

Curriculum Structure & Detailed Syllabus
Bachelor of Technology
in
Electrical & Electronics Engineering
(Four-Year Under-Graduate Program)

Silicon University, Odisha
Silicon Hills, Patia, Bhubaneswar - 751024
<https://silicon.ac.in>

Effective From Academic Year 2024-25

Version: 1.0.2 (Build: 07-02-2026)
This document has been typeset using $\text{\LaTeX} 2\epsilon$

Approval History

ACM#	Date	Resolutions
SU-1	27/04/2024	The curriculum structure of B. Tech. (EEE) was approved in principle by the Academic Council.
SU-2	17/08/2024	The curriculum structure of B. Tech. (EEE) and detailed syllabus of 1st Year was approved by the Academic Council.
SU-3	19/04/2025	The amendments to the curriculum structure of B. Tech. (EEE) and the detailed syllabus up to 2nd Year was approved by the Academic Council.
SU-5	07/02/2026	The detailed syllabus up to 3rd Year of B. Tech. (EEE) as recommended by the Board of Studies was approved by the Academic Council.

Knowledge and Attitude Profile (WK's)

Knowledge and Attitude Profile (WK's) are linked to the Graduates Attributes (GAs) which indicate a graduate's potential to acquire competence at the appropriate level. NBA has defined 9 (nine) Knowledge and Attitude Profile (WK's) aligned with the Washington Accord for UG Engineering programs.

- WK1. A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- WK2. Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- WK3. A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- WK4. Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- WK5. Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- WK6. Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- WK7. Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- WK8. Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- WK9. Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Program Outcomes (PO's)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programs as defined by NBA are:

- PO1. **Engineering Knowledge:** Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
- PO2. **Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
- PO3. **Design/Development of Solutions:** Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
- PO4. **Conduct Investigations of Complex Problems:** Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
- PO5. **Engineering Tool Usage:** Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
- PO6. **The Engineer and The World:** Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
- PO7. **Ethics:** Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- PO8. **Individual & Collaborative Team Work:** Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- PO9. **Communication:** Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
- PO10. **Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11. **Life-Long Learning:** Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Program Specific Outcomes (PSOs)

PSO1. Understand, analyze, formulate and solve engineering problems of varying complexity in Electrical and Electronics Engineering by implementing the fundamental principles of electrical machines, power systems, power electronics, control systems and signal processing.

PSO2. Acquire the skills in modern methodologies, tools and platforms to become a successful professional or entrepreneur, develop a passion for innovation & higher studies, and contribute as a responsible citizen with effective communication, strong moral values & professional ethics.

PSO3. Adapt to the emerging developments in electrical sciences, apply modern practices & strategies in project development using hardware & software environments to deliver quality solutions considering green energy challenges of the future.

Program Educational Objectives (PEOs)

PEO1. *Fundamental Knowledge & Core Competence*: To apply the principles of science, applied mathematics and fundamentals of electrical & electronics engineering essential for a successful professional and inculcate competent problem-solving ability.

PEO2. *Proficiency for the Real World*: To foster creative ability and skills required to analyze, design, test, and implement emerging technologies in electronics & power systems with economic considerations, useful in the real world.

PEO3. *Leadership & Social Responsibility*: To exhibit leadership capability with professional, ethical, interpersonal skills, social & economic commitment with a sense of responsibility towards public policies, community services, humanity and environment.

PEO4. *Life-long Learning*: To grow professionally through continued education & training of technical and management skills, pursue higher studies, and engage in life-long learning.

Course Categories & Definitions

L	Lecture
T	Tutorial
P	Practical / Laboratory / Sessional
WCH	Weekly Contact Hours
UCR	University Core Course
UMC	University Mandatory Course (0-Credit)
PCR	Program Core Course
PEL	Program Elective Course
OEL	Open Elective Course
HNS	Honours (Choice-based) Course
MNR	Minor (Choice-based) Course
OOC	Open Online Course (on NPTEL / Swayam / Other)
INT	Summer Internship
PSI	Practice School / Industry Internship
PRJ	Project Work
SEC	Skill Enhancement Course
VAC	Value Addition Course

Contents

I Curriculum Structure	1
Induction Program	2
1st Year B.Tech.(Common)	3
Semester I	3
Semester II	4
2nd Year B.Tech.(EEE)	5
Semester III	5
Semester IV	5
3rd Year B.Tech.(EEE)	6
Semester V	6
Semester VI	6
4th Year B.Tech.(EEE)	7
Semester VII	7
Semester VIII	7
4th Year B.Tech.(EEE) - [PS-7]	8
Semester VII	8
Semester VIII	8
4th Year B.Tech.(EEE) - [PS-8]	9
Semester VII	9
Semester VIII	9
List of Electives	10
List of Tracks for Honours / Minor	11
II Detailed Syllabus	13
1st Year B.Tech. (Common)	14
Semesters I & II	14
Theory	14
ODE & Matrix Algebra	14
Engineering Chemistry	16
Engineering Physics	19
Basic Electronics Engineering	21
Basic Electrical Engineering	24
Engineering Mechanics	26
Engineering Thermodynamics	28
Computer Programming	30
Constitution of India & Professional Ethics	32
Environmental Science & Engineering	34
Probability & Statistics	36
Data Structures & Algorithms	38
Practical	40
Basic Electronics Engineering Lab	41
Basic Electrical Engineering Lab	43
Computer Programming Lab	45
Communicative & Technical English	47
Workbench Practices	50
Engineering Graphics	53
Data Structures & Algorithms Lab	55

Corporate Communication Skills	57
2nd Year B.Tech. (EEE)	
Semester III	60
Theory	60
Vector Calculus & Fourier Analysis	60
OOP Using Java	62
Management & Economics for Engineers	64
Biology for Engineers	66
Analog Electronics	68
Circuits & Signals	70
Electromagnetic Theory	73
Practical	75
OOP Using Java Lab	76
Analog Electronics Lab	78
Circuits & Signals Lab	80
Semester IV	82
Theory	82
Complex Analysis & Numerical Methods	83
Programming in Python	85
Digital Electronics	88
Electrical Machines	90
Advanced Electronic Circuits	93
Soft Computing Techniques	95
Renewable Energy Systems	97
Design of Electrical Apparatus	100
Operating Systems	102
Data Mining & Data Warehousing	105
Semiconductor Devices	107
Embedded C Programming	109
Digital Marketing & SMO	111
Fundamentals of Business Analytics	114
Practical	115
Programming in Python Lab	116
Electrical Machines Lab	118
Digital Electronics Lab	121
Electrical & Electronics Design Lab	123
3rd Year B.Tech. (EEE)	126
Detailed Syllabus (Semester V)	126
Theory	126
Control Systems Engineering	126
Electrical Power Transmission & Distribution	128
Electrical & Electronics Measurement	130
Power Electronics	132
IoT & Applications	134
HVDC Transmission	137
Microwave Engineering	140
Smart Grid	142
Electrical Drives	144
Communication Systems Engineering	146
Advanced Electrical Machines	149

Computer Organization & Architecture	152
Artificial Intelligence	154
CMOS VLSI Design	156
Sensors & Transducers	158
Human Resource Information Systems	160
Data Analytics with Python	163
Practical	164
Control Systems Engineering Lab	165
Power Electronics Lab	167
Electrical & Electronics Measurement Lab	169
Soft Skills for Professionals	171
Semester VI	172
Theory	172
Fundamentals of MPMC	173
Power Systems Operation & Control	175
Introduction to Digital Signal Processing	177
Flexible AC Transmission Systems	179
Advanced Power Electronics	181
Fiber Optic Communications	183
Power System Protection	186
Advanced Control Systems	188
Introduction to VLSI Design	190
Mobile Communication & Networks	192
Power Quality	194
High Voltage Engineering	197
Digital Image Processing	199
PLC & SCADA	201
Advanced Power Transmission & Distribution	203
Design & Analysis of Algorithms	206
Machine Learning	209
VLSI Fabrication Technology	211
Embedded Systems & Microcontrollers	213
E-Commerce & Supply Chain Management	216
Business Statistics & Predictive Modelling	219
Practical	221
Fundamentals of MPMC Lab	222
Power Systems Lab	224
Emerging Technologies Lab	226
Technical & Research Writing	228
4th Year B.Tech. (EEE)	
Semesters VII & VIII	
Theory	
Practical	

Part I

Curriculum Structure

Induction Program

It is necessary for a newly admitted student to acclimatize to the environment of a college, create a bonding between the teacher and students, equip the students with communication skills, and get them acquainted with the academic & disciplined culture of institution & human values.

All students admitted to B.Tech. programs shall undergo a mandatory induction program after joining the institute and before the commencement of classes. Regular classes of the engineering programs shall begin only after the students have completed the induction program.

The induction program shall comprise of familiarization to the rules & regulations of the institute, examinations & evaluation system, departments/branches, campus facilities, official processes & important officials, curricular/ co-curricular/ extra-curricular activity clubs, innovation & research activities, etc. The program shall also comprise of lectures by eminent persons on adopting a disciplined & healthy life-style, career planning & emerging technologies, social awareness, human values & ethics to sensitize & motivate the students to become not only a successful engineer, but also a socially responsible citizen and contribute their part for social development and nation building.

Interaction with faculty advisors, mentors, senior students, individual/group physical activities, learning or exhibiting an art form/ literature, social service initiatives, and visits to important places of the city, and any other events/ activities deemed to be necessary, may also be included in the induction program.

Every new student must diligently attend & participate in all the activities of the induction program. Attendance in the activities shall be recorded. Students have to submit a daily report in prescribed format to the concerned faculty advisor on the next day. There will be a computer-based test with multiple-choice questions on a suitable date about a week after completion of the induction program.

Evaluation of Induction Program shall be done out of 100 marks, comprising of 3 components, namely: (i) 25 marks for attendance, (ii) 25 marks for the daily reports, and (iii) 50 marks for the computer-based multiple-choice test. A student has to score at least 50 marks in total to pass the induction program.

In case of failure, the student has to attend the induction program in the next academic year along with the newly admitted students, submit daily reports, and appear the computer-based test to score a pass mark.

Curriculum Structure

1st Year B.Tech. (Common)

Semester I							
Category	Code	Course Title	WCH			Credits	
THEORY							
UCR	MT1001	ODE & Matrix Algebra	3	0	0	3	0 0
UCR	CH1001 / PH1001	Engineering Chemistry / Engineering Physics	3	0	0	3	0 0
UCR	EC1001 / EE1001	Basic Electronics Engineering / Basic Electrical Engineering	3	0	0	3	0 0
UCR	ME1001 / ME1002	Engineering Mechanics / Engineering Thermodynamics	2	0	0	2	0 0
UCR	CS1001	Computer Programming	3	0	0	3	0 0
UMC	HS0001 / CH0001	Constitution of India & Professional Ethics / Environmental Science & Engineering	3	0	0	0	0 0
PRACTICAL							
UCR	EC1002 / EE1002	Basic Electronics Engineering Lab / Basic Electrical Engineering Lab	0	0	2	0	0 1
UCR	CS1002	Computer Programming Lab	0	0	4	0	0 2
SEC	HS1001	Communicative & Technical English	0	0	4	0	0 2
UCR	EE1003 / ME1003	Workbench Practices / Engineering Graphics	0	0	2	0	0 1
		SUB-TOTAL	17	0	12	14	0 6
		TOTAL	29				20

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated *Engineering Chemistry* in Semester-I, then he/she will be allocated *Engineering Physics* in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

1st Year B.Tech. (Common)

Semester II							
Category	Code	Course Title			WCH	Credits	
THEORY							
UCR	MT1002	Probability & Statistics	3	0	0	3	0 0
UCR	PH1001 / CH1001	Engineering Physics / Engineering Chemistry	3	0	0	3	0 0
UCR	EE1001 / EC1001	Basic Electrical Engineering / Basic Electronics Engineering	3	0	0	3	0 0
UCR	ME1002 / ME1001	Engineering Thermodynamics / Engineering Mechanics	2	0	0	2	0 0
UCR	CS1003	Data Structures & Algorithms	3	0	0	3	0 0
UMC	CH0001 / HS0001	Environmental Science & Engineering / Constitution of India & Professional Ethics	3	0	0	0	0 0
PRACTICAL							
UCR	EE1002 / EC1002	Basic Electrical Engineering Lab / Basic Electronics Engineering Lab	0	0	2	0	0 1
UCR	CS1004	Data Structures & Algorithms Lab	0	0	4	0	0 2
SEC	HS1002	Corporate Communication Skills	0	0	4	0	0 2
UCR	ME1003 / EE1003	Engineering Graphics / Workbench Practices	0	0	2	0	0 1
		SUB-TOTAL	17	0	12	14	0 6
		TOTAL			29		

Note: For some courses, the subjects have been mentioned as Subject-1 / Subject-2, i.e., with an OR option. Every student has to study both the subjects, however allocation of these subjects shall alternate between Semesters I and II. For example, if a student has been allocated *Engineering Chemistry* in Semester-I, then he/she will be allocated *Engineering Physics* in Semester-II, and vice-versa. The laboratory subjects will be as per the theory subjects allocated in the applicable semester. The same applies to all other courses provided with an OR option.

2nd Year B.Tech.(EEE)

Semester III							
Category	Code	Course Title			WCH	Credits	
THEORY							
PCR	MT2003	Vector Calculus & Fourier Analysis	3	0	0	3	0 0
UCR	CS2001	OOP Using Java	3	0	0	3	0 0
UCR	MG2001 / BL2001	Management & Economics for Engineers / Biology for Engineers	3	0	0	3	0 0
PCR	EC2016	Analog Electronics	3	0	0	3	0 0
PCR	EE2001	Circuits & Signals	3	1	0	3	1 0
PCR	EE2002	Electromagnetic Theory	3	0	0	3	0 0
PRACTICAL							
UCR	CS2004	OOP Using Java Lab	0	0	2	0	0 1
PCR	EC2017	Analog Electronics Lab	0	0	2	0	0 1
PCR	EE2003	Circuits & Signals Lab	0	0	4	0	0 2
INT	IP2001	Summer Internship - I	0	0	0	0	0 1
			TOTAL		27		24

Semester IV							
Category	Code	Course Title			WCH	Credits	
THEORY							
PCR	MT2004	Complex Analysis & Numerical Methods	3	0	0	3	0 0
UCR	CS2007	Programming in Python	3	0	0	3	0 0
UCR	MG2001 / BL2001	Management & Economics for Engineers / Biology for Engineers	3	0	0	3	0 0
PCR	EC2001	Digital Electronics	3	0	0	3	0 0
PCR	EE2004	Electrical Machines	3	1	0	3	1 0
PEL		Program Elective - I	3	0	0	3	0 0
HNS/MNR		Honours / Minor - I	3	0	0	3	0 0
PRACTICAL							
UCR	CS2010	Programming in Python Lab	0	0	2	0	0 1
PCR	EE2005	Electrical Machines Lab	0	0	4	0	0 2
PCR	EC2002	Digital Electronics Lab	0	0	2	0	0 1
PCR	EE2006	Electrical & Electronics Design Lab	0	0	2	0	0 1
			TOTAL		29		24
			TOTAL (with Honours/Minor)		32		27

3rd Year B.Tech.(EEE)

Semester V							
Category	Code	Course Title			WCH	Credits	
THEORY							
PCR	EE3001	Control Systems Engineering	3	0	0	3	0
PCR	EE3002	Electrical Power Transmission & Distribution	3	0	0	3	0
PCR	EE3003	Electrical & Electronics Measurement	3	0	0	3	0
PCR	EE3004	Power Electronics	3	1	0	3	1
PEL		Program Elective - II	3	0	0	3	0
PEL		Program Elective - III	3	0	0	3	0
HNS/MNR		Honours / Minor - II	3	0	0	3	0
PRACTICAL							
PCR	EE3005	Control Systems Engineering Lab	0	0	2	0	0
PCR	EE3006	Power Electronics Lab	0	0	2	0	0
PCR	EE3007	Electrical & Electronics Measurement lab	0	0	2	0	0
SEC	HS3001	Soft Skills for Professionals	0	0	2	0	0
INT	IP2001	Summer Internship - II	0	0	0	0	0
TOTAL			27		24		
TOTAL (with Honours/Minor)			30		27		

Semester VI							
Category	Code	Course Title			WCH	Credits	
THEORY							
PCR	EC3038	Fundamentals of MPMC	3	0	0	3	0
PCR	EE3008	Power Systems Operation & Control	3	1	0	3	1
PCR	EC3009	Introduction to Digital Signal Processing	3	0	0	3	0
PEL		Program Elective - IV	3	0	0	3	0
PEL		Program Elective - V	3	0	0	3	0
PEL		Program Elective - VI	3	0	0	3	0
HNS/MNR		Honours / Minor - III	3	1	0	3	1
PRACTICAL							
PCR	EC3039	Fundamentals of MPMC Lab	0	0	2	0	0
PCR	EE3021	Power Systems Lab	0	0	2	0	0
SEC	IP3005 / IP3002	Emerging Technologies Lab / Entrepreneurship & Innovation	0	0	4	0	0
SEC	HS3002	Technical & Research Writing	0	0	2	0	0
VAC	VA0001	Yoga / NSS / NCC / PES / CPA *	0	0	2	0	0
TOTAL			31		24		
TOTAL (with Honours/Minor)			35		28		

***Value Addition Courses:** Yoga - Yoga & Meditation, NSS - National Service Scheme, NCC - National Cadet Corps, PES - Physical Education & Sports, CPA - Creative & Performing Arts. Every student must invest at least 2 hours per week in the chosen course in one semester.

4th Year B.Tech.(EEE)
(Without Practice School Option)

Semester VII							
Category	Code	Course Title			WCH	Credits	
THEORY							
OEL		Open Elective - I	3	0	0	3	0 0
OOC		MOOC - I	0	0	0	3	0 0
HNS/MNR		Honours / Minor - IV	3	1	0	3	1 0
HNS/MNR		Honours / Minor - V	3	1	0	3	1 0
PRACTICAL							
PRJ	IP4010	Skill Lab & Project - I	0	0	4	0	0 2
INT	IP4005	Summer Internship - III	0	0	0	0	0 1
		TOTAL			7		9
		TOTAL (with Honours/Minor)			15		17

Semester VIII							
Category	Code	Course Title			WCH	Credits	
THEORY							
OEL		Open Elective - II	3	0	0	3	0 0
OOC		MOOC - II	0	0	0	3	0 0
PRACTICAL							
UCR	IP4008	Presentation Skills & Technical Seminar	0	0	2	0	0 1
PRJ	IP4009	Project - II	0	0	16	0	0 8
		TOTAL			21		15
		GRAND TOTAL			200		160
		GRAND TOTAL (with Honours/Minor)			220		178

Note:

1. Courses offered under each elective are given in “List of Electives” on Page 10.
2. Courses for Honours and Minor are given in “List of Tracks for Honours and Minor” on Page 11.
3. MOOC - Massive Open Online Course (on NPTEL / Swayam / Other).
4. Approved list of courses for MOOC (self study) shall be published by the department. Students are advised to complete them before the end of 8th semester.
5. The Value Addition Course (Yoga / NSS / NCC) may be assigned in a different semester depending on available capacity.

4th Year B.Tech.(EEE)
(With Practice School Option in 7th Semester)

Semester VII						
Category	Code	Course Title	WCH		Credits	
			L-T-P		L-T-P	
PRACTICAL						
PSI	IP4006	Practice School / Industry Internship	0	0	0	0
INT	IP4005	Summer Internship - III	0	0	0	0
			TOTAL	0	16	

Semester VIII						
Category	Code	Course Title	WCH		Credits	
			L-T-P		L-T-P	
THEORY						
OEL		Open Elective - II	3	0	0	3
OOC		MOOC - II	0	0	0	3
HNS/MNR		Honours / Minor - IV	3	1	0	3
HNS/MNR		Honours / Minor - V	3	1	0	3
			TOTAL	7	8	
			TOTAL (with Honours/Minor)		15	16
			GRAND TOTAL		179	160

		GRAND TOTAL	179	160
		GRAND TOTAL (with Honours/Minor)	197	178

Note:

1. Courses offered under each elective are given in “List of Electives” on Page 10.
2. Courses for Honours and Minor are given in “List of Tracks for Honours and Minor” on Page 11.
3. MOOC - Massive Open Online Course (on NPTEL / Swayam / Other).
4. Approved list of courses for MOOC (self study) shall be published by the department. Students are advised to complete them before the end of 8th semester.
5. The Value Addition Course (Yoga / NSS / NCC) may be assigned in a different semester depending on available capacity.

4th Year B.Tech.(EEE)
(With Practice School Option in 8th Semester)

Semester VII							
Category	Code	Course Title			WCH	Credits	
THEORY							
OEL		Open Elective - I	3	0	0	3	0
OOC		MOOC - I	0	0	0	3	0
HNS/MNR		Honours / Minor - IV	3	1	0	3	1
HNS/MNR		Honours / Minor - V	3	1	0	3	1
PRACTICAL							
PRJ	IP4010	Skill Lab & Project - I	0	0	4	0	0
INT	IP4005	Summer Internship - III	0	0	0	0	0
		TOTAL			7		9
		TOTAL (with Honours/Minor)			15		17

Semester VIII							
Category	Code	Course Title			WCH	Credits	
PRACTICAL							
PSI	IP4006	Practice School / Industry Internship	0	0	0	0	0
		TOTAL			0		15
		GRAND TOTAL			179		160
		GRAND TOTAL (with Honours/Minor)			197		178

Note:

1. Courses offered under each elective are given in “List of Electives” on Page 10.
2. Courses for Honours and Minor are given in “List of Tracks for Honours and Minor” on Page 11.
3. MOOC - Massive Open Online Course (on NPTEL / Swayam / Other).
4. Approved list of courses for MOOC (self study) shall be published by the department. Students are advised to complete them before the end of 8th semester.
5. The Value Addition Course (Yoga / NSS / NCC) may be assigned in a different semester depending on available capacity.

List of Electives

Code	Elective # and Subjects
<i>Program Elective - I</i>	
EC2018	Advanced Electronic Circuits
EE2007	Soft Computing Techniques
EE2008	Renewable Energy Systems
<i>Program Elective - II</i>	
EC3014	IoT & Applications
EE3010	HVDC Transmission
EC3010	Microwave Engineering
<i>Program Elective - III</i>	
EE3011	Smart Grid
EE3012	Electrical Drives
EC3045	Communication Systems Engineering
<i>Program Elective - IV</i>	
EE3013	Flexible AC Transmission Systems
EE3018	Advanced Power Electronics
EC3015	Fiber Optic Communications
<i>Program Elective - V</i>	
EE3014	Power System Protection
EE3015	Advanced Control Systems
EC3042	Introduction to VLSI Design
EC3026	Mobile Communication & Networks
<i>Program Elective - VI</i>	
EE3016	Power Quality
EE3017	High Voltage Engineering
EC3022	Digital Image Processing
EE3023	PLC & SCADA
<i>Open Elective - I & II (Basket)</i>	
MT4001	Applied Linear Algebra
MT4002	Stochastic Processes
MT4003	Numerical Optimization
MT4004	Simulation & Modelling
ME4001	Fluid Mechanics
EE4001	Power Plant Engineering
ME4002	Project Management
HS4001	Organizational Behaviour
HS4002	Entrepreneurship Development
MG4001	Securities Analysis, Investment & Trading
MG4002	Circular Economy

List of Tracks for Honours / Minor

Code	Honours / Minor # and Subjects
<i>Honours in Electrical & Electronics Engineering</i>	
EE2009	Design of Electrical Apparatus
EE3019	Advanced Electrical Machines
EE3020	Advanced Power Transmission & Distribution
EE4003	Embedded System Architecture
EE4002	Electric & Hybrid Vehicles
<i>Minor in “VLSI System Design & Verification”</i>	
EC2013	Semiconductor Devices
EC3032	CMOS VLSI Design
EC3033	VLSI Fabrication Technology
EC4001	VLSI Chip Design & Verification
EC4002	Analog Integrated Circuit Design
<i>Minor in “Embedded & IoT System Design”</i>	
EC2011	Embedded C Programming
EC3034	Sensors & Transducers
EC3035	Embedded Systems & Microcontrollers
EC4003	Realtime Embedded System Design
EC4004	Industrial Internet of Things
<i>Minor in “Information Technology”</i>	
CS2003	Operating Systems
CS2008	Computer Organization & Architecture
CS2002	Design & Analysis of Algorithms
CS2009	Database Management Systems
CS4001	Internet Technology & Applications
<i>Minor in “Artificial Intelligence & Machine Learning”</i>	
CS3013	Data Mining & Data Warehousing
CS2014	Artificial Intelligence
CS3002	Machine Learning
CS4003	Human Language Processing
CS4004	Advanced Machine Learning
<i>Minor in “Business Management”</i>	
MG2002	Digital Marketing & SMO
MG3003	Human Resource Information Systems
MG3004	E-Commerce & Supply Chain Management
MG4005	Financial Management
MG4006	Business Strategy
<i>Minor in “Business Analytics”</i>	
MG2005	Introduction to Business Analytics
MG3001	Data Analytics with Python
MG3002	Business Statistics & Predictive Modelling
MG4003	Business Intelligence & Visualization
MG4004	Business Analytics using Power of AI

Note:

1. Choice for Honours or Minor must be submitted before the end of 3rd Semester.
2. A student can opt for either Honours or Minor, but not both.
3. Once opted for Honours or Minor, the same cannot be changed or converted.
4. Unless adequate number of students opt for Honours or Minor, it shall not be offered for the batch.

Part II

Detailed Syllabus

Category	Code	ODE & Matrix Algebra	L-T-P	Credits	Marks
UCR	MT1001		3-0-0	3	100

Objectives	The objective of this course is to study the concepts of solution of system of linear equations using matrix methods, Eigen values & Eigen vectors of matrices with application, ordinary differential equations with applications, and Laplace transform & its applications to ordinary differential and integral equations.
Pre-Requisites	Knowledge of elementary calculus, coordinate geometry of two & three dimensions and matrix algebra is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Matrix algebra, System of linear equations, Rank, Vector space, Existence and uniqueness of solution of a system of linear equations.	8 Hours
Module-2	Eigen values and Eigen vectors, Complex matrices, Diagonalization of matrices, Positive definite matrix, Singular Value Decomposition (SVD) and pseudo inverse.	8 Hours
Module-3	Separable ordinary differential equation and modeling, Exact ODE and Integrating factor, Linear ODE, Bernoulli's Equation, Modeling electrical circuits, Homogeneous linear ODE of second order, Second order Linear ODE with constant coefficients.	8 Hours
Module-4	Non-homogeneous linear ODE, Solution of Non-homogeneous linear ODE using undetermined coefficients, Euler-Cauchy ODE and applications to electrical circuits, Laplace transform, Inverse Laplace transform.	8 Hours
Module-5	Shifting theorems, Transform of derivatives and integrals, Unit step function and Dirac delta function, Applications to derivatives, Differentiation and integration of transforms, Convolution, Integral equation, Solution of system of differential equations.	10 Hours
Total		42 Hours

Text Books:

T1. E. Kreyszig, *Advanced Engineering Mathematics*, 8th Ed., Wiley India, 2015.
 T2. G. Strang, *Linear Algebra and Its Applications*, 4th Ed., Cengage Learning, 2015.

Reference Books:

R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Ed., Oxford University Press, 2015.
 R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Ed., McGraw Hill, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/111105035>: by Prof. P. D. Srivastava, IIT Kharagpur
2. <https://nptel.ac.in/courses/122104017>: by Prof. S. K. Ray, IIT Kanpur
3. <https://nptel.ac.in/courses/122102009>: by Prof. S. R. K. Iyengar, IIT Delhi
4. <https://nptel.ac.in/courses/111107063>: by Dr. S. Gakkhar, IIT Roorkee
5. <https://www.coursera.org/learn/linealgebra2>

6. <https://www.coursera.org/learn/differentiation-calculus>
7. <https://www.coursera.org/learn/single-variable-calculus>
8. <https://alison.com/courses/Algebra-Functions-Expressions-and-Equations>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Solve a system of linear equations by applying the appropriate method.
CO2	Apply Eigen values and Eigen vector techniques to find SVD and pseudo inverse of a matrix.
CO3	Apply first order ordinary differential equations to solve real-world problems.
CO4	Apply second order ordinary differential equations to solve problems of electrical circuits.
CO5	Apply the concept of Laplace transforms to solve differential and integral equations.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	2							2	1	1
CO2	3	2	1	2	2							2	1	1
CO3	3	3	2	2	3							2	1	1
CO4	3	3	2	2	3							2	1	1
CO5	3	3	2	2	3							2	1	1

Category	Code	Engineering Chemistry	L-T-P	Credits	Marks
UCR	CH1001		3-0-0	3	100

Objectives	The purpose of this course is to understand the fundamentals and applications of chemical sciences in the field of engineering. The course addresses the principles of general and engineering chemistry, so that the students can apply the knowledge in their areas of expertise.
Pre-Requisites	Preliminary knowledge of mole concept, oxidation and reduction, combustion, electromagnetic wave, and nano-materials is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on examples and applications.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Water Treatments: Types of hardness-Units, Alkalinity of water and its significance, Softening methods and Numerical problems based on these methods, Membrane-based processes, Dissolved Oxygen, Problems with Boiler feed water and its treatments.	9 Hours
Module-2	Corrosion Science: Definition and scope of corrosion, Dry and wet corrosion, Direct chemical corrosion, Electro-chemical corrosion and its mechanisms, Types of electro-chemical corrosion (Differential aeration, Galvanic, Concentration cell), Typical Electro-chemical corrosion like Pitting, Soil, Waterline, Factors affecting corrosion, Protection from corrosion.	8 Hours
Module-3	Instrumental Techniques: Fundamentals of Spectroscopy, Principles and applications of molecular spectroscopy such as UV-visible, IR, Elementary idea about XRD, SEM & TEM.	8 Hours
Module-4	Energy Sciences: Types of fuels, Calorific value, Determination of calorific value, Combustion and its calculations, Solid fuel – Coal analysis (Proximate and ultimate analysis), Liquidfuels – Concept of knocking, Anti-knocking, Octane and Cetane Nos, Battery Technology — Fundamentals of primary & secondary cells, Rechargeable batteries – Lead acid storage battery, Lithium ion battery, Fuel cells – Principles, Applications, Solar PV Cells.	9 Hours
Module-5	Nanochemistry: Nanomaterials, Classification of nanomaterials, Synthesis and characterization of noble metal nanoparticles (Gold and oxide-based nanoparticles) using Green Synthetic route, Stabilization of nanoparticles using capping agents, Applications of nanomaterials, Carbon based nanomaterials and their applications, Brief on Graphene and Fullerene.	8 Hours
Total		42 Hours

Text Books:

- T1. Jain & Jain, *Engineering Chemistry*, 16th Ed., Dhanpat Rai Publishing Company, 2015.
- T2. Wiley-India Editorial Team, *Engineering Chemistry*, 2nd Ed., Wiley India, 2011.
- T3. C. N. Banwell, *Fundamentals of Molecular Spectroscopy*, 4th Ed., McGraw-Hill Education, 2017.

