3	3	1	1	1				1			2	3	

Department of Electrical & Electronics Engineering Silicon Institute of Technology Silicon Hills, Patia, Bhubaneswar - 751024