Reference Books:

- R1. S. S. Dara, *Engineering Chemistry*, 12th Ed., S. Chand Publisher, 2014.
- R2. G. A. Ozin & A. C Arsenault, *Nanochemistry - A Chemical Approach to Nanomaterials*, 2nd Ed., RSC Publishing, 2008.
- R3. J. M. Lehn, L. Cademartiri, *Concepts of Nanochemistry*, 1st Ed., Wiley-VCH, 2009.
- R4. Y. R. Sharma, *Elementary Organic Spectroscopy*, S Chand & Co Ltd., 2013.

Online Resources:

1. <http://nptel.ac.in/courses/103105110/> - Fuel & Combustion
2. <http://nptel.ac.in/courses/105104102/hardness.htm>
3. http://nptel.ac.in/courses/105106112/1_introduction/5_corrosion.pdf
4. https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Exemplars/Corrosion/Corrosion_Basics
5. <https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm>
6. <https://alison.com> - Spectroscopic Technique, Colorimetry

Course Outcomes: At the end of this course, the students will be able to:

CO1	Determine the hardness of water and apply difference processes to soften hard water.
CO2	Utilize the knowledge of electro-chemistry and corrosion science for prevention of corrosion.
CO3	Apply molecular spectroscopy to analyze organic compounds using spectrophotometer.
CO4	Classify various fuels based on combustion parameters and understand the working principles of various batteries and solar photovoltaic cells.
CO5	Explore synthesis & characterization of nanoparticles through green synthetic route.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

Cont'd...

PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)
------	---

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	1	1	1					1	1	2	2
CO2	2	2	2	1	1	1	1	1			1	2	1	2
CO3	2	2	1	2	1	1	1	1			1	2	2	1
CO4	2	2	2	1	1	1	1	1			1	2	1	1
CO5	2	2	1	1	1	1	1				1	2	2	1

Category	Code	Engineering Physics	L-T-P	Credits	Marks
UCR	PH1001		3-0-0	3	100

Objectives	The objective of this course is to study various laws of physics and understand different phenomena using these principles. This knowledge is necessary for engineering students to understand the working of instruments and technologies, and also useful to prepare various engineering projects.
Pre-Requisites	Basic knowledge on waves, electrostatics, magnetism and mathematics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Wave Optics: Concept of wave and wave equation, Superposition of waves (two-beam and multiple beam), Huygen's principle, Interference, Theory of Newton's rings and its applications, Diffraction, Fresnel and Fraunhofer diffraction, Fraunhofer's diffraction from a single slit, Plane diffraction grating – theory and its applications.	9 Hours
Module-2	Electromagnetic Waves: Gradient of scalar field, Divergence and curl of vector field, Gauss divergence theorem and Stoke's theorem (statement only), Gauss's law in electromagnetism, Faraday's law of electromagnetic induction, Ampere's circuital law, Displacement current, Maxwell's electromagnetic equations, Electromagnetic waves – Wave equations in free space, Dielectric and conducting medium, Poynting's theorem and Poynting's vector.	9 Hours
Module-3	Quantum Mechanics: Introduction, Need of quantum mechanics, Particle nature of radiation - Black body radiation (no derivation), Photoelectric effect, Compton's effect and pair production, Concept of de-Broglie's matter waves, Heisenberg's uncertainty principle and its applications.	8 Hours
Module-4	Schrödinger's Wave Equation & Applications: Concept of wave function ψ and interpretation of $ \psi ^2$, Schrödinger's time-dependent and time-independent wave equations, Expectation values, Operators in quantum mechanics, Eigenfunctions and Eigenvalues, Applications of Schrödinger's equation – Particle in a one dimensional box, Potential barrier.	8 Hours
Module-5	Laser & Fiber Optics: Radiation-matter interaction, Absorption of light, Spontaneous and stimulated emission of light, Population inversion, Types of Laser – Solid State Laser (Ruby), Gas Laser (He-Ne), Properties and applications of Laser; Optical Fiber – Structure and Principle, Types of optical fiber, Numerical aperture, Applications of optical fiber.	8 Hours
Total		42 Hours

Text Books:

- T1. D. R. Joshi, *Engineering Physics*, 1st Ed., Tata McGraw-Hill Publication, 2017.
- T2. Md. M. Khan and S. Panigrahi, *Principle of Physics*, Vol. I & II, Cambridge Univ. Press.

Reference Books:

- R1. A. Ghatak, *Optics*, 7th Ed., McGraw-Hill Education, 2020.
- R2. D. J. Griffith, *Introduction to Electrodynamics*, 4th Ed., Pearson Education, 2015.
- R3. A. Beiser, *Concept of Modern Physics*, 6th Ed., McGraw-Hill Education, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/115102026/>: by Prof. M. R. Shenoy, IIT Delhi
2. <https://nptel.ac.in/courses/113104012/>: by Prof. M. Katiyar and Prof. D. Gupta, IIT Kanpur
3. <https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/>
4. <http://www.ilectureonline.com/lectures/subject/PHYSICS>
5. <https://ocw.mit.edu/courses/physics>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze wave properties of light like interference and diffraction and apply them in communications.
CO2	Develop Maxwell's equations from basic laws of electromagnetism and apply them to understand the properties of electromagnetic waves.
CO3	Analyze wave-particle duality to understand radiation-matter interaction.
CO4	Develop and apply Schrödinger's equations to fields like bound particle, potential barrier etc.
CO5	Investigate the basic principle, properties, operations and applications of laser & optical fiber in different fields like communication, industry, medicine, research etc.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	1	1						1	3	1	1
CO2	3	3	2	2	2						2	3	1	2
CO3	2	2	3	3	2						1	3	2	1
CO4	3	2	2	2	2						1	2	1	1
CO5	3	3	3	3	3						2	3	2	2

Category	Code	Basic Electronics Engineering	L-T-P	Credits	Marks
UCR	EC1001		3-0-0	3	100

Objectives	The objectives of this course is to study the concepts and functionalities of electronic devices, tools and instruments, general specifications and deployability of the electronic devices, and assemblies in engineering applications.
Pre-Requisites	Knowledge of physics, chemistry, and introductory idea of semiconductors studied at the higher secondary level is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, and planned lectures to make the sessions interactive with problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Semiconductor & Diodes: Types of semiconductors, Majority and minority charge carriers, Energy Band diagram, Transport phenomena, Law of Mass Action, Drift and Diffusion Current; Semiconductor Diode – Ideal vs. Practical, Diode equivalent circuits, Diode Applications – Rectifiers, Clipper, Clamper, and Switch, Zener Diode – Operation and Applications.	9 Hours
Module-2	Transistors: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying action, CB, CE, and CC configurations, Load line analysis, Fundamentals of biasing, Fixed biasing; Field Effect Transistor (FET) – Construction, Working principles, Characteristics of JFET & MOSFET.	9 Hours
Module-3	Op-Amps, Oscillators, and Measuring Instruments: Introduction, Characteristics of ideal Op-Amp, Virtual Ground Concept, Pin Configuration, Applications of Op-Amp – Inverting & Non Inverting Amplifier, Summing Amplifier, Differentiator, Integrator; Oscillators – Barkhausen's Criteria, RC phase shift oscillator, Wien bridge oscillator; Measuring Instruments – Construction & working of CRO, DSO, and Multimeter.	8 Hours
Module-4	Digital Logic: Number systems and its conversion, Signed & unsigned numbers, Binary arithmetic, 1's and 2's complement arithmetic, Basic & universal Logic gates, Boolean algebra and identities, Algebraic reduction using postulates of boolean algebra, Realization of boolean functions using universal logic gates.	8 Hours
Module-5	Signals & Communication Systems: Signals – Continuous & Discrete-time, Analog & Digital, Energy & Power, Spectrum of a signal, Fourier Transform (Exponential, Sine and Cosine); Communication Systems – Block diagram, Modulation, Time & Frequency domain representation of AM, Carrier & side-band power calculation, Generation (Square law modulator), Demodulation (Synchronous demodulator).	8 Hours
Total		42 Hours

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Ed., Pearson Education, 2015.

T2. A. Agarwal and J. Lang, *Foundations of Analog and Digital Electronic Circuits*, 1st Ed., Morgan Kaufmann, 2005.

T3. R. P. Singh and S. D. Sare, *Communication Systems: Analog and Digital*, 3rd Ed., McGraw-Hill Education, 2014.

Reference Books:

R1. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th Ed., Oxford University Press, 2009.

R2. V. K. Mehta and R. Mehta, *Principles of Electronics*, 10th Rev. Ed., S. Chand Publishing, 2006.

R3. A. Kumar, *Fundamentals of Digital Circuits*, 3rd Ed., PHI Learning, 2014.

Online Resources:

1. <https://nptel.ac.in/courses/117103063/>: by Prof. G. Barua, IIT Guwahati
2. <https://nptel.ac.in/courses/108101091/>: By Prof. M. B. Patil, IIT Bombay
3. <https://nptel.ac.in/courses/122106025/>: By Prof. T. S. Natarajan, IIT Madras
4. <https://nptel.ac.in/courses/117107095/>: Web Content by IIT Roorkee
5. <https://nptel.ac.in/courses/122104013/>: Web Content by IIT Kanpur
6. <https://nptel.ac.in/courses/117106086/>: By Prof S.Srinivasan, IIT Madras
7. <https://nptel.ac.in/courses/117103064/>: By Prof A. Mahanta, IIT Guwahati

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand basic principles of semiconductor diodes and their applications.
CO2	Understand the construction, characteristics, configurations, and applications of transistors.
CO3	Analyze the characteristics of Op-Amps & use them to design circuits for various applications.
CO4	Convert numbers using different number systems and apply boolean algebra on them.
CO5	Explain different types of signals and their characteristics using Fourier analysis tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	2						2	2	2	2
CO2	3	3	3	2	3						2	3	3	2
CO3	3	3	3	3	3						3	2	3	2
CO4	2	2	2	2	2						2	3	2	1
CO5	3	3	2	2	3						2	2	2	1

Category	Code	Basic Electrical Engineering	L-T-P	Credits	Marks
UCR	EE1001		3-0-0	3	100

Objectives	The objective of this course is to introduce the basic concepts of electricity and magnetism, DC & AC networks, principles of different electrical machines and measuring instruments, protection systems and safety requirements.
Pre-Requisites	Basic knowledge of intermediate physics and mathematics such as calculus, ordinary differential equations, matrices etc. is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Electric Circuits: Charge & current, Ideal & practical sources, Source conversion, Characteristics of circuit elements, Kirchhoff's current and voltage laws, Current & voltage division rule; Resistive Network Analysis – Node voltage & Mesh current (controlled & uncontrolled sources), Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem; Transient Analysis – Introduction, Differential equations, Time-domain analysis of first-order RL & RC circuits, Time constant.	12 Hours
Module-2	Single-phase AC Circuit Analysis: Representation of sinusoidal waveforms, Peak and RMS values, Phasor representation, AC power analysis, Power factor, Improvement of power factor, Analysis of series & parallel AC circuits (R, L, C, RL, RC, RLC circuits), Series resonance, Q-factor.	8 Hours
Module-3	Three-phase AC Circuit Analysis: Representation of 3-phase AC voltage, Phase sequence, Balanced load and source, Voltage and current relationship in star and delta connections, AC power analysis; Introduction to generation, transmission, and distribution of power system network, Residential wiring, Earthing, Electrical safety.	7 Hours
Module-4	Electromagnetism: Magnetic flux, Reluctance, Series & parallel magnetic circuits, Magnetic materials, Hysteresis loop; Single-phase Transformer – Construction & working, Ideal and practical transformer, EMF equation, Equivalent circuit & phasor diagram of transformer on load and no-load, Shifting of impedances.	8 Hours
Module-5	DC Machine: Construction, Working of generator and motor, EMF equation of generator, Back EMF of Motor, Classification based on excitation system; AC Machine: Construction and working of a 3-phase induction motor, Synchronous speed, Concept of slip, Construction, working, and types of single-phase induction motor.	7 Hours
Total		42 Hours

Text Books:

- T1. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 6th Ed., McGraw-Hill, 2017.
- T2. E. Hughes, *Electrical & Electronic Technology*, 9th Ed., Pearson, 2004.
- T3. G. Rizzoni, *Principles and Applications of Electrical Engineering*, 5th Ed., McGraw Hill, 2006.

Reference Books:

- R1. A. E. Fitzgerald, D. E. Higginbotham, and A. Grabel, **Basic Electrical Engineering**, 5th Ed., Tata McGraw Hill.
- R2. B. L. Theraja and A. K. Theraja, **Textbook of Electrical Technology (Vol-I)**, 23rd Ed., S. Chand & Co.Ltd., 2002.
- R3. L. S. Bobrow, **Foundations of Electrical Engineering**, Asian Edition, Oxford Univ. Press, 2013.

Online Resources:

1. <https://nptel.ac.in/courses/108/105/108105053/>: by Prof. G. D. Roy, Prof. N. K. De, and Prof. T. K. Bhattacharya, IIT Kharagpur
2. <https://nptel.ac.in/courses/108/108/108108076/>: By Prof. L. Umanand, IISc Bangalore
3. <https://www.electrical4u.com/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and analyze basic electrical network with direct current source.
CO2	Measure current, voltage, and power of series RLC circuit excited by single-phase AC circuit.
CO3	Analyze 3-phase electrical systems and explore the engineering of practical power systems.
CO4	Explain different concepts of magnetic fields and apply them to single-phase transformers.
CO5	Describe the working principles of rotating electrical machines.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2	1						2	2	2
CO2	3	3	2	3	3	1						3	3	2
CO3	3	2	1	1	3	2						2	3	2
CO4	3	2	2	1	3	1						3	2	1
CO5	3	3	2	1	1	1						2	2	1

Category	Code	Engineering Mechanics	L-T-P	Credits	Marks
UCR	ME1001		2-0-0	2	100

Objectives	The objective of this course is to introduce engineering mechanics with the knowledge of statics, force equilibrium and free body diagrams, analysis of structures, beams and associated stresses along with elementary ideas on kinematics, dynamics, and mass moment of inertia.
Pre-Requisites	Knowledge of physics & mathematics and basic analytical skills is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Basic concepts of vector analysis, Equilibrium of forces in two and three dimensions, Rectangular components of a force and its application, Varignon's theorem; Motion of a particle – Equation of motion, D'Alembert's principle, Planar cartesian & polar coordinates, Motion with constraints.	8 Hours
Module-2	Virtual Work and Energy: Virtual displacements, Principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom; Analysis of Structures: Trusses, Assumptions, Simple plane truss, Analysis by method of joints and method of sections.	6 Hours
Module-3	Center of Gravity & Moments of Inertia: Centroid and Centre of Gravity, Centroid of simple and composite sections, Theorems of Pappus and Guldinus, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Area moment of inertia of standard sections and composite sections, Mass moment inertia of circular plate, Cylinder, Cone, Sphere, parallelepiped.	7 Hours
Module-4	Stress & Strain: Normal stress, Shear stress, State of stress at a point, Ultimate strength, Allowable stress, Factor of safety; Relationship between elastic constants, Mechanical properties of materials, Stress-Strain behaviour; Flexural Loading – Shear force and bending moment in beams, Shear force and bending Moment Diagrams, Bending and shear stresses.	7 Hours
Total		28 Hours

Text Books:

T1. M. K. Harbola, *Engineering Mechanics*, 2nd Ed., Cengage Learning, 2018.
T2. G. H. Ryder, *Strength of Materials*, 3rd Ed., Macmillan Press, 1969.

Reference Books:

R1. J. L. Meriam and L. G. Kraige, *Engineering Mechanics: Statics*, 8th Ed., Wiley India, 2014.
R2. R. K. Rajput, *Strength of Materials: Mechanics of Solids*, 7th Ed., S. Chand Publications, 2018.
R3. S. Timoshenko, D. H. Young, S. Pati, and J. V. Rao, *Engineering Mechanics*, 5th Ed., McGraw-Hill Education, 2013.

Online Resources:

- <https://nptel.ac.in/courses/122104015/>: by Prof. M. Harbola, IIT Kanpur.
- <https://nptel.ac.in/courses/105105108/>: by Prof. S. Bhattacharya, IIT Kharagpur)

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and analyze using the principles of mechanics to solve problems in statics.
CO2	Articulate virtual work and investigate the nature of forces in the members of simple trusses.
CO3	Explain area and mass moments of inertia and their application in structural design.
CO4	Describe the mechanics of deformable bodies and mechanical properties of materials.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	1	2	3	2					2	2	2	2
CO2	3	2	1	2	3	1					2	2	2	2
CO3	2	2	1	2	3	2					2	1	2	1
CO4	2	2	1	2	3	2					2	1	2	1

Category	Code	Engineering Thermodynamics	L-T-P	Credits	Marks
UCR	ME1002		2-0-0	2	100

Objectives	The objective of this course is to introduce laws of thermodynamics with emphasis on various equilibrium processes and their applications in practical domains like power plants, refrigerators and internal combustion engines.
Pre-Requisites	Knowledge of physics & mathematics and basic analytical skills is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Basic concepts, System, Control volume, Surrounding, Boundaries, Universe, Types of systems, Macroscopic and microscopic viewpoints, Concept of continuum, Thermodynamic equilibrium, State, Property, Process, Exact & inexact differentials, Point & path functions, Cycle, Quasi-static process, Reversibility and irreversibility, Pressure measurement, Zeroth law of thermodynamics, Temperature, Principles of thermometry, Constant volume gas thermometer, Temperature scale.	7 Hours
Module-2	Pure Substances, p-v, T-v, T-s and h-s diagrams, Phase Transformations, Triple point and critical state, properties during change of phase, Dryness Fraction, Property tables. Brief discussion on the First law for cycle, closed system and open system (steady flow energy equation, SFEE), Perpetual Motion Machines, PMM1.	7 Hours
Module-3	Introduction to Second Law of Thermodynamics, Kelvin-Planck and Clausius' Statements and their Equivalence, Corollaries, PMM2, Carnot's Principle and Cycle, Entropy, Clausius' Inequality, Principle of Entropy and its application, T-s plot.	7 Hours
Module-4	Applications of Thermodynamics, Brief description and working principles of Steam Power Plant, Refrigerators and Heat pump, I.C. Engines (two-stroke and four-stroke, petrol and diesel) and Aircraft Propulsion Engines, Brayton Cycle, Rankine Cycle, Comparison.	7 Hours
Total		28 Hours

Text Books:

- T1. R. E. Sonntag and C. Borgnakke, *Fundamentals of Thermodynamics*, 7th Ed., John Wiley, 2014.
- T2. Y. A. Cengel and M. A. Boles, *Thermodynamics – An Engineering Approach*, 7th Ed., McGraw-Hill Education, 2011.

Reference Books:

- R1. P. K. Nag, *Engineering Thermodynamics*, 5th Ed., McGraw-Hill Education, 2013.
- R2. Y. V. C. Rao, *An Introduction to Thermodynamics*, 2nd Ed., University Press, 2004.

Online Resources:

1. <https://nptel.ac.in/courses/112105123/>: by Prof. S. Chakraborty, IIT Kharagpur
2. <https://www3.nd.edu/~powers/ame.20231/notes.pdf>
3. <https://ocw.mit.edu/courses/chemistry/5-60-thermodynamics-kinetics-spring-2008/>

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Articulate the concepts of thermodynamic properties, equilibrium, temperature and pressure.
CO2	Apply first laws of thermodynamics to analyze turbine, compressors, heat exchangers and nozzles by using steam table and ideal gas equation.
CO3	Analyze the limitations of the First law and evaluate the available energy and irreversibility.
CO4	Analyze power cycles and refrigeration cycles and their applications in the real world.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1	2						2	2	2	2
CO2	3	3	2	2	1						2	3	3	2
CO3	3	3	3	3	2						3	2	3	2
CO4	3	3	3	2	2						2	3	2	1

Category	Code	Computer Programming	L-T-P	Credits	Marks
UCR	CS1001		3-0-0	3	100

Objectives	The objective of this course is to introduce fundamentals of computer programming using the C programming language starting with simple programs to advanced topics like structures, pointers, file processing and pre-processor directives for solving various engineering problems through computer programming.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to computers and programming, operating system, compilers, interpreters, algorithm, flowchart, pseudocode etc., structure of C program, character set, identifier, keywords, constants, variables, data types, operators, expressions, statements, operator precedence and associativity, type conversion, input/output statements.	8 Hours
Module-2	Decision making and branching: if, if-else, nested if-else, else-if ladder and switch constructs, iterative execution of code using loops: while, for, do-while, nested loops, controlling loop behavior using jump statements (break, continue, goto) and exit statements.	8 Hours
Module-3	Arrays (1-D & 2-D), declaration and initialization of arrays, accessing array elements, operations on arrays - insertion, deletion, searching, sorting (selection sort), merging etc., character arrays and strings, initialization, input & output of strings, operations on strings, array of strings, string handling functions.	9 Hours
Module-4	User-defined functions, declaration and definition, parameter passing by value, functions returning values, idea on call by reference, passing arrays to functions, recursion, storage classes - auto, register, static, extern, Structures and Unions - definition, initialization, accessing members, array of structures, arrays within structures, structures and functions, self-referential structures.	9 Hours
Module-5	Understanding pointers, declaration, initialization, accessing variables using pointers, pointer expressions, scale factor, chain of pointers, using pointers with arrays, strings, functions and structures, dynamic memory management, pre-processor directives, command line arguments, basics of file handling.	8 Hours
Total		42 Hours

Text Books:

- T1. E. Balagurusamy, **Programming in ANSI C**, 7th Ed., McGraw-Hill Education, 2017.
- T2. Y. Kanetker, **Let Us C**, 16th Ed., BPB Publications, 2018.

Reference Books:

- R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Ed., Pearson Education, 2015.
- R2. H. Schildt, *C: The Complete Reference*, 4th Ed., McGraw-Hill, 2017.
- R3. A. Kelley and I. Pohl, *A Book on C*, 4th Ed., Pearson Education, 2008.
- R4. B. Gottfried, *Schaum's Outline of Programming with C*, 3rd Ed., McGraw-Hill, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/106104128>: by Prof. S. Nandakumar, IIT Kanpur
2. <https://nptel.ac.in/courses/106105171>: Prof. A. Basu, IIT Kharagpur
3. <https://nptel.ac.in/courses/106106210>: by Prof. J. Viraraghavan, IIT Madras
4. <http://www.stat.cmu.edu/~hseltman/c/CTips.html>
5. <http://www.c-faq.com/>
6. <https://www.learn-c.org/>
7. <http://www2.its.strath.ac.uk/courses/c/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Formulate logic of a problem and write C programs using variables, expressions and I/O.
CO2	Develop structured C programs involving decision making using different control constructs.
CO3	Solve problems involving similar set of data items and write C programs using arrays.
CO4	Design modular C programs and handle heterogeneous data items using structures & unions.
CO5	Develop complex C programs with file processing using advanced features of C programming.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2							2	3	2	2
CO2	3	3	3	2							2	3	2	2
CO3	3	3	1	2							2	3	2	2
CO4	3	2	1	2							2	3	2	2
CO5	3	3	1	2							2	3	2	2

Category	Code	Constitution of India & Professional Ethics	L-T-P	Credits	Marks
UMC	HS0001		3-0-0	0	100

Objectives	The objective of this mandatory course is to provide understanding of basic concepts of Indian Constitution and various organs created by the constitution including their functions. This course also introduces a holistic perspective towards life by understanding of the human reality and the rest of existence.
Pre-Requisites	Basic knowledge of Indian history, overall idea on India's political system, a positive bent of mind, zeal to know the essence of human existence and nature.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Preamble, Salient Features, Fundamental Rights, Fundamental Duties, Features of Federal Structure, The Union Legislature – The Parliament, The Lok Sabha and Rajya Sabha, Composition, Powers and Functions.	9 Hours
Module-2	Union Executive, President of India (with powers and functions), Vice-President, The Council of Ministers and the Prime Minister – Powers and Functions; State Government, The State Legislature -- Composition, Powers and Functions, State Executive – Governor, Chief Minister, and State Council of Ministers.	9 Hours
Module-3	Professional Ethics, Basic terms – Moral, Ethics, Ethical Dilemma, Emotional Intelligence, View on Ethics by Aristotle, Governing Factors of an Individual's Value System, Personal and Professional Ethics.	7 Hours
Module-4	Profession, Professional, Professionalism, Professional Accountability, Professional Risks, Profession and Craftsmanship, Conflict of Interest, Ethics in Engineering – Purpose and Concept of Engineering Ethics, Engineering as Social Experimentation, Issues in Engineering Ethics, Engineers' Responsibility – Safety & Risk, Risk-Benefit Analysis, Causes of an Accident, Preventive Measures.	9 Hours
Module-5	Value Education, Self-exploration as the Process for Value Education, Basic Human Aspirations – Continuous Happiness and Prosperity, Current Scenario, Method to Fulfill the Basic Human Aspirations, Harmony in the Human Being, Family, Society and Nature or Existence.	8 Hours
Total		42 Hours

Text Books:

- T1. D. D. Basu, *Introduction of Constitution of India*, 22nd Ed., LexisNexis, 2015.
- T2. R. Subramanian, *Professional Ethics*, 2nd Ed., Oxford University Press, 2017.
- T3. R. R. Gaur, R. Asthana, and G. P. Bagaria, *A Foundation Course in Human Values and Professional Ethics*, 2nd Ed., Excel Books, 2019..

Reference Books:

- R1. M. Laxmikanth, *Indian Polity*, 5th Ed., McGraw Hill, 2011.

R2. K. Subas, *An Introduction to India's Constitution and Constitutional Law*, 5th Ed., National Book Trust India, 2011.

R3. C. E. Harris, M. S. Pritchard, and M. J. Robins, *Engineering Ethics – Concepts and Cases*, 4th Ed., Cengage Learning, 2012.

R4. A. N. Tripathi, *Human Values*, 3rd Ed., New Age International, 2019.

Online Resources:

1. <https://nptel.ac.in/courses/129106411>: by Prof. S. Bhat, IIT Madras
2. https://www.india.gov.in/sites/upload_files/npi/files/coi_part_full.pdf
3. <https://www.india.gov.in/my-government/constitution-india/constitution-india-full-text>

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe basics of Indian constitution, fundamental laws and rights of Indian citizen.
CO2	Articulate the union executive system and constitutional institutions of center and state.
CO3	Understand basic purpose of profession, professional ethics and various moral and social issues.
CO4	Realize the rights, responsibilities, and ethical principles of an Engineer at various levels.
CO5	Understand importance of human values and live with harmony in family, society, and nature.

Program Outcomes Relevant to the Course:

PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						2	1	1	1	1	1			1
CO2						2	2	3	2	1	2			1
CO3						3	3	3	2	1	2			2
CO4						2	3	3	2	2	2			2
CO5						3	3	3	2	1	3			2

Category	Code	Environmental Science & Engineering	L-T-P	Credits	Marks
UMC	CH0001		3-0-0	0	100

Objectives	The objective of this course is to introduce essential aspects of environmental science for engineering students. The course covers ecology, ecosystems, air and water pollution, management of municipal solid wastes, hazardous wastes and e-waste, along with environmental laws and UN conferences.
Pre-Requisites	Basic knowledge of physics, chemistry and biology is required for this course.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required with focus on importance of environment, examples and case studies.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Ecology, Ecosystems and Biogeochemical Cycles: Introduction to environmental science and engineering, Ecological perspective, Ecosystems and processes, Trophic pyramids, Biodiversity of species, Water, Oxygen, Nitrogen and Carbon cycle, Environmental gradient and tolerance levels of environmental factors.	9 Hours
Module-2	Water and Wastewater Treatment: Water quality standards and parameters, water table, aquifer, pre-treatment, conventional treatment processes of water, DO, BOD, COD and microbial wastewater treatment.	9 Hours
Module-3	Atmospheric Chemistry, Soil Chemistry and Noise Abatement: Atmospheric chemistry, air pollution and associated control equipment, climate change, soil chemistry, noise standards, noise measurement and noise abatement.	8 Hours
Module-4	Waste Management: Types and management of MSW (Municipal Solid Waste), hazardous waste and e-waste, Introduction to LCA (Life Cycle Assessment).	8 Hours
Module-5	EIA, EIS, Environmental Laws and Human Health: Environmental Audit, EIA (Environmental Impact Assessment), EIS (Environmental Impact Statement), Indian environmental laws, UN Conferences, Human population and the environment.	8 Hours
Total		42 Hours

Text Books:

- T1. G. M. Masters and W. P. Ela, *An Introduction to Environmental Engineering and Science*, 3rd Ed., PHI Learning, 2015.
- T2. G. Kiely, *Environmental Engineering*, Spl. Indian Edition, McGraw Hill, 2007.

Reference Books:

- R1. M. L. Davis and S. J. Masten, *Principles of Environmental Engineering and Science*, 2nd Ed., McGraw-Hill, 2017.
- R2. H. D. Kumar and U. N. Dash, *Environmental Studies*, 2nd Ed., IndiaTech Publishers, 2017.

Online Resources:

1. <http://nptel.ac.in/courses/120108002/>: Aquatic Biodiversity and Environmental Pollution.
2. <http://nptel.ac.in/courses/120108004/>: Environment Management.

3. <http://nptel.ac.in/courses/120108005/>: Municipal Solid Waste Management.
4. <https://www.epa.gov/environmental-topics/>: All Current Environmental Issues.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the concepts of ecology, ecosystems, and biogeochemical cycles in the environment.
CO2	Explain the process of water and wastewater treatment for prevention of water pollution.
CO3	Understand the pollutants in the environment and explore the principles for their eradication.
CO4	Explore waste minimization and management of different types of wastes generated.
CO5	Understand EIA, EIS, and other environmental laws for prevention of pollution.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	2	1	3	1	2		1	2			1
CO2	2	2	3	2	1	3	1	2		1	2			1
CO3	2	2	3	2	1	3	1	1		1	2			1
CO4	2	2	3	2	1	3	2	2		1	2			1
CO5	2	2	3	2	1	3	3	2		1	2			1

Category	Code	Probability & Statistics	L-T-P	Credits	Marks
UCR	MT1002		3-0-0	3	100

Objectives	The objective of this course is to familiarize the perspective engineers with the knowledge and concepts of probability and statistics which are essential to study non-deterministic systems.
Pre-Requisites	Basics of sets, counting techniques, differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Measures of central tendencies, Elementary probability, Conditional probability, Bayes' Rule (related problems only), Random variable, Binomial & Hypergeometric distribution, Mean and variance.	8 Hours
Module-2	The Poisson approximation to Binomial Distribution, Poisson Process, Geometric Distribution & Multinomial Distribution, Continuous random variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Uniform Distribution, Exponential Distribution, Joint Discrete Distribution.	9 Hours
Module-3	Populations and Samples, Sampling Distribution of Mean (σ known), Sampling Distribution of Mean (σ unknown) & Sampling Distribution of Variance; Point Estimation of mean, Interval Estimation of mean, Tests of hypotheses and errors involved, Hypotheses concerning one mean, Inference concerning two mean, Estimation of variance, Hypotheses concerning one variance, Hypotheses concerning two variances.	10 Hours
Module-4	Estimation of Proportions, Hypotheses Concerning proportion (one & several), Analysis of $r \times c$ table (Contingency table), Goodness of fit.	7 Hours
Module-5	The method of least squares, Inferences based on the least square estimation, Curvilinear Regression, Checking the adequacy of the model, Correlation, Analysis of Variance, General principle, Completely Randomized Design, Randomized Block Design.	8 Hours
Total		42 Hours

Text Books:

T1. R. A. Johnson, *Miller & Freund's - Probability and Statistics for Engineers*, 8th Ed., PHI Learning, 2011.

Reference Books:

R1. W. Mendenhall, R. J. Beaver, and B. M. Beaver, *Probability and Statistics*, 14th Ed., Cengage Learning, 2014.

R2. R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, *Probability & Statistics for Engineers & Scientists*, 9th Ed., PHI Learning, 2012.

Online Resources:

1. <https://nptel.ac.in/courses/111/105/111105041/>: by Prof. S. Kumar, IIT Kharagpur
2. <https://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-spring-2014/lecture-notes/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply the concepts of probability and random variables to evaluate probabilities of events.
CO2	Apply different discrete and continuous probability models to solve real life problems.
CO3	Apply the concepts of sampling to estimate population parameters and test hypothesis.
CO4	Test the goodness of a model and apply it to real life problems.
CO5	Apply regression model and ANOVA to study the characteristics of data sets.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	2						2	2	1	1
CO2	3	3	3	3	3						2	2	1	1
CO3	3	2	3	2	2						2	2	1	1
CO4	3	3	3	3	3						2	3	2	1
CO5	3	3	3	3	3						2	3	2	1

Category	Code	Data Structures & Algorithms	L-T-P	Credits	Marks
UCR	CS1003		3-0-0	3	100

Objectives	To understand the abstract data types and to solve problems using data structures such as stacks, queues, linked lists, hash tables, binary trees, heaps, binary search trees, graphs and writing programs for these solutions.
Pre-Requisites	Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to data structures, classification of data structures, algorithmic notation, complexity of algorithms, asymptotic notations, abstract data types. Arrays - introduction, representation of arrays (row and column major representation), basic operations on array (traverse, insert, delete, search), sparse matrix, representation of sparse matrix using triplet form, operations on sparse matrix (addition, transpose)	8 Hours
Module-2	ADT Stack - stack model, representation of stack using array, basic operations with analysis, applications- recursion, and conversion of infix to post fix expression, evaluation of postfix expression. ADT Queue - queue model, representation using array, basic operations with analysis, circular queue, introduction to priority queue and double ended queue.	8 Hours
Module-3	Linked list - introduction, types of linked list (single, double, circular), representation in memory, operations on linked list (traverse, search, insert, delete, sort, merge) in each type with analysis. Representation of polynomial and its operations (addition, multiplication), implementation of stack and queue using linked list.	9 Hours
Module-4	Tree - terminology, representation, binary tree - tree traversal algorithms with and without recursion. Binary search tree, Operations on Binary Search Tree with analysis, threaded binary tree, general tree, Height balanced tree (AVL tree), m-way search trees, B-trees. Graph - terminology, representation (adjacency matrix, incidence matrix, path matrix, linked representation), graph traversal (BFS, DFS), Dijkstra's single source shortest path algorithm, Warshall's all pair shortest path algorithm, topological sort.	9 Hours
Module-5	Sorting algorithms - bubble sort, selection sort, insertion sort, quick sort, merge sort, radix sort, heap sort. Hashing- hash functions and hashing techniques. collision resolution techniques- linear probing, quadratic probing, chaining.	8 Hours
Total		42 Hours

Text Books:

T1. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Ed., Pearson Education, 2002.
 T2. E. Horowitz, S. Sahni, S. A-Freed, *Fundamentals of Data Structures in C*, 2nd Ed., Univ. Press, 2008.

Reference Books:

- R1. A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, *Data Structures Using C*, 3rd Ed., Pearson Education, 2007.
- R2. J. P. Tremblay and P. G. Sorenson, *An Introduction to Data Structures with Applications*, 2nd Ed., McGraw Education, 2017.
- R3. S. Lipschutz, *Data Structures*, 1st Revised Ed., McGraw Education, 2014.

Online Resources:

1. <https://nptel.ac.in/courses/106/106/106106127/>: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
2. <https://nptel.ac.in/courses/106/102/106102064/>: By Prof. N. Garg, IIT Delhi
3. <https://nptel.ac.in/courses/106/106/106106130/>: By Dr. N. S. Narayanaswamy, IIT Madras
4. <https://www.geeksforgeeks.org/data-structures/>

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze performance of algorithms and implement operations on arrays and sparse matrices.
CO2	Apply the basic operations of stacks and queues to solve real world problems.
CO3	Implement different types of linked list operations and their applications.
CO4	Represent data using trees & graphs to use them in various real life applications.
CO5	Analyze various sorting algorithms and explore different hashing techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	1					1	2	2	1
CO2	3	3	3	2	2	2					1	2	1	1
CO3	3	3	2	2	2	1					1	2	1	1
CO4	3	3	3	3	2	2					1	2	2	1
CO5	3	3	3	2	2	2					1	2	3	1

Category	Code	Basic Electronics Engineering Lab	L-T-P	Credits	Marks
UCR	EC1002		0-0-2	1	100

Objectives	The objective of this practical course is to learn the concepts and functionalities of the electronic devices, tools and instruments. Students will understand general specifications and deployability of the electronic devices and assemblies, and also develop confidence in handling and usage of electronic devices, tools and instruments in engineering applications.
Pre-Requisites	Knowledge on intrinsic and extrinsic Semiconductors, Physics and Chemistry of Higher Secondary Science level.
Teaching Scheme	Regular laboratory experiments to be conducted under the supervision of teachers and demonstrators with the help of ICT, as and when required along with pre-lab session and demonstration for each experiment.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Identification of electronic components and devices (Testing of semiconductor diodes and transistors using digital multi-meter).
2	Understand and use oscilloscope, signal generator to view waveforms and measure amplitude and frequency of a given waveform.
3	Generate V-I characteristics of semiconductor diode and determine its DC and AC resistances.
4	Implement clipper circuits (positive clipper and negative clippers) and observe its output waveforms and compare them with theoretically analyzed results.
5	Design half-wave and full-wave rectifier circuits without and with capacitor filter, record the waveforms and measure average & RMS values of the rectified output.
6	Generate and analyze the static characteristics of BJT in CE configuration.
7	Design the DC biasing (Fixed) circuit of transistor in CE configuration and determine its operating point.
8	Analyze the static characteristics of FET in CS configuration.
9	Apply Op-Amp in inverting, non-inverting, integrating and differentiating configurations & record their input-output waveforms.
10	Understand and verify truth tables of various logic gates.
11	Apply NAND and NOR as Universal logic gates.
12	Analyze and implement of R.C phase shift Oscillator using Op-AMP.
13	Design and simulate BJT and FET I/O characteristics using OrCAD PSpice/ Multisim.
14	Design and analysis of AM modulator and demodulator.

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Ed., Pearson Education.
 T2. A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 7th Ed., Oxford University Press.

Reference Books:

R1. V. K. Mehta and R. Mehta, *Principles of Electronics*, 3rd Ed., S. Chand Publishing, 1980.

Online Resources:

1. http://vlab.co.in/ba_labs_all.php?id=1
2. <http://iitg.vlab.co.in/?sub=59&brch=165>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Recognize electronic components, measuring instruments, semiconductor diodes and their use.
CO2	Determine the characteristics of transistors and use them in various electronic circuits.
CO3	Explore design and testing of Op-Amp and design circuits for various applications using them.
CO4	Design and test digital circuits using logic gates for different applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1									2	2	2
CO2	3	3	2	1								3	3	2
CO3	2	2	2	1							2	3	2	2
CO4	2	2	3								2	3	3	2

Category	Code	Basic Electrical Engineering Lab	L-T-P	Credits	Marks
UCR	EE1002		0-0-2	1	100

Objectives	The objective of this practical course is to expose the students to different electrical components and basic safety rules and regulations, give hands on practice about different measuring and protection equipment and their operations to understand and verify the concept of electrical & magnetic circuits and electric machines.
Pre-Requisites	Basic knowledge of different electrical components and different analysis techniques of electrical and magnetic circuits. Topics taught in Basic Electrical Engineering theory class are essential to conduct the experiments.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher. Demonstration will be given for each experiment.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Measurement of power consumption & power factor of a fluorescent lamp and its power factor improvement.
2	Measurement of winding resistances of a DC compound machine.
3	Power & power factor measurement of three-phase load by two-wattmeter method.
4	Connection and testing of a single-phase energy meter.
5	Determination of open circuit characteristics (OCC) of a DC shunt generator.
6	Calculation of power & power factor in series R-L-C circuit excited by single-phase supply.
7	Determination of no-load parameters through OC Test of single-phase transformer.
8	Study of capacitor start and run single-phase induction motor/fan motor.
9	Study and verification of Thevenin's Theorem and Norton's Theorem.
10	Draw the B-H curve of a magnetic Specimen.
11	Starting of three-phase induction motor.
12	Voltage Regulation & efficiency of single-phase transformer by direct loading.

Text Books:

T1. A. Husain, *Fundamentals of Electrical Engineering*, 4th Ed., Dhanpat Rai & Co., 2016.
 T2. B. L. Thereja & A. K. Thereja, *A Textbook of Electrical Technology*, 23rd Ed., S. Chand & Co.

Reference Books:

R1. J. B. Gupta, *A Textbook of Electrical Science*, S. K. Kataria & Sons, 2013.
 R2. B. R. Gupta and V. Singhal, *Electrical Science*, S. Chand & Co, 2005.

Online Resources:

- <https://nptel.ac.in/courses/108/105/108105053/>: by Prof. G. D. Roy, Prof. N. K. De, and Prof. T. K. Bhattacharya, IIT Kharagpur
- <https://nptel.ac.in/courses/108/108/108108076/>: By Prof. L. Umanand, IISc Bangalore
- <https://www.electrical4u.com/>
- www.electronics-tutorials.ws/dc-circuits

Course Outcomes: At the end of this course, the students will be able to:

CO1	Get an exposure to common electrical components and their ratings.
CO2	Develop electrical circuits and measure its characteristics using different measuring instruments and deploy different protective devices of appropriate ratings.
CO3	Understand the usage of common electrical measuring instruments.
CO4	Understand the basic characteristics of transformers and electrical machines.
CO5	Verify different network theorems and magnetic properties.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1			2		1		1	1	1	1	1	1	2
CO2	2			2		1		2	1	1	2	1	1	1
CO3	1			3		2		2	1	1	1	2	1	2
CO4	1			2		2		1	1	2	2	2	1	2
CO5	1			1		1		1	1	1	1	2	1	2

Category	Code	Computer Programming Lab	L-T-P	Credits	Marks
UCR	CS1002		0-0-4	2	100

Objectives	To enable the students to analyze problems, formulate and implement solutions using the C programming language. The students will write C programs using proper logic to solve a problem and execute them on a computer.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to computers and Linux operating system.
2, 3	Get acquainted with the programming environment - Linux commands and VI-editor.
4	Editing, compiling, executing, and debugging of simple C programs.
5	Programs using operators and formatted input/output statements.
6	Decision making using if, if-else, else-if ladder, nested if.
7	Decision making using switch-case construct.
8, 9	Loop control structure (while, do-while, for) with jump statements.
10	Nested loops (printing various formats)
11, 12	1-D arrays including operation like searching, sorting, merging etc.
13	Handling 2-D arrays such as matrix operations.
14, 15	Programs on strings using various string handling functions (library functions)
16, 17	Designing user-defined functions.
18, 19	Programs on recursion.
20	Designing user defined functions for string manipulation.
21	Passing arrays (both 1D and 2D) to functions.
22, 23	Structure, array of structure, nested structure.
24	Dynamic memory management.
25	Self-referential structure (create and display operation of single linked list)
26, 27	File handling - reading from and writing to files.
28	Command-line argument, pre-processor directives.

Text Books:

T1. E. Balagurusamy, *Programming in ANSI C*, 7th Ed., McGraw-Hill Education, 2017.
 T2. Y. Kanetker, *Let Us C*, 16th Ed., BPB Publications, 2018.

Reference Books:

R1. B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, 2nd Ed., Pearson Education, 2015.
 R2. H. Schildt, *C: The Complete Reference*, 4th Ed., McGraw-Hill, 2017.
 R3. A. Kelley and I. Pohl, *A Book on C*, 4th Ed., Pearson Education, 2008.

R4. B. Gottfried, *Schaum's Outline of Programming with C*, 3rd Ed., McGraw-Hill, 2017.

Online Resources:

1. <https://www.w3resource.com/c-programming-exercises/>
2. <https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx>
3. https://www.onlinegdb.com/online_c_compiler
4. https://www.tutorialspoint.com/compile_c_online.php

Course Outcomes: At the end of this course, the students will be able to:

CO1	Construct C programs for mathematical operations using control statements.
CO2	Develop C programs for Array and String manipulation.
CO3	Construct modular programs for better maintenance and reusability.
CO4	Manipulate heterogeneous data using structure and union.
CO5	Create and manipulate files using C programs.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	2							2	3	2	3
CO2	3	3	1	2							2	3	2	3
CO3	3	3	3	2							2	3	2	3
CO4	3	3	1	2							2	3	2	3
CO5	3	3	1	2							2	2	1	1

Category	Code	Communicative & Technical English	L-T-P	Credits	Marks
SEC	HS1001		0-0-4	2	100

Objectives	The objectives of this laboratory course are to provide practice sessions to enhance students' communication ability in the four language skills with focus on technical communication.
Pre-Requisites	Basic knowledge of general communication skills in english is required.
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate technical communication through pair and/or team activities with regular assessments, presentations, discussions, role-playing, audio-visual supplements, writing activities, business writing practices and vocabulary enhancement.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to the course and diagnostic test.
2	JAM: content development, structuring and delivery.
3	Group presentation.
4	Effective Verbal Communication exercises: plain English, bias-free language, formal and informal style, usage etc.
5	Activities on non-verbal communication.
6	Sounds of English: Vowels and consonants.
7	Sounds of English: Transcription.
8	Sounds of English: Syllable and stress.
9	Sounds of English: Rhythm.
10	Sounds of English: Intonation I.
11	Sounds of English: Intonation II.
12	Role play on simulated business contexts considering different channels of business communication.
13	Listening comprehension.
14	Practice on elements of business writing.
15	Composing effective paragraphs with unity, coherence, cohesion, progression.
16	Process writing.
17	Writing memos.
18	Emails and email etiquette.
19	Business letter I.
20	Business letter II.
21	Error correction: usage and grammar.
22	Reading Comprehension I: Essay – skimming, scanning, inferential comprehension, critical reading.
23	Reading Comprehension II: Short story – Analysing the tone of the author.

Cont'd...

Experiment-#	Assignment/Experiment
24	Reading Comprehension III: News editorial – Differentiating facts from opinion.
25	Reading Comprehension IV: Texts on Science and Technology – Identifying discourse markers.
26	Reading Comprehension V: Texts on Science and Technology – Intensive reading and note-taking.
27	Note-making and summary writing.
28	Verbal Advantage: vocabulary exercises.

Text Books:

T1. M. A. Rizvi, *Effective Technical Communication*, 2nd Ed., Tata McGraw Hill, 2017.
 T2. M. Raman and S. Sharma, *Technical Communication: Principles and Practices*, 3rd Ed., Oxford University Press, 2015.
 T3. B. K. Das, K. Samantray, R. Nayak, S. Pani, and S. Mohaty, *An Introduction to Professional English & Soft Skills*, Cambridge Univ. Press, 2009.

Reference Books:

R1. J. Seeley, *The Oxford Guide to Effective Writing and Speaking: How to Communicate Clearly*, 3rd Ed., Oxford University Press, 2013.
 R2. S. Kumar and P. Lata, *Communication Skills*, Oxford University Press, 2011.
 R3. T. Panigrahi, *Communicative Competence*, 1st Ed., Notion Press, 2024.

Online Resources:

- <https://nptel.ac.in/courses/109/106/109106094/>: by Prof. A. Iqbal, IIT Madras
- <https://nptel.ac.in/courses/109/104/109104031/>: by Dr. T. Ravichandran, IIT Kanpur
- <https://ocw.mit.edu/courses/comparative-media-studies-writing/21w-732-5-introduction-to-technical-communication-explorations-in-scientific-and-technical-writing-fall-2006/download-course-materials/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Communicate with clarity, fluency and impact.
CO2	Develop comprehensive understanding of communication concepts, its importance, types, barriers and principles.
CO3	Communicate effectively in business set-ups.
CO4	Compose coherent, clear and impactful business correspondences.
CO5	Practice sub-skills of reading and become adept readers.

Program Outcomes Relevant to the Course:

PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

Cont'd...

PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						1	3	3	3	3	3	1	1	1
CO2						1	3	3	3	3	2	1	1	1
CO3						2	3	3	3	3	2	1	1	1
CO4						1	3	3	3	3	2	1	1	1
CO5						2	2	3	3	3	2	1	1	1

Category	Code	Workbench Practices	L-T-P	Credits	Marks
UCR	EE1003		0-0-2	1	100

Objectives	The objective of this practical course is to provide hands-on exposure on tools, fasteners, computers, electrical wiring, electronic components & instruments, soldering & desoldering, making of PCB, and using other advanced tools necessary for creating working models and prototypes for engineers of circuit branches.
Pre-Requisites	Familiarity with some hand tools used in home is desired.
Teaching Scheme	Regular experiments and jobs using tools and instruments under supervision of the teacher. Demonstration will be given for each experiment.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	General introduction & familiarity with tools (measuring, marking, holding, and cutting tools), Fitting (Limit, Fit, Tolerance)and Fastening (different types of screws, rivets, nuts & bolts).
2	Disassembling and assembling of Desktop Computer System and recognize its parts.
3	Study of cables, wires, switches, fuses, MCB, and fuse carriers in an electrical network.
4	Study of earthing and electrical safety, demonstration of the precautionary steps in case of electrical shocks.
5	Calculation of current and power for series and parallel connected lamp load.
6	Study and design of house wiring.
7	Study of digital measuring equipment and calculation of energy consumption in an electrical system.
8	Study of basic electronic & electrical components (such as Resistor, Capacitor, Inductor, Potentiometer, Diode, Transistor, Sensors, ICs, etc.) for circuit design.
9	Study of PCB assembling tools (such as Soldering iron, De-soldering pump, Pliers, Cutters, Wire strippers, Crimping tool, Micro-soldering, Hot air soldering and de-soldering station etc.)
10	Study of different measuring and testing tools such as Multimeter, Digital Storage Oscilloscope (DSO), Clamp meter, and Function generator etc.
11	Familiarization with EDA tools (such as Eagle or XCircuit) with general purpose components for designing PCB of simple circuits.
12	Fabrication & testing of single-sided and double-sided PCB for selected applications using general purpose instruments.

Text Books:

- T1. B. H. Deshmukh, *Electrical Materials and Wiring Practices*, Nirali Prakashan, 2018.
- T2. G. Haldar, *Electronics Course Book: Basic Components, IC boards, SMD, Logic Gates, Transistors, Resistors, Capacitors, Diodes, Audio Circuit and More*, GRPV Arts and Office Supplies, 2024.
- T3. R. S. Khandpur, *Printed Circuit Boards: Design, Fabrication, Assembly and Testing*, 1st Ed., McGraw Hill, 2006.

Reference Books:

- R1. H. Joshi, *Residential, Commercial and Industrial Electrical Systems: Protection, Testing and Commissioning, Vol-3*, McGraw-Hill Education, 2008.
- R2. S. Monk, *Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards*, 1st Ed.. McGraw-Hill, 2014.
- R3. J. Varteresian, *Fabricating Printed Circuit Boards*, 1st Ed., Newnes, 2002.
- R4. A. Kemp, *The Makerspace Workbench: Tools, Technologies and Techniques for Making*, O'Reilly Media, 2013.

Online Resources:

1. https://bharatskills.gov.in/pdf/E_Books/Electrcian_SEM1_TP.pdf
2. https://bharatskills.gov.in/pdf/E_Books/Electrician_SEM2_TP.pdf
3. <https://bharatskills.gov.in/Home/StudyMaterial?var=WSdYV6aWadK8jUuNKxoBWg==>
4. https://onlinecourses.swayam2.ac.in/nou20_cs08/preview
5. https://www.lanl.gov/safety/electrical/docs/arc_flash_safety.pdf
6. https://www.ee.iitb.ac.in/~pcpandey/courses/ee616/pcblayout_c_aug07.pdf
7. <https://nptel.ac.in/courses/108/108/108108157/>
8. <https://nptel.ac.in/courses/122/106/122106025/>
9. <https://nptel.ac.in/courses/108/101/108101091/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Utilize appropriate tools for various workbench jobs within their limits, fits, and tolerance.
CO2	Disassemble and reassemble a computer System and replace its components.
CO3	Identify and utilize common electrical components with proper safety mechanisms.
CO4	Design house wiring and measure energy consumption using digital meters.
CO5	Identify and use basic electronic components, PCB assembling, measuring and testing tools.
CO6	Design and fabricate PCBs for different applications and assemble electronic components.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

Cont'd...

PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1			1	1	1	1	1	
CO2	1	1			3	1		2		1	2			
CO3	1	1	2	1	2	1	1	1	1	1	1			
CO4	2	2	3	1	1	1	1	2	2	2	1			
CO5	2	2	1		1			1		1	1	2		
CO6	1	2	3		3	1		2		1	1	1	2	

Category	Code	Engineering Graphics	L-T-P	Credits	Marks
UCR	ME1003		0-0-2	1	100

Objectives	The objective of this laboratory course is to learn engineering drawing standards, conventions & practices, develop drawing skills in 2D & 3D, and use computer-aided drawing software to create meaningful engineering drawings.
Pre-Requisites	Basic understanding of 2D and 3D geometry is required.
Teaching Scheme	Regular laboratory classes using drawing tools under supervision of the teacher. Demonstration will be given for each drawing assignment using both conventional and CAD software tools as per requirement.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Principles of Engineering Graphics and their significance (lettering & scale) and usage of Drawing instruments.
2	Orthographic projections, Principles of orthographic projections, Projections of points and lines.
3	Projections of different planes.
4	Projection of solids, 3D to 2D views, Machine component diagrams, Sectional views of simple and compound solid models.
5	Principles of Isometric projection, Isometric Scale & Views, Isometric views of planes and solids.
6	Development of surface and intersection of surfaces.
7	Engineering curves and conics.
8	Introduction to AutoCAD, its GUI, toolbars and commands, shortcut keys.
9	2D AutoCAD drawing using basic tools, Draw & Modify menu commands.
10	Orthographic projection drawings of various models using AutoCAD.
11	Isometric drawing & 3D modeling in AutoCAD, different solid editing options.
12	3D modeling of simple & compound models, and machine components using AutoCAD.

Text Books:

- T1. N. D. Bhat, M. Panchal, *Engineering Drawing*, Charotar Publishing House, 2008.
- T2. M. B. Shah, B. C. Rana, *Engineering Drawing and Computer Graphics*, Pearson Education, 2008.
- T3. S. Tickoo, *AutoCAD 2020 Work Book*, BPB Publications, 2020.

Reference Books:

- R1. R. K. Dhawan, *A Text Book of Engineering Drawing*, S. Chand Publications, 2007.
- R2. K. Venugopal, *Engineering Drawing and Graphics*, 3rd Ed., New Age International, 1998.

Online Resources:

1. <http://nptel.ac.in/courses/112103019>
2. <https://nptel.ac.in/courses/112/102/112102101/>
3. <https://freevideolectures.com/course/3420/engineering-drawing>

4. <https://www.autodesk.in/campaigns/autocad-tutorials>
5. <https://help.autodesk.com/view/ACD/2020/ENU/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and apply the concepts of lettering and dimensioning for drafting of machine drawings and building drawings and different conics and curves.
CO2	Recognize and be familiar with the orthographic projections of points, lines, planes and solids.
CO3	Visualize the real product from isometric projections, solid and sectional views.
CO4	Draw 2D engineering drawings using various draw and modify tools of AutoCAD.
CO5	Design various machine components and building structure by using AutoCAD.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	1	2				2	1	1	1		1
CO2	2	2	2	1	2				2	1	1	1		1
CO3	2	2	3	1	2				2	1	1	1		1
CO4	2	2	3	1	2				2	1	1	2		1
CO5	2	2	3	1	2				2	1	1	2		2

Category	Code	Data Structures & Algorithms Lab	L-T-P	Credits	Marks
UCR	CS1004		0-0-4	2	100

Objectives	Develop skills to design and analyze simple linear and non linear data structures, strengthening the ability of students to identify and apply the suitable data structure for the given real world problem.
Pre-Requisites	Knowledge of programming in C, specifically on structures, pointers, functions, recursion etc., are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise of programming assignments.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Operations on arrays – insert, delete, merge.
2	Selection Sort, Bubble sort.
3	Linear Search and Binary search.
4	Representation of sparse matrix.
5, 6	Addition and transpose of sparse matrix.
7	Implementation of stack using array.
8	Conversion of infix to postfix expression.
9	Evaluation of postfix expression.
10	Operations of queue using array.
11	Operations of circular queue.
12, 13	Single linked list operations.
14, 15	Double linked list operations.
16	Circular linked list operations.
17	Stack using linked list.
18	Queue using linked list.
19	Polynomial addition using linked-list.
20, 21	Binary Search Tree operations.
22, 23	Graph traversal (BFS, DFS).
24	Warshall's shortest path algorithm.
25, 26	Implementation Insertion Sort and Quick Sort.
27, 28	Implementation of Merge Sort and Heap Sort.

Text Books:

- T1. E. Horowitz, S. Sahni, S. Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Ed., Universities Press, 2008.
- T2. M. A. Weiss, *Data Structures and Algorithm Analysis in C*, 2nd Ed., Pearson Education, 2002.

Reference Books:

- R1. A. K. Rath and A. K. Jagadev, *Data Structures Using C*, 2nd Ed., Scitech Publication, 2011.

R2. Y. Kanetkar, *Data Structures Through C*, 2nd Ed., BPB Publication, 2003.

Online Resources:

1. <https://nptel.ac.in/courses/106/106/106106127/>: By Prof. H. A. Murthy, Prof. S. Balachandran, and Dr. N. S. Narayanaswamy, IIT Madras
2. <https://nptel.ac.in/courses/106/102/106102064/>: By Prof. N. Garg, IIT Delhi
3. <https://nptel.ac.in/courses/106/106/106106130/>: By Dr. N. S. Narayanaswamy, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Implement various operations on array and sparse matrix.
CO2	Design functions to implement basic operations on stack & queue and apply them to solve real world problems.
CO3	Implement single, double & circular linked list and apply them in various real life applications.
CO4	Construct binary search tree and perform traversal, insertion, deletion, and search operations on it.
CO5	Perform BFS and DFS traversal operations in a graph and implement various sorting and searching algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	2	1	1					1	2	2	1
CO2	2	2	3	2	1	1					1	2	1	1
CO3	2	2	3	2	1	1					1	2	1	1
CO4	2	2	2	3	1	1					1	2	2	1
CO5	2	2	3	3	1	1					1	2	3	1

Category	Code	Corporate Communication Skills	L-T-P	Credits	Marks
SEC	HS1002		0-0-4	2	100

Objectives	The objective of this laboratory course is to give students adequate practice in a simulated professional environment with focus on communication skills with professionalism in a typical corporate set up.
Pre-Requisites	Knowledge of communicative and technical english is required.
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication and soft skills through pair and/or team activities with regular assessments, presentations, discussions, role-playing, audio-visual supplements, writing activities, business writing practices and vocabulary enhancement.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Aspects of Inter-cultural communication and cultural conditioning.
2	Barriers to cross-cultural communication.
3	Personality test and personality development.
4	Team work and its stages.
5	Team work and leadership: Simulation.
6	Negotiation skills: Role-play.
7	Persuasive presentation I.
8	Persuasive presentation II.
9	Writing a blog.
10	Vlog making and presentation I.
11	Vlog making and presentation II.
12	Emotional Intelligence: its importance in the workplace.
13	Time management.
14	Social media etiquette.
15	Business etiquette.
16	Assertiveness at work: Role-play.
17	Power point presentation I.
18	Power point presentation II.
19	Power point presentation III.
20	Power point presentation IV.
21	Mind mapping.
22	Creative and critical thinking for problem solving.
23	Six thinking hats: Problem solving and decision making in meetings.
24	Verbal Ability I: synonyms and antonyms.
25	Verbal Ability II: One word substitution.

Cont'd...

Experiment-#	Assignment/Experiment
26	Verbal Ability III: Error correction.
27	Verbal Ability IV: Odd one out.
28	Verbal Ability V: Analogy.

Text Books:

- T1. S. B. Bachu, *Corporate Communication Skills for Professionals*, 1st Ed., White Falcon Publishing, 2021.
- T2. M. A. Rizvi, *Effective Technical Communication*, 2nd Ed., Tata McGraw-Hill, 2017.
- T3. M. Raman and S. Sharma, *Technical Communication: Principles and Practice*, 3rd Ed., Oxford University Press, 2015.

Reference Books:

- R1. P. A. Argenti and J. Forman, *The Power of Corporate Communication: Crafting the Voice and Image of Your Business*, 1st Ed., Tata McGraw-Hill, 2003.
- R2. J. Seely, *The Oxford Guide to Writing and Speaking*, 3rd Ed., Oxford University Press, 2013.
- R3. B. K. Mitra, *Effective Technical Communication - A Guide for Scientists and Engineers*, 1st Ed., Oxford University Press, 2006.

Online Resources:

1. <https://archive.nptel.ac.in/courses/109/105/109105144/>: by Prof. S. Singh, IIT Kharagpur
2. <https://archive.nptel.ac.in/courses/109/106/109106129/>: by Dr. Ay. I. Viswamohan, IIT Madras
3. <https://archive.nptel.ac.in/courses/109/104/109104030/>: by Dr. T. Ravichandran, IIT Kanpur
4. <https://www.ef.com/wwen/english-resources/>
5. https://owl.purdue.edu/owl/purdue_owl.html
6. <https://www.usingenglish.com/>
7. <http://www.english-test.net>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand aspects of communication at the workplace and check the barriers.
CO2	Hone persuasive communication skills.
CO3	Enhance interpersonal communication at the corporate workplace.
CO4	Make impactful group/solo presentations and communicate with clarity.
CO5	Enhance verbal ability for better communication.

Program Outcomes Relevant to the Course:

PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.

Cont'd...

PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						1	3	3	3	3	3	2	2	2
CO2						1	3	3	3	3	3	2	2	2
CO3						2	3	3	3	3	3	2	2	3
CO4						1	3	3	3	3	3	2	2	3
CO5						2	3	3	3	3	3	2	2	3

Category	Code	Vector Calculus & Fourier Analysis	L-T-P	Credits	Marks
PCR	MT2003		3-0-0	3	100

Objectives	The objective of this course is to provide the knowledge of vector calculus, partial differential equations & Fourier Transforms which are essential for study of various electrical systems.
Pre-Requisites	Knowledge of calculus of single variable, coordinate geometry of two and three dimensions and ordinary differential equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Periodic function and Fourier series, Euler formula, Even and odd functions, Half range expansions.	7 Hours
Module-2	Fourier integrals, Fourier cosine transform, Fourier sine transform, Fourier transform.	7 Hours
Module-3	Vector line integrals, Line integrals independent of path, Double integrals, Green's theorem in plane surfaces, Surface integrals, Triple integrals, Gauss divergence theorem, Stoke's theorem.	10 Hours
Module-4	Partial Derivatives, Chain Rule, Maxima & Minima in several variables; Vector and scalar functions and fields, Derivatives, Directional derivative & gradient of a scalar field, Divergence & Curl of a vector field.	8 Hours
Module-5	Basic Concepts of PDEs, One Dimensional Wave Equation and its solutions, One Dimensional Heat Equation and its solutions, Two dimensional heat equation, Laplace Equation, Solution of Laplace equation in cylindrical and spherical coordinates.	10 Hours
Total		42 Hours

Text Books:

T1. E. Kreyszig, *Advanced Engineering Mathematics*, 8th Ed., Wiley India, 2015.

Reference Books:

R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Ed., Oxford University Press, 2015.
 R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Ed., McGraw-Hill, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/122104017>: by Prof. S. K. Ray, IIT Kanpur
2. <https://nptel.ac.in/courses/111107063>: by Dr. S. Gakkhar, IIT Roorkee
3. <https://nptel.ac.in/courses/111105093>: by Prof S. De, IIT Kharagpur
4. <https://nptel.ac.in/courses/111107111>: by Prof. Agrawal and Pandey, IIT Roorkee
5. <https://nptel.ac.in/courses/111104519>: by Prof. Prof. P. Mohanty, IIT Kanpur

P.T.O

Course Outcomes: At the end of this course, the students will be able to:

CO1	Determine the Fourier series of functions.
CO2	Obtain the Fourier integral and Fourier transform of functions.
CO3	Explain the concepts vector integral calculus and their applications.
CO4	Describe the concepts vector differential calculus and their applications.
CO5	Solve partial differential equations and interpret the solution

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2						1	2	1	1
CO2	3	3	2	2	3						2	3	1	1
CO3	3	3	2	2	3						1	3	1	1
CO4	3	3	2	3	3						2	2	1	1
CO5	2	2	2	3	3						2	3	1	1

Category	Code	OOP Using Java	L-T-P	Credits	Marks
UCR	CS2001		3-0-0	3	100

Objectives	The objective of this course is to introduce the key concepts of object-oriented programming (OOP) using Java as the programming language.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with a programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Object oriented concepts: Object oriented systems development life cycle; Java Overview: Java Virtual Machine, Java buzzwords, Data types, Operators, Control statements, Class fundamentals, Objects, Methods, Constructors, Overloading, Access modifiers.	8 Hours
Module-2	Inheritance: Basics of Inheritance, Using super & final keyword, Method overriding, Abstract classes, Defining & importing packages, Access protection, Interfaces.	8 Hours
Module-3	Exception handling: Exception fundamentals, Types, Understanding different keywords (try, catch, finally, throw, throws), User defined exception handling; Threads: Thread model, Use of Thread class and Runnable interface, Thread synchronization, Multithreading, Inter-thread communication.	9 Hours
Module-4	Input/Output: Files, Stream classes, Reading console input; String manipulation: Basics of String handling, String class, StringBuilder, StringBuffer, StringTokenizer; Collection overview, Collection interfaces, Collection classes – ArrayList, LinkedList, Set, Tree; Accessing a collection using iterator & for-each statement.	8 Hours
Module-5	Basic GUI Programming: Working with windows, Frames, Graphics, Color and font; Swing fundamentals; Event handling: Delegation event model, Event classes, Sources, Listeners; Introduction to JDBC: Architecture of JDBC, JDBC Drivers, Interfaces of JDBC API, Create a simple JDBC application.	9 Hours
Total		42 Hours

Text Books:

T1. J. Keogh, *J2EE: The Complete Reference*, 11th Ed., McGraw Hill, 2017.
 T2. Y. D. Liang, *Introduction to Java Programming*, 9th Ed., Pearson Education, 2012.

Reference Books:

R1. B. Bates, K. Sierra, *Head First Java*, 2nd Ed., O'Reilly Media, 2005.
 R2. E. Balaguruswamy, *Programming with Java - A Primer*, 4th Ed., McGraw-Hill, 2009.
 R3. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd Ed., Pearson Education, 2009.
 R4. I. Horton, *Beginning Java*, 7th Ed., Wrox Publications, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/106105191/>: by D. Samanta, IIT Kharagpur
2. <https://docs.oracle.com/javase/tutorial/>
3. <http://www.javatpoint.com/java-tutorial>
4. <http://www.w3schools.in/java/>
5. <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/>

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply object oriented principles to develop Java programs for real life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robust & concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, string classes, and collection framework.
CO5	Design GUI applications using Swing and Database connectivity.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2		2					2	3		3
CO2	3	3	3	2		3					2	3		3
CO3	3	3	3	2		3					2	3		3
CO4	3	2	2	2		2					2	3		3
CO5	3	3	2	2		3					2	3		3

Category	Code	Management & Economics for Engineers	L-T-P	Credits	Marks
UCR	MG2001		3-0-0	3	100

Objectives	The objective of this course is to familiarize the students with elementary principles of management and economics, provide the tools needed for analyzing time value of money in engineering decision making, profit/revenue data, and make economic analysis for projects and alternatives.
Pre-Requisites	Basic knowledge on interest formula and derivatives is required.
Teaching Scheme	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with focus on real-world problem solving.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Engineering Economics, It's meaning & importance, Basic problems of an economy, The concept of time value of money, Concept of Interest, Time value of equivalence, Compound interest factors, Cash flow diagrams, Calculation of time value of equivalence, Present worth comparison, Future worth comparison, Pay-back period comparison.	9 Hours
Module-2	Equivalent annual worth comparison method, Rate of return, Internal rate of return, Incremental IRR analysis, Depreciation Analysis - Methods of depreciation, Straight line method, Declining balance method, SOYD Method & MACRS method; Analysis of public project, Cost-benefit analysis.	9 Hours
Module-3	Theory of demand, Elasticity of demand, Price elasticity of demand, Measurement of elasticity of demand, Income elasticity & cross elasticity of demand, Law of supply, Elasticity of supply, Determination of price, Cost & Revenue concepts, Break-even analysis.	8 Hours
Module-4	Concept of Management, Management - Art or Science, Managerial skills, Levels and types of management, Managerial environment, Functions of Management: Planning and its features & process, Types of plan, Effective planning, Organizing and its process, Formal & informal organization, Directing and its elements, Staffing and functions, Controlling & its features and process, tools of controlling.	8 Hours
Module-5	Marketing Function: Modern concept of marketing, Marketing vs. Selling, Marketing Mix: Product and types of product, Product life cycle, Price, Factors affecting pricing, Pricing strategies, Distribution channel - Role & functions, Selection of a distribution channel, Promotion & types of promotion, Promotional strategies; HRM Function: Human resource management, Manpower planning, Recruitment, Selection, Induction, Training & development, Placement, Wage & Salary administration.	8 Hours
Total		42 Hours

Text Books:

- T1. J. L. Riggs, D. D. Bedworth, and S. U. Randhawa, *Engineering Economics*, 4th Ed., McGraw-Hill, 2004.
- T2. H. L. Ahuja, *Principles of Micro Economics*, 16th Ed., S. Chand & Co, 2008.
- T3. S. A. Sherlekar, *Modern Business Organisation and Management*, Himalaya Publishing House, 2016.

Reference Books:

- R1. C. S. Park, *Contemporary Engineering Economics*, 6th Ed., Pearson Education, 2015.
- R2. A. Koutsoyiannis, *Modern Micro Economics*, 2nd Ed., Palgrave Macmillan UK, 2003.
- R3. P. C. Tulsian and V. Pandey, *Business Organization & Management*, 1st Ed., Pearson Education, 2002.
- R4. K. Keller and K. Jha, *Marketing Management*, 13th Ed., Pearson Education, 2018.

Online Resources:

1. <https://nptel.ac.in/courses/112107209>: by Dr. P. K. Jha, IIT Roorkee
2. <https://nptel.ac.in/courses/110107150>: by Prof. U. Lenka, IIT Roorkee
3. <https://nptel.ac.in/courses/110104068>: by Prof. J. Chatterjee and Dr. S. S. Mishra, IIT Kanpur
4. <https://nptel.ac.in/courses/122105020>: by Prof. K. Chakravarti, IIT Kharagpur
5. <https://nptel.ac.in/courses/110105069>: by Prof. A. Malik, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts of engineering economics and its applications.
CO2	Solve problems related to engineering economics and analyze decision alternatives.
CO3	Evaluate how changes in demand and supply affect market and production.
CO4	Apply the concepts of management to become a good manager and a team player.
CO5	Adopt appropriate marketing policies and manage human resources in an efficient manner.

Program Outcomes Relevant to the Course:

PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						2	1	1		3	2		1	2
CO2						3	1	1		3	2		1	3
CO3						2	1	1		3	2		1	2
CO4						2	3	3		3	2		1	3
CO5						2	3	3		3	2		2	2

Category	Code	Biology for Engineers	L-T-P	Credits	Marks
UCR	BL2001		3-0-0	3	100

Objectives	The objective of this course is to integrate the knowledge of engineering and modern biology to solve problems encountered in living systems, analyze a problem from engineering and biological perspective, anticipate specific issues in working with living systems, and evaluate possible solutions.
Pre-Requisites	Basic knowledge of biology, chemistry, and physics is adequate.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on applications of biology in engineering.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Bioinspired Materials and Mechanisms: Photosynthesis (photovoltaic cells, bionic leaf), Bird flying (GPS and aircrafts), Lotus leaf effect (Super hydrophobic and self-cleaning surfaces), Plant burrs (Velcro), Shark skin (Friction reducing swimsuits), Kingfisher beak (Bullet train), Human Blood substitutes - Haemoglobin-based oxygen carriers (HBOCs).	10 Hours
Module-2	Biomolecules-based Technology: Carbohydrates (transformation of carbohydrates into renewable energy, biodegradable plastics and organic chemicals), Nucleic acids (biochips and biosensors), Forensics - Automated DNA sequencing, Proteins (cellular agriculture to produce tissue mimicking meat), Lipids (biodiesel), Enzymes (AI mediated enzyme engineering).	9 Hours
Module-3	Human Organ Systems and Bio Designs (I): Eye as a camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye), Brain as a CPU system (architecture, signal transmission, brain-machine interactions), Heart as a pump system (reasons for blockages of blood vessels, Nanobots to remove artery blockage, vein detection patches).	8 Hours
Module-4	Human Organ Systems and Bio Designs (II): Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology - COPD, Ventilators, Heart-lung machine); Kidney as a filtration system (architecture, mechanism of filtration, CKD, dialysis systems), Muscular and skeletal systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis).	8 Hours
Module-5	Genetics and Bioinformatics: Mendelian and non-mendelian genetics, Mutation, Central dogma of molecular biology, Genetic disorders, Genetic code; Nucleotide and protein databases - EMBL, DDBJ, GenBank, UniProt, PDB, Tools used in bioinformatics - BLAST, FASTA, Machine learning applications in bioinformatics: Gene sequence analysis, Protein structure analysis, Establish phylogenetic relationship.	7 Hours
Total		42 Hours

Text Books:

T1. Y. Bar-Cohen, **Biomimetics: Nature-Based Innovation**, 1st Ed., CRC Press, 2012.
 T2. S. Fox and K. Rompolski, **Human Physiology**, 16th Ed., McGraw-Hill eBook, 2022.

T3. L. Cromwell, F. J. Weibel, and E. A. Pfeiffer, *Biomedical Instrumentation & Measurements*, 2nd Ed., Pearson Education, 2015.

T4. Any other book(s) and/or study material(s) as advised by the teacher.

Reference Books:

R1. S. Singh and T. Allen, *Biology for Engineers*, 1st Ed., Vayu Education, 2020.

R2. V. Sharma, A. Munjal, and A. Shanker, *A Textbook of Bioinformatics*, 2nd Ed., Rastogi Publications, 2018.

Online Resources:

- <https://nptel.ac.in/courses/102106065>: by Prof. M. M. Gromiha, IIT Madras
- <https://nptel.ac.in/courses/121106008>: Dr. M. Dixit and Prof. G. K. Suraishkumar, IIT Madras
- <https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009>

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Correlate the concepts of biology in engineering for innovative materials and products.
CO2	Leverage biomolecules in food, pharma, energy, and other engineering domains.
CO3	Critically analyze organ systems and improve design of bio-medical equipment.
CO4	Design solutions for health challenges like prosthetics, organ regeneration, and medical devices.
CO5	Determine the connection between genetic alterations, diseases, and inheritance pattern.

Program Outcomes Relevant to the Course:

PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1		2	3		2	3					2	1	2	2
CO2		1	2		2	3					2	1	1	2
CO3		1	2		2	2					2	1	2	2
CO4		1	2		2	2					2	1	2	2
CO5		3	1		3	3					2	3	2	2

Category	Code	Analog Electronics	L-T-P	Credits	Marks
PCR	EC2016		3-0-0	3	100

Objectives	The objective of this course is to be familiar with Transistor (BJT, JFET and MOSFET) amplifiers, differential amplifiers and their implementations along with studying their characteristics & applications.
Pre-Requisites	Basic knowledge of semiconductor diodes and transistors is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Bipolar Junction Transistor (BJT) and its AC Analysis: Introduction to BJT DC Biasing Circuits, Design of different Biasing Circuits, Bias Stability, Introduction to BJT small signal model, r_e and h -models of different configurations (CB, CE, and CC), r_e and h -models of different biasing circuits, Effect of R_S and R_L , Standard ICs.	9 Hours
Module-2	Field Effect Transistor (FET) and its AC Analysis: JFET DC Biasing Circuits (Fixed, Self and Voltage divider), MOSFET DC Biasing Circuits, Introduction to JFET and MOSFET small signal model, Small signal model of different configurations (CG, CD, and CS), Small signal model of different biasing circuits of MOSFET, Effect of R_S and R_L , Standard ICs.	9 Hours
Module-3	Compound Configurations: Darlington pair, Current Mirror, Cascade configuration, CMOS circuit realization. Frequency Response Analysis: Frequency Response of BJT, Miller's Effect, Multistage Frequency Effects, Gain-Bandwidth Relation.	8 Hours
Module-4	Operational Amplifiers: Introduction to OP-AMP, Applications of OP-AMP: Summing, Buffer, Log Differentiator, Schmitt Trigger and Integrator, Introduction to Differential Amplifier, DC and AC Analysis of Differential Amplifier, Instrumentation Amplifier, Active Filters, Standard ICs.	8 Hours
Module-5	Feedback Amplifiers: Introduction to Feedback Amplifiers, Feedback Topologies, Derivation of different parameters (Z_i , Z_o , A_v , A_i), Standard ICs. Oscillators: Crystal Oscillators, Standard ICs. Power Amplifiers: Introduction to Power Amplifiers, Classification of Power Amplifiers: Class A, Class B, Class C, Push-Pull Amplifiers.	8 Hours
Total		42 Hours

Text Books:

- T1. A. S. Sedra and K. C. Smith, *Microelectronic Circuits: Theory and Applications (International Version)*, 7th Ed., Oxford University Press, 2017.
- T2. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 11th Ed., Pearson Education, 2013.
- T3. J. Millman and A. Grabel, *Microelectronics*, 2nd Ed., McGraw-Hill Education, 2017.

Reference Books:

- R1. J. Millman and C. C. Halkias, *Integrated Electronics: Analog and Digital Circuits and Systems*, 2nd Ed., TMH Publications, 2017.

R2. A. Malvino and D. J. Bates, *Electronic Principles*, 7th Ed., McGraw-Hill, 2017.
 R3. P. Horowitz and W. Hill, *The Art of Electronics*, 2nd Ed., Cambridge University Press, 1989.
 R4. P. R. Gray, P. J. Hurst, R. G. Meyer, and S. H. Lewis, *Analysis and Design of Analog Integrated Circuits*, 5th Ed., John Wiley & Sons, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/117101106>: by Prof A. N. Chandorkar, IIT Bombay
2. <https://nptel.ac.in/courses/108102095>: by Prof S. C. Dutta Roy, IIT Delhi
3. <http://www.allaboutcircuits.com>
4. <https://www.electronics-tutorials.ws/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain biasing methods and small signal models of BJT and their performance estimation.
CO2	Analyze the behavior, characteristics and biasing configurations of JFET and MOSFET.
CO3	Analyze the structural configuration of multi-stage amplifier and its frequency response.
CO4	Study the construction and characteristics of an Op-Amp and design circuits using Op-Amp.
CO5	Design oscillators & negative feedback amplifiers and validate their experimental results.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	3	3						1	3	1	1
CO2	3	3	3	3	2						2	3	2	2
CO3	3	3	2	3	2						2	3	2	3
CO4	3	3	3	2	3						1	3	1	2
CO5	3	3	3	3	3						1	3	3	3

Category	Code	Circuits & Signals	L-T-P	Credits	Marks
PCR	EE2001		3-1-0	4	100

Objectives	The objective of this course is to study circuit configuration & analysis with given specifications or network functions, test and improve the design as required. It also includes study of various signals & systems in time & frequency domains, and investigate the systems' stability & causality.
Pre-Requisites	Knowledge of circuit analysis, Laplace transform, Fourier transform. differential equations, complex numbers, and elementary calculus are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Network graph and incidence matrix; Network Theorems: Thevenin's theorem, Norton's theorem, Superposition theorem, Reciprocity theorem, Maximum power transfer theorem, Millman's theorem; Coupled Circuits: Introduction, Dot convention, Coefficient of coupling, Electrical equivalent of magnetically coupled coils, Series & parallel connection of coupled coils; Resonance: Introduction, Series Resonance, Parallel Resonance, Quality factor, Bandwidth & Selectivity for series & parallel resonant circuits.	12 Hours
Module-2	Signals & Systems: Introduction, Classification of Signals, Operation on Continuous-time signals, Classification of Systems, LTI System and its response; Laplace Transform: Definition, Properties, Initial and final value theorem, Inverse Laplace Transform; Application of Laplace Transform to Transient Analysis: Fundamentals of Switching behavior, Response of RL, RC & RLC network with step input, Transient Numericals.	12 Hours
Module-3	Two-Port Network Parameters: Introduction to Z, Y, ABCD, and h-parameters, Reciprocity and Symmetry conditions, Interrelation between parameters, Interconnection of networks, parameter calculation; Network Functions: Transfer functions and driving point functions, Concept of poles and zeros, Significance of Poles and Zeros, Hurwitz polynomial and its properties, Positive real functions and their properties.	12 Hours
Module-4	Fourier Series: Introduction, Fourier Analysis, Symmetry in Fourier Series, Frequency Spectrum; Fourier Transform: Definition, properties, Circuit analysis with Fourier Series and Fourier Transform, Network Filters: Introduction, Classification, Ideal & Practical Filters, Frequency response curve, Design of Filters.	10 Hours
Module-5	Convolution & Correlation of continuous-time and discrete-time signals, Discrete-Time Fourier Transform: Z-Transform and its properties, Inverse Z-transform, Region of Convergence (ROC) and its properties, Z-transform of Standard functions and ROC.	10 Hours
Total		56 Hours

P.T.O

Text Books:

T1. M. E. Van Valkenburg, *Network Analysis*, 3rd Ed., Pearson Education, 2015.
 T2. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 5th Ed., Tata McGraw-Hill, 2013.
 T3. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, *Signals and Systems*, 2nd Ed., Prentice Hall India, 1992.

Reference Books:

R1. A. Chakrabarti, *Circuit Theory: Analysis and Synthesis*, 7th Ed., Dhanpat Rai & Co., 2013.
 R2. S. Ghosh, *Network Theory: Analysis And Synthesis*, 1st Ed., Prentice Hall of India, 2009.
 R3. P. K. Satpathy, P. Kabisatapathy, S. P. Ghosh, and A. K. Chakraborty, *Network Theory*, 1st Ed., Tata McGraw-Hill, 2009.
 R4. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing: Principles, Algorithms and Applications*, 4th Ed., Prentice Hall India, 2007.
 R5. B. P. Lathi, *Principles of Signal Processing and Linear Systems*, 2nd Ed., Oxford Univ. Press, 2009.
 R6. A. N. Kani, *Signals and Systems*, 2nd Ed., McGraw-Hill Education, 2010.

Online Resources:

- <https://nptel.ac.in/courses/108102042/>: by Prof. S. C. Dutta Roy, IIT Delhi
- <https://nptel.ac.in/courses/108106075/>: by Prof. V. G. K. Murti, IIT Madras
- <https://nptel.ac.in/courses/117104074/>: by Prof. K. S. Venkatesh, IIT Kanpur
- <https://nptel.ac.in/courses/108105065/>: by Prof. T. K. Basu, IIT Kharagpur
- <https://nptel.ac.in/courses/108104100/>: by Prof. A. K. Jagannatham, IIT Kanpur
- <https://nptel.ac.in/courses/117101055/>: by Prof. V. M. Gadre, IIT Bombay
- <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the concepts of network theorems, coupled circuits, and resonant circuits and apply them to solve complex network problems.
CO2	Analyze and classify signals and systems and solve the transient analysis of RLC circuits using Laplace transform.
CO3	Evaluate two-port network parameters and network functions, understanding their applications in electrical network interconnections and stability analysis.
CO4	Analyze sinusoidal & non-sinusoidal signals using the Fourier series & transform and apply them to electric circuit analysis.
CO5	Perform convolution, correlation, and Z-transform analysis of continuous and discrete-time signals to address real-world engineering challenges.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).

Cont'd...

PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3			2						2	2	2
CO2	2	2		3	2							2	3	3
CO3	2	1	2	2								1	2	3
CO4	2	2	3		3							2	3	2
CO5	2	2			3					2		2	2	1

Category	Code	Electromagnetic Theory	L-T-P	Credits	Marks
PCR	EE2002		3-0-0	3	100

Objectives	The objective of this course is to study, analyze, synthesize & interpret the application of electric & magnetic fields as functions of time & space using different coordinate systems, and propagation of electromagnetic waves.
Pre-Requisites	Knowledge of physics, mathematics, and fundamentals of engineering sciences is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Vector Analysis: Scalars, Vectors, Unit vector, Scalar & Vector fields, Coordinate systems and transformation, Cartesian co-ordinates, Cylindrical co-ordinates, Spherical co-ordinates and Application; Vector Calculus: Line, Surface and volume integrals, Del operator, Gradient of a scalar, Divergence of a vector and Divergence theorem, Curl of a vector and Stoke's theorem, Laplacian and Applications.	8 Hours
Module-2	Electrostatic Fields: Coulomb's Law, Electric field intensity, Electric fields due to point, line, surface and volume charge, Electric flux density, Gauss's Law - Maxwell's equation, Application of Gauss's Law, Electric potential, Potential due to a line, Surface and volume charge; Conservative field, Relationship between E & V - Maxwell's equations, An Electric Dipole, Dipole moment, Expression of E due to an electric Dipole, Energy density in the Electrostatic fields; Conductors: Current and Current density, Continuity equation, Point form of Ohm's law, Resistance of a conductor, Relaxation time; Dielectrics: Polarization, Dielectric strength, Capacitance, Boundary conditions, Poisson's and Laplace's equation, Uniqueness Theorem, General procedures for solving Laplace's equation.	12 Hours
Module-3	Magnetostatic Fields: Magnetic field Intensity, Biot-Savart's law & its application, Ampere's Circuital Law & its application, Magnetic scalar & vector potentials, Magnetic Boundary conditions, Application; Force in Magnetic Fields: Force on a moving Point charge, Force between two straight, Long and parallel conductors carrying currents.	8 Hours
Module-4	Faraday's Law and Lenz's Law: Statically induced EMF, Dynamically induced EMF, Displacement current density and displacement current, Physical significance of displacement current; Maxwell's Equations for Static fields, Maxwell's equations for Time varying fields: Maxwell's Equation for Harmonic varying fields; Maxwell's Equation for Good conductors, Maxwell's Equation for Free space; Retarded Potential, Average power density, Poynting vector and Poynting Theorem(Integral & Point forms), Applications.	8 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Wave Propagation: Electromagnetic wave, Electromagnetic wave equation in phasor form, Intrinsic impedance, The loss tangent, Uniform plane waves, Uniform plane wave in lossy dielectric, Perfect dielectric, Free space and in Good conductors, Skin depth, Transmission lines, Transmission line equations, Characteristic impedance, Wave form distortion, Distortionless line.	6 Hours
Total		42 Hours

Text Books:

T1. S. C. Mahapatra and S. Mahapatra, *Principles of Electromagnetics*, 2nd Ed., McGraw Hill Education, 2015.

T2. M. N. O. Sadiku and S. V. Kulkarni, *Principles of Electromagnetic*, 6th Ed., Oxford University Press, 2009.

Reference Books:

R1. E. C. Jordan and K. G. Balmin, *Electromagnetic Waves and Radiating Systems*, 2nd Ed., Pearson Education, 2009.

R2. B. N. Basu, *Engineering Electromagnetic Essential*, 1st Ed., Orient Blackswan, 2015.

Online Resources:

- <https://nptel.ac.in/courses/108104087>: by Prof. P. Kumar, IIT Kanpur
- <https://nptel.ac.in/courses/108102119>: by Prof. S. Aditya, IIT Delhi
- <https://nptel.ac.in/courses/115104088>: by Prof. M. K. Harbola, IIT Kanpur
- <https://nptel.ac.in/courses/108106073>: by Prof. H. Ramachandran, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain various co-ordinate systems and solve problems involving vector calculus.
CO2	Describe electrostatic fields, their characteristics and associated parameters.
CO3	Visualize magneto-static fields, their characteristics and associated parameters.
CO4	Analyze and apply Maxwell's equations to various electromagnetic fields.
CO5	Interpret the propagation of EM waves through different mediums.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).

Cont'd...

PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	2	1	2						2	2	2
CO2	3	3	2	3	3	2					2	3	3	2
CO3	2	2	1	2	3	2					1	2	3	2
CO4	3	2	2	2	3	1					2	3	2	1
CO5	3	3	3	1	2	1					2	2	2	1

Category	Code	OOP Using Java Lab	L-T-P	Credits	Marks
UCR	CS2004		0-0-2	1	100

Objectives	The objective of the course is to apply object oriented programming principles and implement object oriented programming using JAVA language.
Pre-Requisites	Basic analytical and logical understanding including basic knowledge and usage of computers is required for this course. Prior experience with any other object oriented programming language will be beneficial.
Teaching Scheme	Regular laboratory classes with the use of ICT whenever required, demonstration through practical simulation of code using IDE.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Understanding Java platform, compilation, and execution of a java program.
2	Overview of Eclipse IDE.
3	Use of class, use of control statements, data types, operators.
4	Implement class, object, constructor, methods, and other OOP features.
5	Inheritance Basics, more uses of constructor, method overriding, use of final.
6	Object class, practical use of abstract class.
7	Using Interface for achieving multiple inheritance, implementation of package.
8	Exception handling fundamentals, java built-in exceptions, use of Scanner class for console input, use of own Exception subclass.
9	Java thread life cycle model and implementation approach, thread priority, implementation of synchronization.
10	I/O Basics, byte stream and character streams, reading and writing files, text processing using Java pre-defined StringBuilder and StringBuffer classes.
11	Basics of Java collection framework, implementation of collections in Java with different programs.
12	GUI basics and Window fundamentals, working with different Component, Container and Layout Managers.
13	Event handling for interactive GUI application, working with JDBC.
14	Mini Project.

Text Books:

T1. J. Keogh, *J2EE: The Complete Reference*, 11th Ed., McGraw Hill, 2017.
 T2. Y. D. Liang, *Introduction to Java Programming*, 9th Ed., Pearson Education, 2012.

Reference Books:

R1. B. Bates, K. Sierra, *Head First Java*, 2nd Ed., O'Reilly Media, 2005.
 R2. T. Budd, *An Introduction to Object-Oriented Programming*, 3rd Ed., Pearson Education, 2009.
 R3. I. Horton, *Beginning Java*, 7th Ed., Wrox Publications, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/106105191/>: by D. Samanta, IIT Kharagpur
2. <https://docs.oracle.com/javase/tutorial/>
3. <http://www.javatpoint.com/java-tutorial>
4. <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-14/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply object oriented programming to develop Java programs for real-life applications.
CO2	Employ inheritance techniques for developing reusable software.
CO3	Develop robust and concurrent programs using exception handling and multi-threading.
CO4	Design programs using I/O operations, String classes and collection framework.
CO5	Design GUI applications using Swing and database connectivity.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2		3					3	1		2
CO2	3	3	3	2		3					2	2		2
CO3	3	3	3	2		3					2	2		2
CO4	3	3	2	3		3					3	2		2
CO5	3	3	3	3		3					3	2		2

Category	Code	Analog Electronics Lab	L-T-P	Credits	Marks
PCR	EC2017		0-0-2	1	100

Objectives	The objective of the course is to design, implement and test transistor biasing, amplifying action and frequency response. Also study the linear and nonlinear applications of amplifiers.
Pre-Requisites	Knowledge of basic electronics and analytical reasoning is required.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the teacher with focus on implementation using hardware and software tools.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Design and simulate BJT bias circuit and compare the results.
2	Design and simulate JFET/MOSFET bias circuit and compare the results.
3	Design and simulate BJT common-emitter circuit and compare DC and AC performance.
4	Design and simulate JFET/MOSFET common-source circuit and compare DC and AC performance.
5	Determining the frequency response of a common-emitter amplifier: low frequency, high frequency and mid frequency response and compare with simulated results.
6	Differential amplifier circuits: DC bias & AC operation with & without current source.
7	Study of Darlington connection and current mirror circuits.
8	OP-Amp Frequency Response and Compensation.
9	Application of Op-Amp as differentiator, integrator, square wave generator.
10	Obtain the band width of FET/BJT using Square wave testing of an amplifier.
11	RC phase shift oscillator/Wien-Bridge Oscillator using Op-Amp/Crystal Oscillator.
12	Class A and Class B Power Amplifiers.

Text Books:

T1. R. L. Boylestad and L. Nashelsky, *Electronic Devices and Circuit Theory*, 10th Ed., Pearson Education, 2009.

Reference Books:

R1. L. K. Maheshwari and M. M. S. Anand, *Laboratory Experiments and PSPICE Simulations in Analog Electronics*, PHI Learning, 2006.

R2. L. K. Maheshwari and M. M. S. Anand, *Laboratory Manual for Introductory Electronics Experiments*, John Wiley & Sons, 1980.

R3. K. A. Navas, *Electronics Lab Manual, Vol-2*, 6th Ed., PHI Learning, 2018.

Online Resources:

1. <http://www2.ece.ohio-state.edu/ee327/>

P.T.O

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design, assemble and test BJT biasing circuits.
CO2	Analyze the DC and AC performance of BJT and FET.
CO3	Understand the frequency response of single & multi-stage BJT and compare the results.
CO4	Study operational amplifier and its various applications.
CO5	Analyze and design various wave shaping circuits.
CO6	Implement different oscillator circuits and analyze power amplifier characteristics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	3	2						2	3	1	1
CO2	3	3	2	3	2						2	3	1	1
CO3	3	3	2	3	3						1	3	2	2
CO4	3	3	3	3	3						1	3	1	2
CO5	3	2	3	3	3						1	3	3	2

Category	Code	Circuits & Signals Lab	L-T-P	Credits	Marks
PCR	EE2003		0-0-4	2	100

Objectives	The objective of this laboratory course is to provide practical knowledge of network theory and recording the experimental data effectively. It also includes studying various signals & systems in time & frequency domains using software tools.
Pre-Requisites	Knowledge of circuit analysis, Laplace transform, Fourier transform, differential equations, complex numbers and elementary calculus are required.
Teaching Scheme	Regular laboratory experiments to be conducted using hardware and software tools under the supervision of the teacher. Demonstration along with required safety measures will be explained for each experiment.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1, 2	Verification of network Theorems in DC & AC networks.
3, 4	Study of resonance in R-L-C series and parallel circuit excited by single-phase AC circuit.
5, 6	Determination of different parameters of a two-port network.
7, 8	Frequency response of 1st order active filters
9	Determination of self-inductance, mutual inductance, and coupling coefficient of a magnetic coupled circuit.
10	Transient analysis in the DC network for RL, RC, and RLC circuits.
11	Introduction to MATLAB Programming and Simulink.
12, 13	Generation of standard signals (impulse, step, ramp, and sinusoidal signal) in continuous and discrete domains using MATLAB.
14	Operations on signals (shifting, scaling, reversal) both in time and amplitude for continuous and discrete signals using MATLAB.
15	Linear convolution of signals (with and without using the inbuilt conv function in MATLAB).
16	Computation of autocorrelation of a signal, and cross-correlation of two signals using MATLAB.
17	Spectral analysis of a non-sinusoidal waveform.
18, 19	Modeling and analysis of DC and AC transients for R-L, R-C, and R-L-C circuits (with damping conditions) using MATLAB simulations.
20	Evaluate the Z-transform of standard functions using MATLAB.

Text Books:

- T1. M. E. Van Valkenburg, *Network Analysis*, 3rd Ed., Pearson Education, 2015.
- T2. C. K. Alexander and M. N. O. Sadiku, *Fundamentals of Electric Circuits*, 5th Ed., Tata McGraw-Hill, 2013.
- T3. A. Chakrabarti, *Circuit Theory: Analysis and Synthesis*, 7th Ed., Dhanpat Rai & Co., 2013.

Reference Books:

- R1. S. Ghosh, *Network Theory: Analysis And Synthesis*, 1st Ed., Prentice Hall of India, 2009.
- R2. P. K. Satpathy, P. Kabisatapathy, S. P. Ghosh, and A. K. Chakraborty, *Network Theory*, 1st Ed., Tata McGraw-Hill, 2009.
- R3. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing: Principles, Algorithms and Applications*, 4th Ed., Prentice Hall India, 2007.
- R4. B. P. Lathi, *Principles of Signal Processing and Linear Systems*, 2nd Ed., Oxford Univ. Press, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/108102042/>: by Prof. S. C. Dutta Roy, IIT Delhi
2. <https://nptel.ac.in/courses/108106075/>: by Prof. V. G. K. Murty, IIT Madras
3. <https://nptel.ac.in/courses/108104100/>: by Prof. A. K. Jagannatham, IIT Kanpur
4. <https://nptel.ac.in/courses/117101055/>: by Prof. V. M. Gadre, IIT Bombay
5. <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/lecture-notes/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Verify fundamental network theorems and analyze resonance in AC and DC circuits.
CO2	Analyze two-port network parameters and demonstrate electrical network characteristics.
CO3	Evaluate the frequency response of active filters for signal conditioning applications.
CO4	Generate and analyze standard signals and perform various operations using software tools.
CO5	Model and simulate DC & AC transients for R-L, R-C, and R-L-C circuits using software tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2		2					2	1	1	2
CO2	2	3	2	2	2	3					3	1	1	1
CO3	2	2	3	2		2					1	2	1	2
CO4	3	2		3	3	2					1	2	1	2
CO5	2	2	2	3	3	1					1	2	1	2

Category	Code	Complex Analysis & Numerical Methods	L-T-P	Credits	Marks
PCR	MT2004		3-0-0	3	100

Objectives	The objective of this course is to provide the knowledge of analytic functions, poles & zeros, residue calculus, and numerical methods, along with the applications of these methods in engineering.
Pre-Requisites	Knowledge of calculus of single variables, coordinate geometry of two and three dimensions, matrix algebra and ordinary differential equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basics of Complex Numbers, Derivatives, Analytic Functions, C-R Equations, Basic elementary Complex functions.	8 Hours
Module-2	Complex Line Integration, Integral Theorems, Complex Power Series and Taylor Series.	8 Hours
Module-3	Laurent Series, Residue Integration and its application for evaluation of real integrals.	8 Hours
Module-4	Error Analysis, Solution of Nonlinear Equations, Bisection Method, Fixed-Point Iteration Method, Secant Method, Newton Method, Interpolation by Polynomials: Lagrange Interpolation, Newton Divided Differences, Newton's forward & backward Interpolation.	9 Hours
Module-5	Numerical Differentiation and Integration, Trapezoidal, Simpson's Rules, Composite Rules, Error Formulae, Gaussian Quadrature Rules, Solution of Differential Equations by Euler Method, Modified Euler Method, and Runge-Kutta Methods.	9 Hours
Total		42 Hours

Text Books:

T1. E. Kreyszig, *Advanced Engineering Mathematics*, 8th Ed., Wiley India, 2015.

Reference Books:

R1. S. Pal and S. C. Bhunia, *Engineering Mathematics*, 1st Ed., Oxford University Press, 2015.
 R2. B. V. Ramana, *Higher Engineering Mathematics*, 1st Ed., McGraw-Hill, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/111105035>: by Prof. P. D. Srivastava, IIT Kharagpur.
2. <https://nptel.ac.in/courses/122104017>: by Prof. S. K. Ray, IIT Kanpur.
3. <https://nptel.ac.in/courses/122102009>: by Prof. S. R. K. Iyengar, IIT Delhi.
4. <https://nptel.ac.in/courses/111107063>: by Dr. S. Gakkhar, IIT Roorkee.
5. <https://nptel.ac.in/courses/112102316>: by Prof. A. Gupta, IIT Delhi.
6. <https://nptel.ac.in/courses/111101165>: by Prof. S. Baskar, IIT Bombay.
7. <https://nptel.ac.in/courses/111107107>: by Prof. A. K. Nayak, IIT Roorkee.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the fundamental concepts of Analytic function.
CO2	Evaluate complex line integral and find the Taylor's series expansion of analytic functions.
CO3	Expand functions in Laurent's Series and evaluate integrations using residues.
CO4	Find the root of nonlinear and transcendental equations using numerical methods and interpolate data.
CO5	Perform numerical integration and solve ODE using various numerical methods.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	3						1	2	1	1
CO2	2	2	2	2	2						1	2	1	1
CO3	3	3	2	3	3						1	2	1	1
CO4	3	3	3	3	3						2	3	1	1
CO5	3	3	3	3	3						2	2	1	1

Category	Code	Programming in Python	L-T-P	Credits	Marks
UCR	CS2007		3-0-0	3	100

Objectives	The objective of this course is to develop programming skills in Python which is rich in tools & libraries and is popularly used for solving real-life computing problems in many engineering domains.
Pre-Requisites	Basics of programming, algorithms and problem solving skills are required. Prior experience with a programming language will be beneficial.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with programming & problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Python: Introduction, Features of Python, Data types, Variables, Literals, Input/output statements, Keywords, Identifiers, Operators, Precedence and associativity, Expressions, Control statements.	8 Hours
Module-2	Data Structures: Lists - Operations, Slicing, Built-in list functions, List comprehension, Tuples - Accessing elements, Operations using built-in tuple functions, Dictionaries - Accessing values in dictionaries, Built-in dictionary functions, Sets, Functions, Recursion, Anonymous functions; Modules: Creating modules, Import statement, Packages.	9 Hours
Module-3	Object Oriented Programming: Creating class and object, Using a class and its methods, Constructor; Inheritance: Types of inheritance, Overriding methods, Encapsulation and information hiding, Polymorphism, Operator overloading, Method overloading and overriding, Abstract method and class.	8 Hours
Module-4	File Handling: Types of files, Opening & closing, Reading & writing, Binary files; Command line arguments; Exception Handling: Errors, Types of exception, try, except, and finally, assertion; Database Connectivity: Connect with a SQL database, Executing queries, Transactions, SQLDB database connection parameters, Insert, Update, Delete operations.	7 Hours
Module-5	Data Handling, Visualization, and GUI Programming: Regular Expressions - Match & Search functions, Quantifiers, Pattern; NumPy: Introduction, Creating of arrays and matrices; Panda: Creating a DataFrame, DataFrame operations, Data manipulation and aggregation, Reshaping DataFrame objects; Matplotlib: Introduction, creating basic plots (line plot, scatter plot, bar chart, histogram), Customizing plots; Graphical User Interface: GUI toolkits, Creating GUI widgets with Tkinter, Creating layouts, Radio buttons, Checkboxes, Dialog boxes.	10 Hours
Total		42 Hours

Text Books:

- T1. R. N. Rao, *Core Python Programming*, 2nd Ed., DreamTech Press, 2019.
- T2. V. Guttag, *Introduction to Computation and Programming Using Python with Application to Understanding Data*, 2nd Ed., PHI Learning, 2016.
- T3. W. McKinney, *Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter*, 3rd Ed., O'Reilly Media, 2022.

Reference Books:

- R1. P. Barry, *Head First Python*, 2nd Ed., O'Reilly Media, 2010.
- R2. A. Downey, *Think Python*, 2nd Ed., Green Tea Press, 2015.
- R3. E. Matthes, *Python Crash Course: A Hands-On, Project-Based Introduction to Programming*, 3rd Ed., No Starch Press, 2023.
- R4. J. Zelle, *Python Programming: An Introduction to Computer Science*, 3rd Ed., Franklin, Beedle & Associates, 2016.

Online Resources:

1. <https://nptel.ac.in/courses/106106182>: By Prof. S. Iyengar, IIT Ropar
2. <https://nptel.ac.in/courses/106106145>: By Prof. M. Mukund, IIT Madras
3. <https://nptel.ac.in/courses/106106212>: By Prof. R. Rengasamy, IIT Madras
4. <https://nptel.ac.in/courses/106107220>: By Prof. A. Ramesh, IIT Roorkee

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Compile and debug basic python programs, and solve problems using control structures.
CO2	Apply the data structure for real life problems and design modular python programs.
CO3	Develop applications using object oriented programming concepts using python.
CO4	Apply the concept of file handling and database connectivity in real life problems.
CO5	Utilize advanced tools & libraries for data analysis and develop GUI based applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1		1					2	2	3	1
CO2	3	3	3	2	1	2					3	2	3	2
CO3	3	3	2	2	1	2					2	2	3	1
CO4	2	2	3	2	2	1					2	2	3	1
CO5	3	3	2	1	3	2					3	2	3	2

Category	Code	Digital Electronics	L-T-P	Credits	Marks
PCR	EC2001		3-0-0	3	100

Objectives	The objective of this course is to introduce the concepts & techniques associated with digital electronic systems and their design & simulation using HDL.
Pre-Requisites	Knowledge of Basic Electronics and fundamentals of Number Systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Number System: Number System (binary, octal, decimal, hexadecimal) and their Conversion, Arithmetic Operation using 1's and 2's complements; Codes: Binary codes and Their application - BCD Code, Excess-3 Code, 2-4-2-1 Code, 8-4-(2)-(1) code and Gray code; Logic Gates: Basic Logic Gates, Universal Logic Gates, Function Realization using basic and universal logic gates, Examples of Logic Gate ICs.	8 Hours
Module-2	Combinational Logic Design: Boolean Algebra and Identities, Algebraic Reduction; Sum of Product and Product of Sum forms, Canonical SOP and POS forms, K-Map (Up to 4-variable); Combinational Logic Design: Code Converter, MSI devices like Half and Full Adders, Subtractors, Comparators, Multiplexers, De-Multiplexors, Encoder, Decoder.	9 Hours
Module-3	Sequential Logic Design: Flip flops - S-R, D, JK & T Flip Flops. Master-Slave JK FF, Edge triggered FF, Flip Flop Conversion; Synchronous Counters: (Up counter, Down Counter, Up-Down Counter, Mod-N Counters & Random Sequence Counter); Asynchronous Counter: (Up & Down using positive and negative edge trigger Flip Flop) Mod-N Asynchronous counter.	9 Hours
Module-4	Shift registers: SISO, SIPO, PIPO & PISO, Bi-directional shift register, Ring Counter, Johnson Ring Counter; Finite State Machines: Mealy and Moore models - State Diagram, State Table, FSM Design using Melay based model, FSM Design using Moore based model, Sequence detector (Melay based), Sequence detector (Moore based).	8 Hours
Module-5	Verilog HDL: Introduction to Verilog HDL, different modeling styles in Verilog - Data flow, Behavioral, Gate level and Structural modeling, Data types, Synthesis and simulation, Verilog design codes for combinational and sequential circuits, Verilog test bench for design simulation.	8 Hours
Total		42 Hours

Text Books:

- T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL*, 5th Ed., Pearson Education, 2013.
- T2. L. K. John and C. H. Roth Jr., *Digital System Design using VHDL*, 2nd Ed., Cengage Learning, 2012.

Reference Books:

- R1. D. V. Hall, *Digital Circuits and Systems*, International Student Edition, McGraw-Hill Education, 1989.
- R2. A. A. Kumar, *Fundamentals of Digital Circuits*, 3rd Ed., PHI Learning, 2014.
- R3. R. P. Jain, *Modern Digital Electronics*, 4th Ed., McGraw-Hill Education, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/117106086/>: by Prof. S. Srinivasan, IIT Madras
2. <https://nptel.ac.in/courses/117103064/>: by Prof. Mahanta and Prof. Palanthinkal, IIT Guwahati
3. <https://nptel.ac.in/courses/108105113>: by Prof. S. Chattopadhyay, IIT Kharagpur
4. <https://nptel.ac.in/courses/108105132>: by Prof. G. Saha, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain various number systems, codes and Logic gates.
CO2	Design and analyze combinational logic circuits.
CO3	Design and analyze various sequential logic circuits and explain counter design.
CO4	Implement memory array using sequential logic and explain FSM for digital circuit design.
CO5	Simulate and synthesize digital circuits using Verilog HDL and explore open source tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	2						2	2	2	2
CO2	3	3	3	2	3						2	3	3	2
CO3	3	3	3	3	3						3	2	3	2
CO4	2	2	2	2	3						2	3	2	1
CO5	3	3	2	2	3						2	2	2	1

Category	Code	Electrical Machines	L-T-P	Credits	Marks
PCR	EE2004		3-1-0	4	100

Objectives	The objective of this course is to study constructional features, working principles, operation, performance and various other aspects of DC & AC electrical machines, transformers, synchronous and induction machines etc.
Pre-Requisites	Knowledge of Basic Electrical Engineering, Physics and knowledge of Basic Mathematics such as Calculus, Ordinary Differential Equations is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	DC Machines: Constructional features, Armature windings, Armature reaction, Commutation; DC Generator – Expression for EMF induced, Voltage build-up process, OCC, Critical resistance and critical speed, Load characteristics; DC Motor – Back Emf, Torque developed, Characteristic curves; Starting and speed Control of DC Shunt and Series motors, Losses, Efficiency and Power Flow diagram of a DC Machine.	12 Hours
Module-2	Synchronous Machines: Synchronous Generator – Constructional details, Types of rotors, Winding factors, Emf equation, Synchronous reactance, Armature reaction, Phasor diagrams of non-salient pole synchronous generator connected to infinite bus, Synchronizing and parallel operation, Synchronizing torque, Change of excitation and mechanical input, Voltage regulation (EMF & MMF method), Steady state power-angle characteristics, Two reaction theory, Phasor diagram for salient pole machines, Reluctance power and power angle characteristics, Slip test; Synchronous Motor – Principle of operation, Torque equation, V and Inverted V curves, Power input and power developed equations, starting methods, Hunting.	12 Hours
Module-3	Transformers: Single-Phase Transformers – Emf equation, Phasor Diagrams at No-Load and Load Conditions of an Ideal transformer and Practical transformer, Equivalent Circuit, Per Unit Calculation and its importance, Voltage regulation, Losses, Efficiency and All-Day efficiency, Open Circuit and Short Circuit Test, Polarity Test, Parallel operation of transformers; Auto Transformer – Constructional and Operational features, Conversion of a two-winding transformer into auto-transformer; Three Phase Transformers – Connections, Vector Groups, Open Delta (V-Connection), Scott Connection (T-Connection).	12 Hours

Cont'd...

Module-#	Topics	Hours
Module-4	Induction Motor: Three-Phase Induction Motor – Principle of operation, Slip, Equivalent circuit, Torque-Slip characteristics, Condition for maximum torque, Losses and efficiency, No-load and blocked rotor tests, Cogging and crawling, Induction generators; Starting method and Speed Control of Three Phase Induction Motor – Types of Starters, DOL, Rotor resistance, Autotransformer and Star-delta starters; Speed Control methods - Voltage control, Frequency control and pole changing, Cascaded connection.	11 Hours
Module-5	Single-Phase Induction Motors: Constructional details, Double field revolving theory and operation, Equivalent circuit, No-load and blocked rotor test, starting methods of single-phase induction motors, Capacitor Start & Capacitor run Induction motor. Special Machines: Shaded pole induction motor, AC series motor, Stepper motors, BLDC motor. Practical Transformers: Components of a practical transformer, Power and distribution transformer, Cooling methods of transformers, Buchholtz's relay, Tap changing transformers and its application.	9 Hours
Total		56 Hours

Text Books:

T1. A. E. Fitzgerald, C. Kingsley Jr., and S. D. Umans, *Electric Machinery*, 6th Ed., McGraw-Hill, 2017.
 T2. S. J. Chapman, *Electric Machinery and Fundamentals*, 4th Ed., McGraw-Hill, 2017.

Reference Books:

R1. P. S. Bimbhra, *Electrical Machinery*, 7th Ed., Khanna Publishers, 2011.
 R2. D. P. Kothari and I. J. Nagrath, *Electric Machines*, 5th Ed., McGraw-Hill Education, 2017.
 R3. P. K. Mukherjee and S. Chakravorti, *Electrical Machines*, Dhanpat Rai Publications, 2011.
 R4. B. S. Guru and H. R. Hiziroglu, *Electric Machinery and Transformers*, 3rd Ed., Oxford Univ. Press, 2012.
 R5. B. L. Theraja and A. K. Theraja, *A Textbook of Electrical Technology (Vol.2) - AC and DC Machines*, 23rd Revised Ed., S Chand & Co, 2005.

Online Resources:

- <https://nptel.ac.in/courses/108105017>: by Prof. D. Kastha, IIT Kharagpur
- <https://nptel.ac.in/courses/108105131>: by Prof. T. K. Bhattacharya, IIT Kharagpur
- <https://nptel.ac.in/courses/108106072>: by Prof. Vasudevan, Rao, and Rao, IIT Madras
- <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machines-fall-2013/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the construction and operation of DC machines and evaluate their performance through key operating characteristics.
CO2	Explain the construction and performance of different types of synchronous generators and motors and plot their characteristic curves.
CO3	Explain the principles of various transformers and analyze their circuit parameters & operating performances.
CO4	Explain the construction, operation, starting methods, speed control techniques, and performance evaluation of 3-phase induction machines.
CO5	Explore single-phase induction motors, special types of machines and the practical transformer.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	1					1	3	1	
CO2	3	2	1	1	2	1					2	3	2	
CO3	3	2	1	1	2	1					2	3	2	
CO4	3	2	1	1	2	1					2	3	1	
CO5	2	2	1	1	1	1					1	2	2	

Category	Code	Advanced Electronic Circuits	L-T-P	Credits	Marks
PEL	EC2018		3-0-0	3	100

Objectives	The objective of this course is to learn the advanced electronic circuits such as filters, multivibrators, timers, etc., and their applications in the real world.
Pre-Requisites	Fundamental knowledge of basic electronics and analog electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Active Filters: Active filters and their frequency response, First- and second-order low-pass and high-pass Butterworth filters, Filter design, Frequency scaling, Band-pass and band-reject filters (wide and narrow), All-pass filters; Oscillators: principles, types, Quadrature and voltage-controlled oscillator, Sawtooth wave generator; Comparators: Basic comparator, Zero-crossing detector, Schmitt trigger, Comparator characteristics, Limitations of op-amp as comparators.	9 Hours
Module-2	Multivibrator: Bi-stable (fixed bias and self-bias) multivibrator, Loading, Commutating capacitors, Triggering the binary (symmetrical and asymmetrical through unilateral device), Schmitt trigger circuit (emitter-coupled bi-stable MV), Mono-stable multivibrator (collector- and emitter-coupled), Gate width and waveforms, Triggering of the monostable MV, Astable multivibrator (collector- and emitter-coupled).	9 Hours
Module-3	Wide-band Amplifiers: The Hybrid- π , High-frequency, small-signal common-emitter model, RC-coupled amplifier, Frequency response of a transistor stage, Short-circuit current gain, Current gain with resistive load, Transistor amplifier response taking source impedance into account, Transient response of a transistor stage; Negative Resistance Switching Devices: Voltage-controllable negative resistance devices, Tunnel diode operation and characteristics, Monostable, astable, bi-stable operations using tunnel diode, Voltage-controlled negative resistance switching circuits.	8 Hours
Module-4	Voltage & Current Time Base Generators: Time-base generators, General features of a time-base signal, Methods of generating a voltage time-base waveform, Exponential sweep circuit, Miller and bootstrap time-base generators - basic principles, Transistor Miller and transistor bootstrap time-base generators, Current time-base generators, A simple current sweep, Linearity correction through adjustment of driving waveform, Transistor current time-base generator.	8 Hours
Module-5	Specialized IC Applications: IC 555 timer as monostable and astable multivibrator, Applications, Phase locked loop – Operating principle of PLL, Phase detectors, Exclusive-OR and monolithic phase detectors, Instrumentation amplifier and its applications.	8 Hours
Total		42 Hours

Text Books:

T1. J. Millman and H. Toub, *Pulse, Digital and Switching Waveforms*, 3rd Ed., McGraw Hill, 2017.
 T2. R. A. Gayakwad, *Op-Amps and Linear Integrated Circuits*, 4th Ed., Pearson Education, 2015.

Reference Books:

R1. A. A. Kumar, *Pulse and Digital Circuits*, 2nd Ed., PHI Learning, 2008.
 R2. K. V. Rao, K. R. Sudha, and G. M. Rao, *Pulse and Digital Circuits*, 1st Ed., Pearson Education, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/108102095>: by Prof. S.C. Dutta Roy, IIT Delhi
2. <https://nptel.ac.in/courses/117107094>: by Dr. P. Agarwal, IIT Roorkee
3. <https://nptel.ac.in/courses/117108038>: by Prof. M. K. Gunasekaran, IISc Bangalore
4. <https://www.elprocus.com/types-active-filters-and-applications/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the concepts of active filters, oscillators, comparators, and signal generators with uses.
CO2	Differentiate and analyze astable, monostable and bistable multivibrator circuits.
CO3	Design multivibrator and microwave circuits using wideband amplifiers and NDR devices.
CO4	Design and implement voltage and current time-base generators for engineering applications.
CO5	Implement specialized ICs like timers, PLLs, and instrumentation amplifiers for applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	3	1	1						1	2	1	1
CO2	3	2	3	1	2						1	2	1	1
CO3	2	2	3	1	2						1	2		
CO4	3	2	2	1	2						1	2	1	
CO5	2	1	1	2	1						1	1	1	

Category	Code	Soft Computing Techniques	L-T-P	Credits	Marks
PEL	EE2007		3-0-0	3	100

Objectives	The objective of this course is to introduce the concepts of various soft computing techniques like fuzzy logic, neural networks, Genetic algorithm etc., along with optimization techniques/evolutionary computation, and their applications in different fields of engineering.
Pre-Requisites	Knowledge of engineering mathematics and the basics of programming is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basic Tools of Soft Computing: Evolution of Computing - Soft Computing constituents, Difference between soft computing and hard computing, Characteristics of Soft computing and its applications, Fuzzy logic, Basics of fuzzy logic theory, Crisp and fuzzy sets, Operations on Fuzzy Sets, Membership Functions, Fuzzy relations.	8 Hours
Module-2	Fuzzy Logic Systems: Fuzzy rules, Propositions, Implications and inferences, Zadeh's compositional rule of inference, Methods of Defuzzification; Fuzzy Logic Controller: Fuzzy Inference System, Mamdani, Takagi and Sugeno architectures, Examples and applications of fuzzy logic controllers.	10 Hours
Module-3	Artificial Neural Networks: Biological background of Neural Networks and its architecture, Single layer feed forward network, Multi-layer feed forward network, Recurrent networks, Early neural network architectures - Rosenblatt's Perceptron, ADALINE network, MADALINE network, Examples and applications of neural networks.	8 Hours
Module-4	Training of ANN: Back propagation algorithm, Effect of tuning parameters of the back propagation algorithm, Radial Basis Function networks & Least Square training algorithm, Kohonen self-organizing map and learning vector quantization networks, Recurrent neural networks, Simulated annealing neural networks, Adaptive Neuro-fuzzy inference systems (ANFIS).	10 Hours
Module-5	Evolutionary Computing: Basics of Genetic Algorithm and its architectures, GA operators - Encoding, Crossover, Selection, Mutation; Introduction to other optimization techniques and hybrid evolutionary algorithms.	6 Hours
Total		42 Hours

Text Books:

- T1. J. S. R. Jang, C. T. Sun, and E. Mizutani, *Neuro-Fuzzy & Soft Computing - A Computational Approach to Learning and Machine Intelligence*, 1st Ed., PHI Learning, 2015.
- T2. S. Rajasekaran and G. A. V. Pai, *Neural Networks, Fuzzy Systems and Evolutionary Algorithms : Synthesis and Applications*, 2nd Revised Ed., PHI Learning, 2017.

Reference Books:

- R1. F. O. Karry and C. De Silva, *Soft Computing and Intelligent Systems Design - Theory, Tools and Applications*, 1st Ed., Pearson Education, 2009.

R2. S. Haykin, *Neural Networks : A Comprehensive Foundation*, 2nd Ed., Pearson Education, 1997.
 R3. T. J. Ross, *Fuzzy Logic with Engineering Applications*, 3rd Ed., Wiley, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/127105006>: by Prof. D. K. Pratihar, IIT Kharagpur
2. <https://nptel.ac.in/courses/106105173>: Prof. D. Samanta, IIT Kharagpur
3. <https://nptel.ac.in/courses/117105084>: Prof. S. Sengupta, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the fundamentals of fuzzy logic and apply its concepts to solve various problems.
CO2	Apply fuzzy principles & inference and implement them for designing fuzzy systems.
CO3	Apply different types of neural networks in electrical & electronics engineering problems.
CO4	Analyze effectiveness of neural networks for solving complex engineering problems.
CO5	Explore evolutionary computation techniques & its application to genetic algorithm.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	1					1	1	1	
CO2	3	3	2	2	2	2					2	2	2	2
CO3	3	3	1	1	3	2					2	2	2	2
CO4	3	3	1	1	3	2					1	2	2	2
CO5	3	3	1	1	2	1					1	1	2	2

Category	Code	Renewable Energy Systems	L-T-P	Credits	Marks
PEL	EE2008		3-0-0	3	100

Objectives	The objective of this course is to study various renewable energy sources, their generation technologies, storage methods, and efficient utilization, along with their environmental impacts.
Pre-Requisites	Basic knowledge of semiconductor physics, fluid dynamics, and electrical engineering concepts is required. Familiarity with energy systems, power generation, and environmental science is recommended.
Teaching Scheme	Regular classroom lectures with use of ICT as needed, sessions are planned to be interactive with focus on real world examples and case-studies.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Conventional & non-conventional energy sources, their impact, availability, variability, Indian and world scenario; Basic concept: Solar, Wind, Biomass, Wave, Tidal, Geothermal energy systems and Hydroelectric Energy; Solar Energy: Solar processes, Composition of solar radiation; Extra-terrestrial & terrestrial radiation, Angles - Azimuth, Zenith, Hour; Irradiance, Solar constant; Solar Thermal Systems & Applications: Solar collectors, Types & performance characteristics, Water heating systems (active & passive), Space heating & cooling systems, Solar Cooker, Solar thermal power plant.	8 Hours
Module-2	Solar Photovoltaic System: Operating principle, Photovoltaic cell concepts, Cell, Module, Array, Losses in solar cell, Effects of partial & complete shadowing, Series and parallel connections, Cell mismatching, PV voltage-current characteristics, Equivalent circuit, Maximum power point tracking; Applications: battery charging, Pumping, Lighting.	9 Hours
Module-3	Biomass Power: Principles of biomass conversion, Combustion and fermentation, Anaerobic digestion, Types of biogas digester, Wood gasifier, Pyrolysis, Applications: Biogas, Wood stoves, Biodiesel, Combustion engine, Urban waste to energy conversion, Biomass-based power generation.	9 Hours
Module-4	Wind Energy: Wind energy, Variability, Conversion principle; Wind power density, Efficiency limit, Types of converters, Aerodynamics of rotors, Power~Speed and Torque~Speed characteristics, Wind turbine control systems; Conversion to Electrical Power: Induction and synchronous generators, Grid connected & self-excited induction generator operation, Constant voltage & constant frequency generation with power electronic control, Single & double output systems, Reactive power compensation, Characteristics of wind power plant, Concepts of DFIG.	9 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Energy Storage Systems: Batteries, Ultracapacitors, SMES; Fuel Cell: Fuel Cell Basics, History of fuel cell technology, Open circuit voltage, Nernst equation analysis, Causes for voltage loss, Types of fuel cell and their efficiency, Electric Vehicles (EVs) and Backup Power & Uninterruptible Power Supply (UPS); Introduction to Hybrid Energy Systems: PV-Wind, PV-Fuel Cell, PV-Diesel, Introduction to Green Hydrogen Technology.	7 Hours
Total		42 Hours

Text Books:

- T1. B. H. Khan, *Non-Conventional Energy Resources*, 3rd Ed., McGraw Hill Education, 2017.
- T2. S. N. Bhadr, D. Kastha, and S. Banerjee, *Wind Electrical Systems*, 7th Ed., Oxford University Press, 2005.
- T3. G. Boyel, *Renewable Energy - Power for a Sustainable Future*, 3rd Ed., Oxford University Press, 2012.

Reference Books:

- R1. S. A. Abbasi and N. Abbasi, *Renewable Energy Sources and Their Environmental Impact*, 1st Ed., PHI Learning, 2004.
- R2. S. H. Saeed and D. K. Sharma, *Non-Conventional Energy Resources*, 4th Ed., S. K. Kataria & Sons, 2019.
- R3. S. Peake, *Renewable Energy : Power for a Sustainable Future*, 4th Ed., Oxford University Press, 2018.
- R4. C. S. Solanki, *Solar Photovoltaic Technology and Systems: A Manual for Technicians, Trainers and Engineers*, 1st Ed., PHI Learning, 2013.

Online Resources:

1. <https://nptel.ac.in/courses/103107157>: by Prof. B. Mondal, IIT Roorkee
2. <https://nptel.ac.in/courses/108105058>: by Prof. S. Banerjee, IIT Kharagpur
3. <https://nptel.ac.in/courses/121106014>: by Dr. P. Haridoss, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Generalize solar thermal systems and identify alternate energy sources & their characteristics.
CO2	Analyse and design a solar photovoltaic system for specified applications.
CO3	Evaluate the effectiveness of biomass energy conversion in waste management.
CO4	Design wind energy systems and analyze their operational characteristics.
CO5	Investigate the operation of fuel cells and the working of different energy storage systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).

Cont'd...

PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	1	1	1	2					1	3	1	1
CO2	2	1	2	2	2	2					2	2	3	2
CO3	1	1	2	1	1	3					2	2	1	1
CO4	2	1	2	2	2	3					2	3	2	2
CO5	1	1	2	2	1	2					2	2	1	1

Category	Code	Design of Electrical Apparatus	L-T-P	Credits	Marks
HNS	EE2009		3-0-0	3	100

Objectives	The objective of this course is to study advanced topics in various electrical machines and transformers, and applications of computers to design them.
Pre-Requisites	Knowledge of DC and AC machines is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Design of Field System and Armature: Major considerations in Electrical Machine Design, Materials for Electrical apparatus, Design of Magnetic circuits, Magnetising current, Flux leakage, Leakage in Armature, Design of lap winding and wave winding.	8 Hours
Module-2	Design of DC Machines: Construction, Output Equations, Main Dimensions – Choice of specific loadings, Selection of number of poles, Design of Armature, Design of commutator and brushes, design of field, Computer program: Design of Armature main dimensions.	8 Hours
Module-3	Design of Transformers: Construction, KVA output for single and three phase transformers, Overall dimensions, design of yoke, core and winding for core and shell type transformers, Estimation of No-load current, Temperature rise in Transformers, Design of Tank and cooling tubes of Transformers. Computer program: Complete Design of single-phase core transformers.	8 Hours
Module-4	Design of Induction Motors: Construction, Output equation of Induction motor, Main dimensions, choice of specific loadings, Design of squirrel cage rotor and wound rotor, Magnetic leakage calculations, Operating characteristics: Magnetizing current, Short circuit current, Circle diagram, Computer program: Design of slip-ring rotor.	10 Hours
Module-5	Design of Synchronous Machines: Output equations, choice of specific loadings, Design of salient pole machines, Short circuit ratio, Armature design, Estimation of air gap length, Design of rotor, Design of damper winding, Determination of full load field MMF, Design of field winding, Design of turbo alternators, Computer program: Design of Stator main dimensions, Brushless DC Machines.	8 Hours
Total		42 Hours

Text Books:

- T1. A. K. Sawhney, *A Course in Electrical Machine Design*, 5th Ed., Dhanpat Rai & Sons, 1984.
- T2. M. V. Deshpande, *Design and Testing of Electrical Machines*, 3rd Ed., PHI learning, 2011.
- T3. S. K. Sen, *Principles of Electrical Machine Design with Computer Programs*, 2nd Ed., Oxford & IBH, 2009.

Reference Books:

- R1. A. Shanmugasundaram, G. Gangadharan, and R. Palani, *Electrical Machine Design Data Book*, 1st Ed., New Age International, 2007.

R2. B. Singh, **Electrical Machine Design**, 1st Ed., Vikas Publishing House, 1981.
 R3. V. Rajini and V. S. Nagarajan, **Electrical Machine Design**, 1st Ed., Pearson Education, 2018.
 R4. K. M. Vishnumurthy, **Computer Aided Design of Electrical Machines**, 1st Ed., BSP Books, 2015.

Online Resources:

1. <https://nptel.ac.in/courses/108105017>: by Prof. S. Maiti, IIT Kharagpur
2. <https://nptel.ac.in/courses/108105131>: by Prof. T. K. Bhattacharya, IIT Kharagpur
3. <https://nptel.ac.in/courses/108102372>: by Prof. B. Singh, IIT Delhi

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design and construct the armature & field system of rotating machines.
CO2	Design and analyze the performance of DC machines.
CO3	Explore the design principles of transformers and their analysis.
CO4	Design and analyze of various types of induction machines.
CO5	Model synchronous machines and evaluate their performance characteristics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	1					1	2	2	1
CO2	3	3	2	1	1	1					1	2	2	1
CO3	3	3	2	1	2	1					1	2	2	1
CO4	3	3	2	1	2	1					1	2	2	1
CO5	3	3	2	1	2	1					1	2	2	1

Category	Code	Operating Systems	L-T-P	Credits	Marks
MNR	CS2003		3-0-0	3	100

Objectives	The objective of this course is to understand the fundamental concepts, techniques & algorithms, and internal working principles of a computer operating system to become a system designer or an efficient application developer.
Pre-Requisites	Knowledge of computer programming and data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Overview, Evolution of operating system, Types of systems - Batch Processing, Multiprogramming, Time Sharing systems; Personal Computers, Parallel, Distributed, and Real-time Systems; Operating System Services, System components, System calls.	7 Hours
Module-2	Process Management: Process concepts, states, PCB, Process scheduling queues, queuing diagram, Types of schedulers, Operations on process; Interprocess communication - shared memory, message passing, Concept of buffering, Thread overview, Benefits of multi-threaded program, User and kernel threads, Multi-threading models, Issues with multi-threading - thread cancellation, thread pools, thread specific data; CPU Scheduling: Dispatcher, Scheduling - Criteria, Algorithms - FCFS, SJF, SRTF, RR, Priority, Multi-level Queue (MLQ), MLQ with Feedback.	9 Hours
Module-3	Process Synchronization: Background, Bounded-buffer – Shared-memory solution to Producer-consumer problem, Race condition, Critical section problem - Peterson's solution, Synchronization hardware: TestAndSet(), swap() instructions, Semaphores - Counting and binary semaphore, spinlocks, Classical problems of synchronization - Bounded-buffer problem, Readers-writers problem, Dining-philosophers problem, Monitors; Deadlock: System model, characterization, Resource-allocation graph, Methods for handling deadlocks, Deadlock prevention & avoidance, Banker's algorithm, Deadlock detection & recovery.	9 Hours
Module-4	Memory Management: Background, Logical & physical address space, Dynamic loading & dynamic linking, Swapping, Contiguous memory allocation, Dynamic storage allocation problem, Overlays, Paging, Segmentation; Virtual Memory: Background, Demand paging, Page fault, Basic page replacement policy, Page replacement algorithms - FIFO, OPT, LRU, LRU Approximation, LFU, MFU, Thrashing, Working-set model.	9 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Secondary Storage Structure: Overview of mass storage structure, Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, LOOK, CLOOK, Swap-space management, RAID structure; File System: Concept, Access methods, Directory structure, Directory implementation, Allocation methods, Free space management, Access control list; I/O System: Polling, Interrupts, DMA; Case Studies: The LINUX System visual representations of your data, Avoiding common pitfalls.	8 Hours
Total		42 Hours

Text Books:

T1. A. Silberschatz, P. B. Galvin, and G. Gagne, *Operating System Concepts*, 8th Ed., Wiley, 2009.
 T2. M. Milenković, *Operating Systems: Concepts and Design*, 2nd Ed., Tata McGraw-Hill, 2001.

Reference Books:

R1. A. S. Tanenbaum, *Modern Operating Systems*, 3rd Ed., PHI, 2009.
 R2. P. B. Prasad, *Operating Systems and System Programming*, 2nd Ed., Scitech Publications, 2015.

Online Resources:

- <https://nptel.ac.in/courses/106102132/>: by Prof. S. Bansal, IIT Delhi
- <https://nptel.ac.in/courses/106108101/>: by Prof. P. C. P. Bhatt, IISc Bangalore
- <https://nptel.ac.in/courses/106106144/>: by Prof. C. Rebeiro, IIT Madras
- <https://nptel.ac.in/courses/106105214/>: by Prof. S. Chattopadhyay, IIT Kharagpur
- <https://www.cse.iitb.ac.in/~mythili/os/>: Notes & slides by Prof. M. Vutukuru, IIT Bombay
- <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explore principles behind various types of operating systems, system components, system calls, protection mechanisms and services.
CO2	Explain different schedulers, scheduling policies, and design new scheduling algorithms for real life problems.
CO3	Describe the significance of process synchronization through classical synchronization problems and deadlock handling mechanisms.
CO4	Describe the working principle of main memory, cache memory and virtual memory organization and solve memory related problems.
CO5	Articulate secondary storage management, and analyze the performance of various disk scheduling algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).

Cont'd...

PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1		2					2	2	2	
CO2	3	3	3	1		2					2	3	3	1
CO3	3	3	3	1	1	2					2	3	3	1
CO4	3	3	3	1	1	2					1	3	3	1
CO5	2	2	2	1	1	2					1	3	3	1

Category	Code	Data Mining & Data Warehousing	L-T-P	Credits	Marks
MNR	CS3013		3-0-0	3	100

Objectives	The objective of this course is to analyze large, complex, information-rich data in various domains, study the concepts and applications of data warehouses and discover useful patterns by applying data mining techniques.
Pre-Requisites	Knowledge of database management systems, probability, statistics and programming language are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Data Warehousing: Concepts and applications, Difference between operational database and data warehouses, OLTP and OLAP systems, 3-tier architecture, ETL Process, Data Marts, Data staging area, Metadata.	8 Hours
Module-2	Data Mining: Concepts and applications, KDD process, Data Objects and attributes types, Basic Statistical Descriptions of Data – Central tendency - variation, spread, standard deviation and Boxplot, Data similarity; Data Pre-processing – Data cleaning, binning, integration, reduction and transformation; Correlation Analysis – Pearson's coefficient, Chi-Square and Covariance.	10 Hours
Module-3	Mining Frequent Patterns: Introduction, Market Basket Analysis, Association rule mining, Support, Confidence, Lift, Frequent Item-sets, Closed Item-sets, Maximal Item-set and generation, Apriori and FP-Growth algorithms, Evaluation of association patterns, Association and Correlation analysis.	8 Hours
Module-4	Classification: Concepts and applications, Decision Tree Induction, Information Gain, Bayes Theorem, Naïve Bayesian Classifier, K Nearest Neighbor; Classification evaluation techniques (Confusion matrix – Precision, Recall & F-Measure), Handling the class imbalance problem (Oversampling, Undersampling, Threshold moving and Ensemble techniques).	8 Hours
Module-5	Clustering: Concepts and applications, Partition-based Clustering – K-Means and K-Medoid algorithms, Hierarchical clustering – Agglomerative and Divisive methods, Density-based Clustering – DBSCAN, Graph-based clustering, Clustering evaluation techniques (Silhouette Coefficient and Dunn's Index).	8 Hours
Total		42 Hours

Text Books:

- T1. J. Han, M. Kamber, and J. Pei, **Data Mining: Concepts and Techniques**, 3rd Ed., Morgan Kaufmann, 2011.
- T2. R. Thareja, **Data Warehousing**, 1st Ed., Oxford University Press, 2009.

P.T.O

Reference Books:

- R1. A. Berson and S. J. Smith, **Data Warehousing, Data Mining & OLAP**, 1st Ed., McGraw Hill Education, 2017.
- R2. P. N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, **Introduction to Data Mining**, 2nd Ed., Pearson Education, 2019.

Online Resources:

1. <https://nptel.ac.in/courses/106105174/>: by Prof. P. Mitra, IIT Kharagpur
2. <https://nptel.ac.in/courses/110107092>: by Prof. G. Dixit, IIT Roorkee
3. <http://infolab.stanford.edu/~ullman/mining/2003.html>: notes by Stanford University
4. <https://www.cse.iitb.ac.in/~krithi/courses/631/anand.ppt>: by Prof. A. Deshpande, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the concepts and applications of Data Warehouse and its components.
CO2	Explain the concepts of Data Mining and its applications.
CO3	Construct frequent patterns and association rules by discovering correlations among data.
CO4	Compare key classification algorithms and apply them to real life problems in multiple domains.
CO5	Apply different clustering algorithms for solving real life problems in various domains.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	3							2	3	1	1
CO2	2	2	2	2							2	3	2	2
CO3	3	2	2	2							3	3	2	2
CO4	3	3	2	3							3	3	2	2
CO5	2	3	2	3							3	3	2	2

Category	Code	Semiconductor Devices	L-T-P	Credits	Marks
MNR	EC2013		3-0-0	3	100

Objectives	The objective of this course is to study the characteristics of different semiconductor devices used in modern electronic equipment and explore the nano scale CMOS structures and materials for applications in advanced technology nodes.
Pre-Requisites	Knowledge of physics and semiconductor devices is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	MOSFET: ITRS roadmap for semiconductors, Different groups of MOSFETs, Gate length scaling, Short channel effects, Scattering mechanisms, Hot carrier effect, Buried channel device, Gate oxide scaling and Gate leakage currents in MOSFETs.	9 Hours
Module-2	Advanced Materials for MOSFETs: High-K materials, Gate stack & Channel stack technology, Reverse short channel effect and HALO doping, FDSOI technology.	9 Hours
Module-3	Hetero structure FETs: Hetero junction MOSFETs, Strain engineering for higher mobility (Strained-Si/Strained-SiGe), Staggered hetero junction MOSFETs, Tunnel FETs.	8 Hours
Module-4	Nanoscale Devices: Multiple Gate MOS Structures – Double Gate MOSFET, FinFET, Surrounding Gate MOSFET, HEMTs – AlGaN/GaN HEMT structure and operation.	8 Hours
Module-5	Applications of MOSFETs: RF performance and linearity analysis of MOSFETs for high frequency applications, MOSFET application as bio-sensor, optoelectronic devices (LEDs, LASERs, Photo diodes, Solar cells).	8 Hours
Total		42 Hours

Text Books:

- T1. D. A. Neamen, *Semiconductor Physics and Devices*, 4th Ed., McGraw-Hill, 2012.
- T2. S. M. Sze and K. N. Kwok, *Physics of Semiconductor Devices*, 3rd Ed., Wiley & Sons, 2006.

Reference Books:

- R1. G. Streetman and S. K. Banerjee, *Solid State Electronic Devices*, 7th Ed., Pearson, 2014.
- R2. C. C. Hu, *Modern Semiconductor Devices for Integrated Circuits*, 1st Ed., Pearson, 2010.
- R3. R. S. Muller, T. I. Kamins and M. Chan, *Device Electronics for Integrated Circuits*, 3rd Ed., Wiley & Sons, 2003.
- R4. C. K. Maiti, S. Chattopadhyay and L. K. Bera, *Strained-Si Heterostructure Field Effect Devices*, 1st Ed., CRC Press, 2007.

Online Resources:

1. <https://nptel.ac.in/courses/108108122>: by Prof. D. N. Nath, IISc Bangalore
2. <https://nptel.ac.in/courses/117108047>: by Dr. N. Bhat, et al., IISc Bangalore
3. <https://nptel.ac.in/courses/108107129>: by Prof. S. Dasgupta, IIT Roorkee
4. <https://nptel.ac.in/courses/117107149>: by Prof. V. S. Poonia, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Illustrate the limit at ions of down scaling the size of MOS transistor.
CO2	Explore the use of advanced materials in the MOS structure and their benefits.
CO3	Analyze the advantages of Hetero Junction MOSFET structures.
CO4	Summarize the advantages of nano scale MOS structures and HEMTs.
CO5	Explain the applications of MOSFETs in different domains.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	2	2	1	2		1			1	2		2
CO2	3	3	2	2	2	2		2			2	2	1	2
CO3	3	1	3	1	1	1		2			1	1	1	1
CO4	3	3	3	2	2	2		2			2	2	2	2
CO5	3	3	3	2	2	2		2			2	3	2	2

Category	Code	Embedded C Programming	L-T-P	Credits	Marks
MNR	EC2011		3-0-0	3	100

Objectives	The objective of this course is to learn the in-depth concepts of embedded C programming techniques, GPIO, peripheral operations, and serial communication standards by leveraging industry standard MCUs.
Pre-Requisites	Knowledge of computer programming and basic electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on design & programming activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	C Programming: Names, Types, and Type declarations, Storage classes, Linkage and Scope, Character constants, Arrays, Other types, Operators and Expressions, Increment and Decrement operators, Precedence and Associativity, Program Flow and Control, Functions, Recursion, Demonstration and practice.	8 Hours
Module-2	Advanced Topics in C: Pointers, Multidimensional arrays, Structures, Input and Output, Memory Management, Miscellaneous functions, Demonstration and practice.	9 Hours
Module-3	Introduction to STM MCU: Principal MCU components, Bit Serial Ports, S/W for MCU programming, STM project development, Memory-Mapped peripherals, Core memory addresses, Peripheral memory addresses; HAL_GPIO module – GPIO pin hardware, LED Test demonstration, Enabling multiple outputs, Push-Button test; Clock speed – Setting the PIN clock speed, Demonstration and practice.	9 Hours
Module-4	Interrupts, Timer and UART: NVIC specifications; Interrupt Process – External Interrupts; STM timer peripherals, Timer configurations, LED test programs; UART & USARTs – Transmit and Receive programming, Demonstration and practice.	8 Hours
Module-5	ADC and PWM: ADC Functions – ADC module with HAL, Conversion modes, Channels, Groups, and Ranks, Demonstrations; General purpose timer PWM signal generation, Timer H/W architecture, PWM signals with HAL; Introduction to I2C, SPI, Demonstration and practice.	8 Hours
Total		42 Hours

Text Books:

- T1. P. S. Deshpande and O. G. Kakde, **C and Data Structures**, 1st Ed., Dreamtech Press, 2003.
- T2. E. Balagurusamy, **Programming in ANSI C**, 7th Ed., McGraw-Hill Education, 2017.
- T3. C. Noviello, **Mastering STM32**, 2nd Ed., Leanpub, 2022.
- T4. M. A. Mazidi, S. Chen, and E. Ghaemi, **STM32 Arm Programming for Embedded Systems (Using C Language with STM32 Nucleo)**, 1st Ed., Microdigitaled, 2018.

Reference Books:

- R1. K. R. Venugopal and S. R. Prasad, **Mastering C**, 3rd Ed., McGraw-Hill Education, 2017.
- R2. T. V. Sickle, **Programming Microcontrollers in C**, 2nd Ed., LLH Publishing, 2001.

Online Resources:

1. <https://nptel.ac.in/courses/106104128>: By Prof. S. Nandakumar, IIT Kanpur
2. <https://nptel.ac.in/courses/106105171>: By Prof. A. Basu, IIT Kharagpur
3. <https://nptel.ac.in/courses/106105193>: By Prof. I. Sengupta and Prof. K. Datta, IIT Kharagpur
4. <https://nptel.ac.in/courses/108105102>: By Prof. S. Chattopadhyay, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the concepts of C programming required to program any MCU.
CO2	Develop advanced C programming skills for embedded system applications.
CO3	Program an Industry standard MCU using embedded C programming.
CO4	Describe interrupts, timers, and UART operations for real-time applications.
CO5	Analyze the ADC and PWM operations using embedded C programming techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	1	1	1						1	2	2	2
CO2	2	2	2	1	2						1	2	2	2
CO3	3	3	3	3	2						2	3	3	3
CO4	3	3	3	3	2						2	3	3	3
CO5	3	3	3	3	1						2	3	3	3

Category	Code	Digital Marketing & SMO	L-T-P	Credits	Marks
MNR	MG2002		3-0-0	3	100

Objectives	The objective of this course is to provide students with foundational knowledge and practical skills in digital marketing tools, platforms and analytics, enabling them to design, execute and evaluate effective data-driven marketing campaigns across digital channels.
Pre-Requisites	Basic understanding of marketing, computer fundamentals and familiarity with the internet, websites and social media platforms is required.
Teaching Scheme	Regular classroom lectures with the use of ICT tools as and when required; sessions are planned to be interactive with emphasis on real-world case studies, demonstrations and exposure to digital marketing tools.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Digital Marketing: Fundamentals of Marketing Concepts and Principles, Key Marketing Terminology, Role of Marketing in the Digital Age, Digital Marketing Channels and Platforms, Role of Data in Digital Marketing; Introduction to Google Ads, Setting Up Google Ads Campaigns, Keyword Research and Selection, Ad Copywriting Best Practices, Ad Formats and Extensions, Bid Management and Budgeting, Quality Score Optimization, Performance Measurement and Reporting.	8 Hours
Module-2	Content Creation & Email Marketing: Content Creation Tools and Platforms, Visual Content Creation (Graphics, Images, Videos), Content Marketing Strategy Development, Content Distribution and Promotion, Content Calendar Planning, Measuring Content Marketing Effectiveness; Email Marketing - Introduction, Email Marketing Platforms, Designing Effective Email Campaigns, Automation Workflows and Drip Campaigns, Email Marketing Analytics and Tracking.	7 Hours
Module-3	Marketing on Social Media: Advertising on Facebook and Instagram, Ad Campaign Objectives, Ad Creatives and Visuals, Ad Placements and Audience Targeting, Facebook Pixel and Conversion Tracking; Video Advertising on YouTube, Video Ad Creation and Optimization, Targeting Options and Metrics; Advertising Formats on Twitter, Campaign Measurement and Reporting.	8 Hours
Module-4	SEO & SMO Management: SEO Fundamentals and Principles, Keyword Research and Analysis, On-Page SEO Optimization, Off-Page SEO Including Link Building and Backlinks, Technical SEO and Site Audit, SEO Tools and Platforms such as SEMrush and Ahrefs; Setting Up Organizational Pages on Social Platforms, Content Calendar Creation, Use of Social Media Management Tools such as Buffer and Hootsuite, Social Media Analysis and Management.	8 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	B2B & Marketing Analytics: B2B Digital Marketing on LinkedIn, LinkedIn Advertising Formats, Targeting Options, Sponsored Content and InMail, Lead Generation Campaigns, Campaign Optimization; Influencer Marketing Strategy, Influencer Identification and Collaboration, Measuring Influencer Marketing ROI, Influencer Marketing Platforms and Tools; Web Analytics Fundamentals, Analytics Setup and Usage, Conversion Rate Optimization Principles, Website Traffic and User Behavior Analysis.	11 Hours
		Total 42 Hours

Text Books:

- T1. S. Gupta, *Digital Marketing*, 3rd Ed., McGraw-Hill, 2022.
- T2. D. Chaffey and F. Ellis-Chadwick, *Digital Marketing: Strategies, Implementation and Practice*, 6th Ed., Pearson Education, 2015.
- T3. T. L. Tuten and M. R. Solomon, *Social Media Marketing*, 3rd Ed., Sage Publications, 2017.

Reference Books:

- R1. D. Chaffey and P. R. Smith, *Digital Marketing Excellence: Planning, Optimizing and Integrating Online Marketing*, 5th Ed., Routledge Publication, 2017.
- R2. E. Enge, S. Spencer, J. C. Stricchiola, and R. Fishkin, *The Art of SEO: Mastering Search Engine Optimization*, 3rd Ed., O'Reilly Media, 2015.
- R3. S. S. Chauhan, P. Bhatia, and V. Prakash, *Digital and Social Media Marketing*, 1st Ed., Mahe Publications, 2023.
- R4. M. O. Opresnik, S. Hollensen, and P. Kotler, *Social Media Marketing: A Practitioner Approach*, Indian Edition, Vikas Publishing, 2022.

Online Resources:

1. <https://nptel.ac.in/courses/110105091>: by S. Das, IIT Kharagpur
2. <https://nptel.ac.in/courses/110107081>: by IIT Roorkee
3. <https://nptel.ac.in/courses/110105085>: by IIT Kharagpur
4. <https://nptel.ac.in/courses/110106120>: by IIT Madras
5. <https://nptel.ac.in/courses/110106144>: by IIT Bombay
6. <https://academy.hubspot.com/courses>
7. <https://skillshop.withgoogle.com/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain digital marketing fundamentals and design basic Google Ads with performance analysis.
CO2	Create content and email marketing campaigns using tools, automation and analytics.
CO3	Design and analyze social and video advertising campaigns across major digital platforms.
CO4	Apply SEO techniques and manage social media using industry tools and performance metrics.
CO5	Implement B2B, influencer and analytics strategies to optimize digital marketing outcomes.

Program Outcomes Relevant to the Course:

PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
-----	---

Cont'd...

PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	1	2	1	2	1	1	2
CO2	2	2	2	3	1	1	2	3	2	3	1	2	3	
CO3	2	2	3	3	2	1	2	3	2	3	1	3	3	
CO4	2	1	3	2	1	1	2	3	2	3	1	3	3	
CO5	2	2	2	3	2	1	2	3	2	3	1	2	3	

Category	Code	Fundamentals of Business Analytics	L-T-P	Credits	Marks
MNR	MG2005		3-0-0	3	100

Objectives	The objective of this course is to introduce the fundamental concepts of business analytics with preliminary tools & techniques used for discovering important knowledge and use them for achieving business goals.
Pre-Requisites	Basic knowledge of mathematics, probability & statistics, and intermediate level of competence in spreadsheet applications is required.
Teaching Scheme	Regular classroom lectures, power point presentations with use of ICT as required, with examples, real-life case studies, assignments and projects.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Business Intelligence and Business Analytics, Its importance & need for businesses, Business process flow, Business challenges, Decision making under uncertainty, Data driven decision making; Types of analytics: Descriptive, Diagnostic, Predictive, Prescriptive.	6 Hours
Module-2	Business Statistics: Data types, Descriptive and Inferential statistics, Sampling techniques, Measure of central tendencies, Measure of dispersion, Hypothesis Testing, Chi Square test, Regression and Correlation.	8 Hours
Module-3	Basic Analysis: Tools and functionalities of spread-sheets, Data recording rules, Formatting, Conditional formatting, Data protection, Working with multiple sheets & files, Hyperlinking, Cell reference, Sort, Filter, Find and replace, Data cleaning, Applying spreadsheet functions.	8 Hours
Module-4	Advanced Analysis: Data calculation and manipulation functions (Text, Unique, Sort, Transpose, Filter etc.), Data extraction Functions (Nested Ifs, If And, If Or, Xlookup, Vlookup, Index etc.), Pivot table and charts; Automation using Macros, Basics of power query, Business reporting and visual analytics, Slicers, Advanced functions on cloud-based spreadsheets (Importhtml, Importdata, Importrange, Query, Finance).	8 Hours
Module-5	Business Analytics using AI: AI tools for data insight, Business verticals, Sales and Marketing analytics, Finance analytics, Human resources analytics, Supply chain analytics.	7 Hours
Total		42 Hours

Text Books:

T1. V. Chavda, **Fundamentals of Business Analytics**, 1st Ed., Himalaya Publishing House, 2024.
 T2. U. D. Kumar, **Business Analytics: The Science of Data-Driven Decision Making**, 2nd Ed., Wiley Publication, 2017.

Reference Books:

R1. J. R. Evans, **Business Analytics**, 3rd Ed., Pearson Education, 2011.
 R2. S. Gupta and A. Jathar, **Marketing Analytics**, 1st Ed., Wiley Publication, 2021.
 R3. R. Bhattacharya and A. M. Bhattacharyya, **Supply Chain Analytics**, 1st Ed., Sage Publications, 2022.

Online Resources:

1. <https://nptel.ac.in/courses/110105089>: by Prof. R. P. Pradhan, IIT Kharagpur
2. <https://nptel.ac.in/courses/110106050>: by Dr. S. Vaidhyasubramaniam, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Appreciate business processes, concepts of business intelligence and analytics.
CO2	Apply statistical methods for descriptive, inferential, predictive and diagnostic analytics.
CO3	Leverage spreadsheet tools for data entry, cleaning, analysis & visualization through dashboards.
CO4	Apply advanced tools for data extraction, pivoting, automation and visual analytics.
CO5	Employ AI-driven analytics across commercial functions to guide key managerial decisions.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	1	1						2	1	1	1
CO2	2	1	1	2	2						2	1	2	2
CO3	2	2	1	3	2						3	2	1	2
CO4	2	2	1	3	2						3	2	1	2
CO5	2	2	1	3	2						3	2	1	2

Category	Code	Programming in Python Lab	L-T-P	Credits	Marks
UCR	CS2010		0-0-2	1	100

Objectives	The objective of this laboratory course is to develop problem solving skills using python programming language and prepare the students use python tools & libraries for solving advanced engineering problems.
Pre-Requisites	Knowledge of programming and basic problem solving skills are required.
Teaching Scheme	Regular laboratory classes conducted under supervision of the teacher. The experiments shall comprise programming assignments.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Write, compile, test, and debug simple Python programs.
2	Write programs using control structures (if, if-elif-else).
3	Write programs using loop control structure (while & for loops).
4	Write programs based on the concept of lists and tuples
5	Write programs based on the concept of set and dictionaries.
6	Develop the Python programs step-wise by defining functions and calling them, function with variable number of parameters.
7	Write programs for creating class, object, methods and constructor.
8	Write programs for demonstrating inheritance, and method overriding.
9	Write programs on operator overloading, method overloading, and abstract classes.
10	Write programs on file handling, exception handling, and database connectivity.
11	Write programs using regular expressions, Numpy arrays and matrices.
12	Panda module, data frame from CSV file, reshaping & data aggregation.
13	Programs for creating different types of plots using Matplotlib libraries.
14	Creating widgets using Tkinter and designing layouts with radio buttons, checkboxes, and dialogue boxes.

Text Books:

- T1. R. N. Rao, *Core Python Programming*, 2nd Ed., DreamTech Press, 2019.
- T2. V. Guttag, *Introduction to Computation and Programming Using Python with Application to Understanding Data*, 2nd Ed., PHI Learning, 2016.
- T3. W. McKinney, *Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter*, 3rd Ed., O'Reilly Media, 2022.

Reference Books:

- R1. P. Barry, *Head First Python*, 2nd Ed., O'Reilly Media, 2010.
- R2. A. Downey, *Think Python*, 2nd Ed., Green Tea Press, 2015.
- R3. E. Matthes, *Python Crash Course: A Hands-On, Project-Based Introduction to Programming*, 3rd Ed., No Starch Press, 2023.
- R4. J. Zelle, *Python Programming: An Introduction to Computer Science*, 3rd Ed., Franklin, Beedle & Associates, 2016.

Online Resources:

1. <https://nptel.ac.in/courses/106106182>: By Prof. S. Iyengar, IIT Ropar
2. <https://nptel.ac.in/courses/106106145>: By Prof. M. Mukund, IIT Madras
3. <https://nptel.ac.in/courses/106106212>: By Prof. R. Rengasamy, IIT Madras
4. <https://nptel.ac.in/courses/106107220>: By Prof. A. Ramesh, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop programs using various features of the Python programming language.
CO2	Develop programs using built-in as well as user-defined functions in Python.
CO3	Apply object-oriented concepts, perform file processing & exception handling.
CO4	Explore regular expressions, NumPy and Panda modules of Python for solving real-life problems.
CO5	Visualize data using matplotlib libraries and design GUI based applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2		2	3		2	1		2	2	3	1
CO2	3	3	3		2	3		2	1		3	2	3	2
CO3	3	3	3		3	3		2	2		2	2	3	1
CO4	2	3	3		3	3		3	2		2	2	3	1
CO5	3	3	3		3	3		3	2		3	2	3	2

Category	Code	Electrical Machines Lab	L-T-P	Credits	Marks
PCR	EE2005		0-0-4	2	100

Objectives	The objective of this laboratory course is to provide practical exposure to different electrical machines and help understand & verify the concepts of electrical machines, calculate different parameters like speed regulation, voltage regulation, efficiency & losses and their effect on performance. The laboratory experiments shall go hand-in-hand with the topics taught in the theory class.
Pre-Requisites	Knowledge of Basic Electrical Engineering, Physics and knowledge of Basic Mathematics such as Calculus, ordinary differential equations is required.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the faculty with demonstration and simulation-based verification of the experiments.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Speed control of DC Shunt motor by armature voltage & flux control method and its realization through software.
2	Determination of critical resistance and critical speed from No-load test of DC Separately Excited generator.
3	Determination of efficiency of a DC Shunt Motor by brake test and Swinburne's test.
4	Plotting of External & Internal characteristics of DC shunt generator from load test.
5	Determination of efficiency and voltage regulation by Open Circuit and Short Circuit test on 1- ϕ Transformer.
6	Study of Scott connection of two 1- ϕ Transformers.
7	Back to Back test on two 1- ϕ Transformers.
8	Study of various vector groups of 3- ϕ Transformer.
9	Study of 3- ϕ induction generator.
10	Speed control of 3- ϕ induction motor using variable frequency (V/F) control method.
11	Determination of efficiency, plotting of torque-slip characteristics of 3- ϕ slip ring induction motor by electrical loading.
12	Determination of parameters of a 3- ϕ squirrel cage induction motor from No-load & Blocked rotor test.
13	Determination of the parameters of a 1- ϕ capacitor start induction run motor from No-load & Blocked rotor test.
14	Determination of the voltage regulation of an alternator by synchronous impedance and MMF method.
15	Determination of the voltage regulation of an alternator by ZPF Method.
16	Measurement of direct and quadrature axis reactance of salient pole synchronous machine and calculation of voltage regulation.
17	Study of parallel operation of two alternators.
18	Determine the power angle characteristics of an alternator & simulation by software.

Cont'd...

Experiment-#	Assignment/Experiment
19	Performance analysis of a universal motor by direct loading.
20	Study the characteristics of a synchronous motor.

Text Books:

T1. A. E. Fitzgerald, C. Kingsley Jr., and S. D. Umans, *Electric Machinery*, 6th Ed., McGraw-Hill Education, 2017.

T2. S. J. Chapman, *Electric Machinery and Fundamentals*, 4th Ed., McGraw-Hill, 2017.

Reference Books:

R1. P. S. Bimbhra, *Electrical Machinery*, 7th Ed., Khanna Publishers, 2011.

R2. D. P. Kothari and I. J. Nagrath, *Electric Machines*, 5th Ed., McGraw-Hill Education, 2017.

R3. P. K. Mukherjee and S. Chakravorti, *Electrical Machines*, Dhanpat Rai Publications, 2011.

R4. B. S. Guru and H. R. Hiziroglu, *Electric Machinery and Transformers*, 3rd Ed., Oxford University Press, 2012.

R5. B. L. Theraja and A. K. Theraja, *A Textbook of Electrical Technology (Vol.2) - AC and DC Machines*, 23rd Revised Ed., S Chand & Co, 2005.

Online Resources:

- <https://nptel.ac.in/courses/108105017>: by Prof. D. Kastha, IIT Kharagpur
- <https://nptel.ac.in/courses/108105131>: by Prof. T. K. Bhattacharya, IIT Kharagpur
- <https://nptel.ac.in/courses/108106072>: by Prof. Vasudevan, Rao, and Rao, IIT Madras
- <https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machines-fall-2013/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Perform various tests conducted on DC machines.
CO2	Evaluate the performance parameters of transformers.
CO3	Assess the performance of 1- ϕ and 3- ϕ induction motors in specific applications.
CO4	Determine voltage regulation of synchronous generators and compare the results.
CO5	Simulate the performance characteristics of electrical machines and interpret the results.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).

Cont'd...

PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	2		2	2				2	1	1	2
CO2	2	2	1	3		2	3				3	1	1	1
CO3	2	2	1	2		3	3				1	2	1	2
CO4	2	1	1	2		2	2				1	2	1	2
CO5	1	2	2	2		2	1				1	2	1	2

Category	Code	Digital Electronics Lab	L-T-P	Credits	Marks
PCR	EC2002		0-0-2	1	100

Objectives	The objective of the course is to provide hands-on exposure on logic gates, its implementation using Boolean algebra, designing digital circuits like counters, registers and simulating the digital systems using HDL.
Pre-Requisites	Knowledge of Basic Electronics is required.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of the faculty with use of ICT as and when required, with focus on implementation using hardware & software tools.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Digital Logic Gates: Investigate logic behavior of AND, OR, NAND, NOR, EX-OR, EX-NOR, Invert and Buffer gates, use of Universal (NAND & NOR) Gates.
2	Gate-level minimization: Two level and multi level implementation of Boolean functions.
3	Design, implement and test a given design example with: (a) NAND Gates only, (b) NOR Gates only, and (c) Using minimum number of Gates.
4	Combinational Circuits: Design, assemble and test: adders and subtractors, Code Converters, gray code to binary and 7-segment display.
5	Study of Multiplexer, Demultiplexer. Implement a function using a multiplexer.
6	Flip-Flop: assemble, test and investigate operation of SR, D, J-K & T flip-flops.
7	Shift Registers: Design and investigate the operation of all types of shift registers.
8	Counters: Design, assemble and test various ripple and synchronous counters.
9	Verilog/VHDL simulation and implementation of logic gates.
10	Verilog/VHDL simulation and implementation of different combinational circuits in dataflow and behavioral modeling.
11	Memory Unit: Investigate behaviour of RAM and its storage capacity – 16×4 RAM: testing, simulating and memory expansion.
12	Clock-pulse generator: design, implement and test.
13	Binary Multiplier: design and implement a circuit that multiplies 4-bit unsigned numbers to produce a 8-bit product.

Text Books:

T1. M. M. Mano and M. D. Ciletti, *Digital Design: With an Introduction to Verilog HDL*, 5th Ed., Pearson Education, 2013.

Reference Books:

R1. A. M. Michelén, *Digital Electronics Laboratory Manual*, Prentice Hall, 2000.
 R2. J. W. Stewart, C. -Y. Wang, *Digital Electronics Laboratory Experiments* (Using the Xilinx XC95108 CPLD with Xilinx Foundation: Design and Simulation Software), Prentice Hall, 2001.

Online Resources:

1. <https://www2.mvcc.edu/users/faculty/jfiore/Resources/DigitalElectronics1LaboratoryManual.pdf>
2. <https://www.elprocus.com/top-digital-electronic-projects-for-electronics-engineering-students/>
3. <https://de-iitr.vlabs.ac.in/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the function of logic gates and implementation of Boolean functions.
CO2	Design and analyze different combinational circuits.
CO3	Design various asynchronous and synchronous sequential circuits.
CO4	Acquire knowledge about internal circuitry and logic behind digital systems.
CO5	Simulate various digital circuits using Verilog/VHDL & industry standard tools.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	2	2						1	2	2	
CO2	2	3	3	2	3						1	3	3	
CO3	2	3	2	3	3						2	3	2	1
CO4	2	2	2	3	2						1	2	3	1
CO5	2	3	2	3	3						2	2	2	1

Category	Code	Electrical & Electronics Design Lab	L-T-P	Credits	Marks
PCR	EE2006		0-0-2	1	100

Objectives	The objective of this course is to expose the students to different electrical and electronic components and give hands-on practice about the fundamental design procedure and their operations to make the students understand and verify the concept of various electrical & electronic devices.
Pre-Requisites	Knowledge of basic electrical, basic electronics, and circuit theory is required.
Teaching Scheme	Regular laboratory experiments using modeling and simulation platforms and hardware devices will be conducted under the supervision of the teacher. Demonstration will be given for each experiment.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Design and development of a 5V regulated power supply.
2	Design of AC-DC converter using transistors and diodes.
3	Design of latching and interlocking configuration control circuit using contactors.
4	Design of zero-crossing detector using op-amp circuits.
5	Design of Digital to Analog Converter(DAC) using R-2R ladder arrangement.
6	Design of microcontroller Interface circuit for temperature, distance, and voltage.
7	Design of speed control system for universal motor using TRIAC circuit.
8	Modeling & simulation of 1- ϕ induction motors and study of the torque-speed characteristics.
9	Modelling a stand-alone photovoltaic energy system and study of the IV and PV characteristics.
10	Evaluation & study of two-port network parameters.
11	V- curve & inverted V-curve of synchronous motor.
12	Study of torque-speed characteristic of a 3- ϕ induction motor with variable rotor resistance method.

Text Books:

- T1. A. Pressman, K. Billings, and T. Morey, *Switching Power Supply Design*, 3rd Ed., McGraw-Hill Professional, 2009.
- T2. S. B. Kataria, *Industrial Automation Solutions for PLC, SCADA, Drive and Field Instruments*, 1st Ed., Notion Press, 2020.
- T3. M. Bhattacharyya, *Electrical Machines: Modelling and Analysis*, 1st Ed., PHI Learning, 2016.
- T4. S. Kumar, M. R. Das, R. Kushalkar, N. Venkat, C. G. Kannan, and M. Moudgal, *Microcontroller Programming with Arduino and Python*, 1st Ed., SPD Publishers, 2024.

Reference Books:

- R1. A. S. Sedra and K. C. Smith, *Microelectronic Circuits: Theory and Applications (International Version)*, 6th Ed., Oxford University Press, 2013.
- R2. A. Malvino and D. J. Bates, *Electronic Principles*, 7th Edition, McGraw-Hill, 2017.

R3. D. V. Hall, *Digital Circuits and Systems*, International Student Edition, McGraw-Hill Education, 1989.
 R4. D. Gajski, *Embedded System Design: Modeling, Synthesis and Verification*, Springer, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/106105159>: by Prof. A. Basu, IIT Kharagpur
2. <http://www.allaboutcircuits.com>
3. <https://www.electronics-tutorials.ws>

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain and design common electrical and electronic control circuits.
CO2	Design and fabricate zero crossing detector and DAC.
CO3	Design and fabricate different interfacing circuits.
CO4	Understand the basic characteristics of photovoltaic modules and filter circuits.
CO5	Model different electrical machines and observe the characteristics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	1	2	1	2	2	1			2	1	2	1
CO2	2	2	3	2	1	2	1	2	1		1	2	2	2
CO3	2	2	3	2	2	2	3	2	1		2	2	2	2
CO4	2	2	1	2	3	3	3	1			2	2	3	3
CO5	1	1	2	3	3	2	2	1			2	2	2	3

Category	Code	Control Systems Engineering	L-T-P	Credits	Marks
PCR	EE3001		3-0-0	3	100

Objectives	The objective of the course is to create an understanding of how modern-day control systems operate along with a thorough knowledge of mathematical modeling and stability analysis. This course also covers fundamentals of state-space methods.
Pre-Requisites	Mathematical background of differential equation, Laplace transforms, Basic electrical engineering, Dynamic equations of physical systems are required.
Teaching Scheme	Regular classroom lectures with use of ICT tools as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Concept of control system, Definition, Open Loop/Closed-loop, Feedback, Effect of feedback, Review of complex variables, Laplace Transform, Transfer function, Block diagram, Signal flow graphs, Mason's Gain formula, Mathematical modeling of dynamical systems using transfer function; Control System Components: Potentiometer, Synchros, AC/DC Servo motors.	10 Hours
Module-2	Time Response Analysis: Standard Test Signals, Time response of first order systems, Time Response of Second order systems, Type and order of a system, Steady State Errors and Static & Dynamic Error Constants, Effect of adding pole and zero to a system, Time-domain Design specification of second order system, Performance indices; Introduction to Controllers: P, PI, PD, PID Controllers, Tuning Rules for PID controllers (Z-N Tuning).	8 Hours
Module-3	Concepts of Stability: Necessary conditions for stability, Hurwitz Stability Criterion, Routh Stability Criterion, Relative Stability Analysis; The Root Locus Technique: Introduction, Root locus concepts, Construction of Root locus, Root Contours, Systems with transportation lag.	8 Hours
Module-4	Stability in Frequency Domain: Mathematical Preliminaries, Frequency Response Analysis: Correlation between Time and Frequency Response, Polar plots; Nyquist Stability Criterion, Assessment of Relative stability using Nyquist Criterion, Closed loop Frequency Response, Bode plots, All Pass and Minimum-Phase Systems.	9 Hours
Module-5	State Variable Analysis: Concept of state, State variable and state space model of dynamic system using physical variable, Phase Variables and Canonical Variables, Derivation of Transfer Function, Solution of State Equation, State Transition Matrix, Controllability and Observability, Pole placement by state feedback.	7 Hours
		Total 42 Hours

Text Books:

- T1. I. J. Nagrath and M. Gopal, **Control Systems Engineering**, 5th Ed., New Age Int'l., 2010.
- T2. K. Ogata, **Modern Control Engineering**, 5th Ed., PHI Learning, 2010.

Reference Books:

- R1. B. C. Kuo, **Automatic Control Systems**, 7th Ed., Prentice Hall India, 2010.
- R2. R. C. Dorf and R. H. Bishop, **Modern Control Systems**, 8th Ed., Addison Wesley, 2003.
- R3. U. A. Bakshi and V. U. Bakshi, **Control System Engineering**, 1st Ed., Technical Publications, 2010.

Online Resources:

1. <https://nptel.ac.in/courses/108102043>: by Prof M. Gopal, IIT Delhi
2. <https://nptel.ac.in/courses/108106098>: by Prof. R. Pasumarthy, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain control system concepts, transfer functions, and basic components of feedback systems.
CO2	Analyze time response characteristics and design PID controllers for desired performance.
CO3	Determine system stability using Hurwitz, Routh, and root locus techniques and criteria.
CO4	Evaluate system stability and performance using Nyquist and Bode frequency response methods.
CO5	Develop state-space models and analyze controllability, observability, and pole placement.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	1	1						1	3	2	2
CO2	3	2	2	2	2						2	3	1	2
CO3	3	3	1	1	2						2	3		1
CO4	3	3	1	2	2						2	3	1	2
CO5	3	2	1	1	2						2	3		1

Category	Code	Electrical Power Transmission & Distribution	L-T-P	Credits	Marks
PCR	EE3002		3-0-0	3	100

Objectives	The objective of the course is to learn the concept of the power system, its components and parameters, characteristics of power lines for different voltage levels and the equipment used in power transmission & distribution.
Pre-Requisites	Knowledge of AC and DC circuits, characteristics & response of the electrical parameters (R, L, and C), and elementary idea on electrical power system and components is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Transmission Line Parameters: Types of conductors, Resistance, Inductance of a conductor due to internal flux, Flux linkages between two points, Inductance Calculation - Composite-conductor, Single-phase line, Three-phase line with equilateral & unsymmetrical spacing, Bundled conductors; Skin effect, Proximity effect; Electric field of long & straight conductor, Potential difference between two points due to a charge, Capacitance Calculation- Two-wire, 3-phase line with equilateral & unsymmetrical spacing, Effect of earth on capacitance, Capacitance of Bundled conductors.	10 Hours
Module-2	Transmission Line Performance: Short & medium transmission lines - representation as π & T model, ABCD parameter, Performance analysis; Long Transmission Lines: Hyperbolic form of equations & its interpretation, ABCD parameters, Equivalent π and T network; Power flow through transmission line, Voltage compensation techniques.	8 Hours
Module-3	Overhead Line Insulators: Insulator materials, Types of insulators, Voltage distribution over insulator string, Improvement of string efficiency, Insulation failure; Mechanical Design of OHT Lines - General considerations, Span, Conductor configuration, Spacing & clearances, Sag & tension, Factors affecting sag; Catenary, Conductor vibration, Corona phenomenon.	8 Hours
Module-4	Distribution Systems: Types, AC 3-phase 4-wire distribution system, Primary & secondary distribution system, Voltage drop in DC & AC distributors, Design of distribution substation, Design of secondary network, Kelvin's economy law & limitations, Causes of low power factor and its effect, Power factor improvement & its economics, Power factor correction by static capacitor.	8 Hours
Module-5	Underground Cables: Cable insulation, Sheath, Armor & covering, Classification of cables, Pressurized cables, Effective resistance, Inductive reactance & capacitance of single-core & 3-phase belted cables, Breakdown of cables, Cable installation, System operating problems with underground & HVDC cables; Power System Earthing: Types and methods, Earth resistance, Design of earthing grid, Tower footing resistance, Neutral grounding.	8 Hours
Total		42 Hours

Text Books:

T1. J. J. Grainger and W. D. Stevenson Jr., **Power System Analysis**, 1st Ed., McGraw Hill, 2017.
 T2. B. R. Gupta, **Power System Analysis and Design**, 3rd Ed. (Reprint), S. Chand Publications, 2003.

Reference Books:

R1. M. S. Naidu and V. Kamaraju, **High Voltage Engineering**, 5th Ed., McGraw Hill, 2013.
 R2. D. P. Kothari and I. J. Nagrath, **Power System Analysis**, 4th Ed., McGraw Hill, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/108102047/>: by Prof. D. P. Kothari, IIT Delhi
2. <https://nptel.ac.in/courses/117101056/>: by Prof. R. K. Shevgaonkar, IIT Bombay

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze transmission line parameters including resistance, inductance, and capacitance effects.
CO2	Evaluate performance of short, medium, and long transmission lines using network models.
CO3	Analyze insulators, mechanical design parameters, sag-tension relations, and corona effects.
CO4	Design AC/DC distribution systems, substations, voltage drop and power factor correction.
CO5	Explain underground cable design, parameters, faults and earthing in power systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2			2	3					1	3	1	
CO2	3	3	2		2	2					1	2	2	1
CO3	3	3			2	2					2	2	2	1
CO4	3	3	2		3	2					2	3	1	
CO5	3	3			2	2					1	3		1

Category	Code	Electrical & Electronics Measurement	L-T-P	Credits	Marks
PCR	EE3003		3-0-0	3	100

Objectives	The objective of this course is to learn basic operations of electrical & electronic measuring instruments and their uses in branches of engineering, applications of transducers, storage, display and data acquisition systems.
Pre-Requisites	Basic knowledge of intermediate physics, mathematics, basic electrical and electronics engineering is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Measurement Systems - Types of Measurement Systems, Accuracy & Precision, Types of Errors, Standards and Calibration, Classification of Measuring Instruments; Electromechanical Indicating type Instruments - Types of Torque, General Constructional Details; Ammeter & Voltmeter - Derivation for Deflecting Torque of PMMC & MI type; Measurement of Power and Energy - Construction, Theory and Principle of Operation of Electro-Dynamometer, Induction Type Wattmeter and Single Phase Induction Type Watt-hour meter.	12 Hours
Module-2	Measurement of Resistance - Measurement of Resistance of Insulating Materials, Measurement of Earth Resistance using Fall of Potential Method; Measurement of Inductance - Maxwell's Inductance and Anderson Bridges; Measurement of Capacitance - Schering Bridge & Wein's Bridge, Wagnor's Earthing Device.	7 Hours
Module-3	Potentiometer - DC (Crompton) & AC (Drysdale) Potentiometers; Instrument Transformers - Construction, Theory, Equivalent Circuit, Phasor Diagram and Characteristics of CTs & PTs.	8 Hours
Module-4	Electronic Instruments - AC Voltmeters using Rectifiers, Digital voltmeters, Digital Multimeters, Digital RLC Meter and Digital Frequency Meter; Storage and Display Devices - Magnetic Disk, CRT display, DSO, LED.	7 Hours
Module-5	Transducers and Data Acquisition Systems - Classification and Selection of Transducers, Resistive, Capacitive & Inductive Transducers, Piezoelectric, Hall Effect, Optical & Digital Transducers, Elements of Data Acquisition System, A/D & D/A Converters, Introduction to PLC, SCADA and LabVIEW environment.	8 Hours
Total		42 Hours

Text Books:

- T1. E. W. Golding and F. C. Widdis, *Electrical Measurements and Measuring Instruments*, 5th Ed., Reem Publication, 2015.
- T2. A. K. Sawhney, *A Course in Electrical and Electronics Measurement and Instrumentation*, 19th Ed., Dhanpat Rai & Co., 2011.
- T3. R. K. Rajput, *Electrical and Electronic Measurement and Instrumentation*, S. Chand & Co, 2016.

Reference Books:

- R1. R. S. Sedha, *Electronic Measurements and Instrumentation*, 1st Ed., S. Chand & Co., 2013.
- R2. D. A. Bell, *Electronic Instrumentation and Measurements*, 3rd Ed., Oxford University Press, 2013.
- R3. A. D. Helfrick and W. D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, 1st Ed., Pearson Education, 2015.
- R4. J. B. Gupta, *A Course in Electrical and Electronic Measurements & Instrumentation*, S. K. Kataria & Sons, 2013..
- R5. R. Mehera and V. Vij, *PLCs and SCADA*, 1st Ed., University Science Press, 2011.

Online Resources:

1. nptel.ac.in/courses/108102191: by Prof. Ankur Gupta, IIT Delhi

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify suitable instruments for accurate measurement with their construction and operation.
CO2	Estimate resistance, inductance, and capacitance accurately using suitable bridge methods.
CO3	Explain construction, theory and applications of potentiometers and instrument transformers.
CO4	Illustrate the working principle of various electronic instruments, storage and display devices.
CO5	Explain the working of various transducers and data acquisition systems with applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2			1						3	3		
CO2	2	2		2	1						3	2	1	1
CO3	2	2			1						3	3	1	
CO4	2	2			1						3	2		
CO5	1	1	2		1						3	2		1

Category	Code	Power Electronics	L-T-P	Credits	Marks
PCR	EE3004		3-1-0	4	100

Objectives	The objective of this course is to provide an overview of different types of power semiconductor devices and their switching characteristics along with the operation and characteristics of various types of power electronic converters.
Pre-Requisites	Knowledge of physics, basic mathematics, calculus, ordinary differential equations and basic electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Power semiconductor devices - Switching and V-I characteristic of devices: Transistor family - BJT, IGBT, and MOSFET, Thyristor family, SCR, TRIAC, Series & parallel grouping of SCR, SCR triggering methods, SCR: Over voltage, Over Current, dV/dt , di/dt , Gate Protection, Snubber circuit; Commutation - Natural & Forced Commutations, Commutation by resonant load, LC load, complementary & Auxiliary commutation.	13 Hours
Module-2	AC to DC Phase Controlled converter - Principle of phase controlled converter operation, Single phase full converter with R, R-L & R-L-E load, 3-Phase full converter with R, R-L & R-L-E load, Single phase semi converter with R, R-L & R-L-E load.	10 Hours
Module-3	AC to AC converter - Single phase bi-directional controllers with R & R-L load, Single phase Cycloconverters – Step up & Step down, Applications.	7 Hours
Module-4	DC to DC converter - First quadrant, Second quadrant, First & Second quadrant, Third & Fourth quadrant converter; Switching mode regulators - Design of Buck & Boost regulators, Basic operation of Buck-Boost & SEPIC Converter, Understand the concept of how to find the transfer function of the DC-DC converter; Isolated Converters - Fly-back & Forward Converter, Applications.	13 Hours
Module-5	DC to AC converter - Voltage Source Inverter (VSI), Single phase bridge Inverters, 3-Phase Inverters-180° mode conduction, 1200 mode conduction, Voltage control of 3-Phase Inverters by Sinusoidal PWM (PWM VSI), Current Source Inverter (CSI); Resonant Converters - ZCS, ZVS, Comparison and Applications; Power Electronics Applications - UPS, SMPS, Induction Heating, AC/DC drives speed control.	13 Hours
Total		56 Hours

Text Books:

- T1. M. H. Rashid, *Power Electronics: Devices, Circuits, and Applications*, 4th Ed., Pearson Education, 2017.
- T2. P. S. Bhimbra, *Power Electronics*, 6th Ed., Khanna Publishers, 2014.

P.T.O

Reference Books:

R1. M. D. Singh and K. B. Khanchandani, **Power Electronics**, 2nd Ed., McGraw-Hill, 2017.
 R2. P. C. Sen, **Power Electronics**, 1st Ed., McGraw Hill India, 2001.

Online Resources:

1. <https://nptel.ac.in/courses/108102145>: by Prof. G. Bhuvaneshwari, IIT Delhi
2. <https://nptel.ac.in/courses/108101126>: by Dr. L Umanand, IISc Bangalore
3. <https://nptel.ac.in/courses/108105066>: by Dr. D. Kastha and others, IIT Kharagpur
4. <https://nptel.ac.in/courses/108101038>: by Prof. B. G. Fernandes and Prof. K. Chatterjee, IIT Bombay

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze switching, protection, and commutation techniques of power semiconductor devices.
CO2	Describe the operation of AC - DC converters and its application in the practical field.
CO3	Interpret the operation of AC -AC converters and perform the performance analysis.
CO4	Illustrate the operation of DC - DC converters , classification and use in DC drives.
CO5	Analyze DC-AC converters, SPWM techniques, resonant converters and their applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1					1	3	2	
CO2	3	2	2	3	3	1					1	3	3	2
CO3	3	2	2	2	3	2					1	3	2	2
CO4	3	2	2	2	3	2					1	3	2	1
CO5	3	2	3	3	2	2					2	2	2	1

Category	Code	IoT & Applications	L-T-P	Credits	Marks
PEL	EC3014		3-0-0	3	100

Objectives	The objective of this course is to learn design, deployment, protocols, networking and security aspects of the IoT including IoT system implementation using Arduino & Raspberry Pi, data analytics and case studies.
Pre-Requisites	Basic knowledge of computer networks, internet technology, basic analog & digital electronics and computer programming is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions shall focus on design, programming and applications of IoT.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to IoT: Physical & Logical Design, Enabling Technologies, Levels & Deployments, M2M, Difference between IoT and M2M, IoT Design Methodology, Network Function Virtualization, Need for IoT Systems Management, Simple Network Management Protocol (SNMP) and Its Limitations, Network Operator Requirements, NETCONF, YANG, Energy Harvesting Techniques.	9 Hours
Module-2	Domain-Specific IoTs: Overview, Home Automation, Smart Cities, Environment, Retail, Logistics, Agriculture, Industry, Health & Lifestyle IoT in Energy Sectors, Virtual Sensors, Generic Web-Based Protocols (SOAP, REST, HTTP, RESTful and WebSockets), IoT Application Layer Protocols (CoAP, MQTT, AMQP, REST and XMPP).	7 Hours
Module-3	Sensing Technology: Temperature Sensor (RTD, Thermistor, Thermocouple, IC type), Humidity Sensor - Capacitive, Displacement sensor - LVDT, Acceleration Sensor (Potentio-metric, LVDT, Piezoelectric, Variable Reluctance Type), Pressure Sensor (Diaphragm type), ADC concept; S/C Applications – Deflection Bridge, Amplifier, Integrator & Differentiator.	9 Hours
Module-4	IoT Device Interfacing: Interoperability in IoT, Arduino Programming, Integration of Sensors & Actuators, Microcontrollers, Embedded C Programming, Analog Interfacing, Serial, SPI, I2C, Ethernet-based Data Communication, DHCP, Web Client, Telnet, MQTT; IoT using Raspberry Pi - Introduction, Linux on Raspberry Pi, Implementation of IoT with Raspberry Pi; Raspberry Pi Interfaces - Serial, SPI, I2C.	10 Hours
Module-5	Data Analytics for IoT: Introduction, Apache Hadoop – Map Reduce Programming Model, Map Reduce Job Execution, job execution workflow, Hadoop Cluster Setup, YARN, Apache Oozie: Setting of Oozie, Oozie Workflow for IoT Data Analysis, Apache Spark, Apache Storm.	7 Hours
Total		42 Hours

Text Books:

- T1. A. Bahga and V. Madisetti, *Internet of Things: A Hands-On Approach*, 1st Ed., Orient Blackswan, 2015.
- T2. M. Schwartz, *Internet of Things with Arduino Cookbook*, Packt Publishing, 2016.

T3. C. D. Johnson, *Process Control Instrumentation Technology*, 8th Ed., Pearson Education, 2014.

Reference Books:

- R1. A. K. Ghosh, *Introduction to Measurement and Instrumentation*, 3rd Ed., PHI, 2009.
- R2. R. Kamal, *Internet of Things: Architecture and Design Principles*, 1st Ed., McGraw-Hill, 2017.
- R3. J. P. Bentley, *Principles of Measurement Systems*, 4th Ed., Pearson Education, 2005.

Online Resources:

1. <https://nptel.ac.in/courses/106105195/>: by Prof. S. Misra, IIT Kharagpur.
2. <https://nptel.ac.in/courses/108108098/>: by Prof. T. V. Prabhakar, IISc Bangalore
3. <https://nptel.ac.in/courses/106105166/>: by Prof. S. Misra, IIT Kharagpur
4. <https://nptel.ac.in/courses/108105064/>: by Prof. A. Barua, IIT Kharagpur
5. <https://nptel.ac.in/courses/106106182/>: by Prof. S. Iyengar, IIT Madras
6. <https://nptel.ac.in/courses/115104095/>: by Prof. M. Verma, IIT Kanpur
7. <https://nptel.ac.in/courses/106104189/>: by Dr. R. Misra, IIT Patna

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain IoT technologies basics, design methodologies and network management protocols.
CO2	Evaluate the domain-specific IoT and communication protocols.
CO3	Describe the concepts of sensors, signal conditioning circuits, and their application to IoT.
CO4	Develop programs for IoT Applications using Arduino and Raspberry Pi.
CO5	Apply the concepts of data analytics in various IoT applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	2				2	3	2	2
CO2	3	3	2	2	3	2	2				2	3	3	2
CO3	3	3	3	2	2	2	2				2	2	3	2
CO4	2	2	3	3	3	3	2				3	3	2	3
CO5	2	2	2	3	2	2	3				3	2	2	3

Category	Code	HVDC Transmission	L-T-P	Credits	Marks
PEL	EE3010		3-0-0	3	100

Objectives	The objective of this course is to learn various aspects of high voltage DC power transmission including control, conversion, harmonics, faults and other engineering design considerations.
Pre-Requisites	Knowledge of circuit topology, analysis of switching circuits, magnetics, power semiconductor devices and basic simulation skill is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	High Voltage Transmission System: Introduction, AC & DC System and Comparison, Reliability and application of DC transmission, Types of DC links, Typical layout of a HVDC converter station. HVDC converters, Pulse number, Converter bridge characteristics, Equivalent circuits of rectifier and inverter configurations of twelve pulse converters.	8 Hours
Module-2	Converters in HVDC Transmission: 6-Pulse Converter Operation and Analysis – Configuration, Output voltage, Analysis with overlap angle, Equivalent circuit of rectifier & inverter, 12-pulse Converter Operation and Analysis, Power flow in HVDC link, VSC Converter Operation and analysis.	10 Hours
Module-3	Control of HVDC Converter & Systems: Mechanism of AC power transmission, Principle of control, Necessity of control in case of a DC link, Rectifier control, Compounding of rectifiers, Power reversal in a DC link, Voltage dependent current order limit (VDCOL), Characteristics of the converter, System control hierarchy and Basic philosophy, Inverter extinction angle control (EAG), Pulse phase control, Starting and stopping of a DC link, Constant power control, Control systems for HVDC converters, Inverter operation problems, Control of VSC converters.	8 Hours
Module-4	Harmonics in HVDC Systems: Importance of harmonic study, Generation of harmonics by converters, Characteristic harmonics on the DC Side, Characteristic current harmonics, Characteristic variations of harmonic currents with variation of α & μ , Effect of control modes on harmonics, non-characteristic harmonics, Harmonics in VSC converters; Valve configuration, Converter theory, Types of DC links, Converter station, Principle of DC link control and characteristics.	8 Hours

Cont'd..

Module-#	Topics	Hours
Module-5	<p>Harmonic Suppression & Protection: Harmonic model and equivalent circuit, Use of filters, Filter configurations, Design of Band-Pass & High-Pass filters, Protection of filters, DC filters; Faults and Protection Schemes - Nature and types of faults, Faults on AC side of converter stations, Converter faults, Faults on DC side of the system, Protection against over currents/voltages, Protection of filter units; Multi-terminal HVDC Systems: Types, Parallel operation aspects, Paralleling (Disconnecting) of units or converter, Control of power, VSC multi-level DC systems; Types of converter faults, Converter station protection against faults, Harmonics and filters, Starting, Stopping and power flow reversal.</p>	8 Hours
Total		42 Hours

Text Books:

T1. K. R. Padiyar, *HVDC Power Transmissions Systems : Technology & Systems Interaction*, 3rd Ed., New Age Publication, 2017.

Reference Books:

R1. S. Kamakshaiah and V. Kamaraju, *HVDC Transmission*, TMH Education, 2011.
 R2. M. H. Rashid, *Power Electronics*, 3rd Ed., PHI Learning, 2008.

Online Resources:

- <https://nptel.ac.in/courses/108104013>: by Dr. S. N. Singh, IIT Kanpur
- <https://nptel.ac.in/courses/108106160>: by Prof. S. Krishna, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain HVDC transmission systems, types of DC links, and converter circuit configurations.
CO2	Analyze 6-pulse, 12-pulse, and VSC converter circuits in HVDC transmission.
CO3	Design and analyze control strategies for HVDC converters and power flow management.
CO4	Evaluate harmonics in HVDC systems and analyze their generation, control, and effects.
CO5	Develop harmonic suppression and protection strategies for HVDC transmission systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).

Cont'd...

PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3			2						1	1		
CO2	3	3			3						1	1		
CO3	3	3	2	2	3						2	1	2	2
CO4	2	3	2	3	3						2	1	2	2
CO5	2	2	3	2	3						2	1	2	2

Category	Code	Microwave Engineering	L-T-P	Credits	Marks
PEL	EC3010		3-0-0	3	100

Objectives	The objective of this course is to study microwaves their frequency bands, behaviour of electromagnetic waves at microwave frequencies along with principles of radar and its scanning and tracking techniques.
Pre-Requisites	Basic knowledge of circuit theory, electromagnetic theory and solid state physics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Microwave Tubes: Introduction, Frequency bands, Applications, Limitations of conventional tubes, Reflex Klystron - Construction, Operation, Velocity Modulation, Power output, Efficiency, Electronic admittance, Magnetron - Construction, Operation, Cyclotron - Angular frequency, Resonant modes, Hull's cut-off magnetic flux density and cut-off voltage.	8 Hours
Module-2	Microwave Amplifiers: Klystron Amplifier - Construction, Operation, Re-entrant cavities, Velocity modulation, Output power, Beam loading, Efficiency, Mutual conductance, Travelling Wave Tube (TWT) - Slow wave structures, Construction, Amplification process.	8 Hours
Module-3	Microwave Components: Analysis using S-parameters, Junctions (E-Plane, H-Plane, Magic Tee), Directional coupler; Bends and corners, Microwave posts, Slide Screw tuners, Attenuators, Phase shifter, Ferrite devices (Isolator, Circulator, Gyrator), Cavity resonator.	9 Hours
Module-4	Radar Systems: Principles and operations, Range equation, Pulse repetition frequency (PRF) & range ambiguities, Doppler Radars – Determination of velocity, Continuous wave (CW) radar and its limitations, Frequency modulated continuous wave (FMCW) radar, Moving target indicator (MTI) radar, Delay line cancellers, Blind speeds & staggered PRFs, Scanning & tracking - horizontal, vertical, spiral, palmer, raster, nodding, Angle tracking systems - Lobe switching, Conical scan, Mono pulse.	8 Hours
Module-5	Microwave Solid State Devices: Limitations of conventional solid state devices at microwaves, Transistors, Diodes (Tunnel, Varactor, PIN), Transferred electron devices (Gunn diode); Avalanche transit time effect (IMPATT, TRAPATT, SBD), Microwave amplification by stimulated emission of radiation (MASER).	9 Hours
Total		42 Hours

Text Books:

- T1. D. M. Pozar, *Microwave Engineering*, 4th Ed., Wiley Publications, 2011.
- T2. S. Liao, *Microwave Devices and Circuits*, 3rd Ed., Pearson Education, 2006.
- T3. M. I. Skolnik, *Introduction to Radar Systems*, 3rd Ed., McGraw-Hill Education, 2001.

Reference Books:

R1. G. S. Rao, *Microwave and Radar Engineering*, 1st Ed., Pearson Education, 2014.
 R2. R. E. Collin, *Foundation of Microwave Engineering*, 2nd Ed., John Wiley & Sons, 2007.
 R3. M. Kulkarni, *Microwave Devices and Radar Engineering*, 5th Ed., Umesh Publications, 2014.

Online Resources:

1. <https://nptel.ac.in/courses/108101112>: by Prof. G. Kumar, IIT Bombay
2. <https://nptel.ac.in/courses/108103141>: by Prof. R. Bhattacharjee, IIT Guwahati
3. <https://nptel.ac.in/courses/117105138>: by Prof. A. Bhattacharya, IIT Kharagpur
4. <https://nptel.ac.in/courses/117105130>: by Prof. A. Bhattacharya, IIT Kharagpur
5. <https://nptel.ac.in/courses/117105122>: by Prof. A. Bhattacharya, IIT Kharagpur
6. <https://nptel.ac.in/courses/117101119>: by Prof. J. Mukherjee, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain different microwave frequency bands and their sources with applications.
CO2	Describe the construction, operation and principles of various microwave amplifiers.
CO3	Analyze microwave components using S-parameters and characterize various passive devices.
CO4	Explain radar principles, range and Doppler measurement, and various target tracking methods.
CO5	Articulate operation & characteristics of microwave solid-state and transferred electron devices.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	3	1						1	3	1	1
CO2	3	3	1	3	1						1	3	1	1
CO3	2	2	1	3	1						1	2	1	1
CO4	2	3	1	3	1						1	2	1	1
CO5	2	2	1	3	3						1	2	1	1

Category	Code	Smart Grid	L-T-P	Credits	Marks
PEL	EE3011		3-0-0	3	100

Objectives	The objective of the course is to learn fundamental knowledge of Smart Grid concepts, architecture, communication technologies and their integration with distributed energy resources and microgrids.
Pre-Requisites	Basic understanding of Power Systems, Electrical Machines and Fundamental knowledge of Power Electronics & Control Systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on current trends of smart grid.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Evolution & Basic concepts of grid, Needs for Smart grid, Standard concepts and definitions of Smart grid, Functions, Opportunities, Challenges and benefits, Comparison between conventional and Smart grid; Smart Grid Components: Smart infrastructure, Communication, Management & protection, Initiatives in Smart grid.	8 Hours
Module-2	Architecture and Standards: Types of domains in architecture, Standards in Distributed energy resources (DERs), Wide area situation awareness, Protection and automation, Time synchronization, Cyber security; Elements & Technologies: Smart metering and Advanced metering infrastructure (AMI), Distribution automation (DA), SCADA system, Outage management system (OMS), Plug-in Hybrid Electric Vehicle (PHEV), Vehicle-to-Grid (V2G); Communication Infrastructure & Protocols: WAN, NAN & HAN, Types of communication technologies - Ethernet, Wireless LANs, Bluetooth, ZigBee, WiMax and Broadband over power line (BPL).	10 Hours
Module-3	Distributed Energy Resources (DERs): Types, Working, Advantages & disadvantages of solar PV system, Solar thermal, Biomass, Wind, Fuel cell, Micro turbine; Energy Storage Technologies: Mechanical, Electrical, Electromagnetic, Electrochemical (Battery energy storage system (BESS)), Thermal.	8 Hours
Module-4	Wide Area Measurement System (WAMs): Phasor estimation, Phasor Measurement Units (PMU) - Synchro phasor, PMU device, Operation; Smart Sensors: Intelligent electronic devices (IEDs), Geographic information systems (GIS), Basics of Demand side management (DSM).	8 Hours
Module-5	Microgrid: Introduction, Definitions, Types of microgrids, Modes of operation, Introduction to microgrid control and protection, Structure of AC and DC microgrid, Challenges in microgrid, Value addition of microgrid.	8 Hours
Total		42 Hours

Text Books:

- T1. J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, and A. Yokoyama, *Smart Grid: Technology and Applications*, Student Edition, Wiley, 2012.
- T2. C. W. Gellings, *The Smart Grid: Enabling Energy Efficiency and Demand Response*, 1st Ed., CRC Press, 2009.

Reference Books:

- R1. S. Borlase, *Smart Grid: Infrastructure, Technology and Solutions*, 1st Ed., CRC Press, 2012.
- R2. J. A. Momoh, *Smart Grid: Fundamentals of Design and Analysis*, 1st Ed., Wiley-IEEE Press, 2012.
- R3. S. K. Salman, *Introduction to the Smart Grid: Concepts, Technologies and Evolution*, IET, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/108107113>: by Prof. N.P. Padhy, and Prof. P. Jena, IIT Roorkee
2. <https://www.smartgrid.gov/>
3. <http://www.nsgm.gov.in/>
4. <https://smartgrid.ieee.org/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe smart grid evolution, components, benefits, and compare with conventional systems.
CO2	Explain the architecture, standards, technologies and communication protocols in smart grids.
CO3	Analyze distributed energy resources and energy storage technologies in smart grid systems.
CO4	Illustrate wide area measurement systems and smart sensors for enhanced grid performance.
CO5	Explain the concepts, classifications, control and protection mechanisms of microgrids.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2				2						3		
CO2	2		2		2	1						2	2	
CO3	2	2			2							2		2
CO4	1			3							2		2	2
CO5	2		2		2	1						2		3

Category	Code	Electrical Drives	L-T-P	Credits	Marks
PEL	EE3012		3-0-0	3	100

Objectives	The objective of this course is to study different power electronics converters used for drives and their industrial applications.
Pre-Requisites	Knowledge of power electronics, electrical machines, and basic simulation skill is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on power electronics and machine drives.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Study of Motor Drives: Fundamentals of drives and its block diagram, Selection of drives, Classification, Nature and components of load torques, Fundamental torque equations, Determination of equivalent drive parameters, Time and energy calculation in transient operations, Speed-torque conventions and Multi-quadrant operation, Steady-state stability, Load equalizations, Thermal model of motor, Classes of motor duty, Rating based on thermal consideration; Control of Electrical Drives: Current limit control, Closed-loop torque control, Closed-loop speed control and closed-loop position control.	12 Hours
Module-2	Performance of DC Drives: DC motors and their performances, Starting, Braking, Speed control: Methods of armature voltage control, Controlled rectifier based DC drives, Chopper controlled DC drive.	7 Hours
Module-3	Performance of AC Drives: Induction motor drives - Static speed control: Stator voltage control, V/f control, Constant torque and constant power operation, VSI controlled drive, CSI controlled drive, Current regulated VSI control, Static rotor resistance control, Static slip power recovery scheme; Synchronous motor drive - True and self-synchronous mode.	10 Hours
Module-4	Electric Traction: Traction system mechanics: Speed-time and distance-time curves, Tractive effort, Effective weight, Train resistance, Adhesive weight, Specific energy output and consumption, Traction motor.	7 Hours
Module-5	Industrial Applications: Steel rolling mills, Textile mills, Cement mills, Paper mills, etc.; Microprocessor applications in drive systems.	6 Hours
Total		42 Hours

Text Books:

- T1. G. K. Dubey, *Fundamentals of Electrical Drives*, 3rd Ed., Norasa Publishing, 2010.
- T2. S. K. Pillai, *First Course on Electrical Drives*, 3rd Ed., New Age International, 2012.
- T3. V. Subrahmanyam, *Electric Drives*, 2nd Ed., McGraw Hill Education, 2017.

Reference Books:

- R1. M. H. Rashid, *Power Electronics*, 3rd Ed., PHI Learning, 2008.
- R2. B. K. Bose, *Modern Power Electronics and AC Drives*, 1st Ed., Pearson Education, 2005.

Online Resources:

1. <https://nptel.ac.in/courses/108104140>: by Prof. S. P. Das, IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain drive basics, selection, torque, stability, thermal aspects and closed-loop control.
CO2	Design and analyze performance of DC drives under steady-state and transient conditions.
CO3	Design and analyze performance of AC drives under steady-state and transient conditions.
CO4	Analyze electric traction mechanics, tractive effort, energy use and motor performance.
CO5	Select suitable industrial drives and apply microprocessor-based control in drive systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2	1					1	3	2	
CO2	3	3	3	3	3	1					1	3	3	2
CO3	3	3	3	2	3	2					1	3	2	2
CO4	3	3	2	2	3	2					1	3	2	1
CO5	3	2	3	3	2	2					2	2	2	1

Category	Code	Communication Systems Engineering	L-T-P	Credits	Marks
PEL	EC3045		3-0-0	3	100

Objectives	The objective of this course is to learn electronic communication systems, modulation techniques, digital transmission of analog signals, random variables & sources, and filtering of noise.
Pre-Requisites	Knowledge of signals & systems and probability theory is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Signals & Spectra: An Overview of Electronic Communication Systems, Types of Signal, Fourier Series, Fourier Transform, Properties of Fourier Transform, Orthogonal Signal.	7 Hours
Module-2	Amplitude Modulation Systems: Need For Frequency Translation, Double Side band with Carrier(DSB-C),Double Side band with Suppressed Carrier (DSB-SC), Modulators - Square-Law, Switching, Balanced, Detectors - Square-Law, Envelope, Synchronous, Single Side Band with Suppressed Carrier (SSB-SC), Frequency and Phase Discrimination Methods, Coherent Detection, Modulation & Demodulation Of Vestigial Side Band Modulation (VSB), Frequency Division Multiplexing, Radio Transmitter & Receiver (Super Heterodyne Receiver).	10 Hours
Module-3	Angle Modulation: Angle Modulation, Narrow band FM, Wide band FM, FM Modulators – Direct Method(Varactor Diode Method), Indirect Method (Armstrong method), Simple Slope Detector, Balanced Slope Detector, Phase Locked Loop (PLL); Analog Pulse Modulation: Analog to Digital - The Need, Sampling Theorem, Natural and Flat-top Sampling, Quantization of Signals, Quantization Error, Pulse Amplitude Modulation, Pulse Width Modulation and Pulse Position Modulation.	9 Hours
Module-4	Digital Pulse Modulation: The PCM System, Bandwidth of PCM System, Delta Modulation(DM) and its limitations, Adaptive Delta Modulation, Differential PCM (DPCM), Comparison Between PCM, DM, and DPCM, Digital Transmission of Analog Signal - Digital Representation of Analog Signal, Line Codes, Companding, Time Division Multiplexing, Multiplexing PCM Signals.	8 Hours
Module-5	Random Variables & Processes: Probability, Random Variables, Useful Probability Density Functions, Useful Properties and Certain Application Issues, Mathematical Representation of Noise - Sources of Noise, Frequency-Domain Representation of Noise, Superposition of Noises, Linear Filtering of Noise, Noise Bandwidth.	8 Hours
Total		42 Hours

Text Books:

T1. H. Taub, D. L. Schilling, and G. Saha, *Principles of Communication System*, 4th Ed., Tata McGraw Hill, 2013.

T2. R. P. Singh and S. D. Sare, **Communication Systems : Analog and Digital**, 3rd Ed., McGraw Hill Education, 2012.

Reference Books:

- R1. J. G. Proakis and M. Salehi, **Communication System Engineering**, 2nd Ed., PHI, 2002.
- R2. S. Haykin and M. Moher, **Communication Systems**, 5th Ed., John Wiley & Sons, 2009.
- R3. B. P. Lathi, Z. Ding, and H. M. Gupta, **Modern Digital and Analog Communication Systems**, 4th Ed., Oxford University Press, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/117105143>: by Prof. G. Das, IIT Kharagpur
2. <https://nptel.ac.in/courses/108104091>: by Prof. A. Jagannathan, IIT Kanpur
3. <https://nptel.ac.in/courses/117102059>: by Prof. S. Prasad, IIT Delhi

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain types of signals and apply Fourier analysis for spectral representation in communication.
CO2	Explain and analyze AM techniques, modulators, detectors, and superheterodyne receivers.
CO3	Explain performance of angle modulation and various analog pulse modulation schemes.
CO4	Describe digital pulse modulation schemes and digital transmission of analog signals.
CO5	Analyze random variables, noise characteristics, and their effects on communication systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2					1	2		1
CO2	3	3	3	3	3	2					2	3		1
CO3	3	3	3	3	3	2					2	3		1
CO4	3	2	2	3	3	3					2	3		1
CO5	3	3	3	2	3	3					2	2		1

Category	Code	Advanced Electrical Machines	L-T-P	Credits	Marks
HNS	EE3019		3-1-0	4	100

Objectives	The objective of this course is to provide students with a clear understanding of the construction, operating principles, and control strategies of special electrical machines used in autonomous systems, electric mobility, and renewable energy applications.
Pre-Requisites	Knowledge of electrical machines (DC and AC), electromagnetic theory, circuit analysis, along with differential equations and MATLAB/Simulink-based modelling is required.
Teaching Scheme	The course will be delivered through regular classroom lectures using ICT tools wherever necessary; sessions are designed to be interactive with a strong emphasis on derivations, concept visualization, and hands-on problem solving. Simulation-based demonstrations and case studies will be integrated into the delivery to build deeper insight into dynamic modeling and control of machines.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Synchronous Generators: The ideal synchronous machine, synchronous machine inductances, Dynamic modelling and d-q axis concept, Armature reaction, Voltage regulation by ZPF method, power angle characteristics of salient and non salient pole machine, Equivalent circuit and vector diagram, Active and reactive power Load sharing in parallel operation, Effect of excitation and mechanical input, Capability curve of synchronous generators, Droop characteristics: P-f and Q-V control.	9 Hours
Module-2	Synchronous Motors: Principle of operation of synchronous motors, Torque-angle characteristics, Stability and hunting(qualitative). Industrial application: Control of reactive power through excitation, Power factor control; Special Synchronous Machines: Construction features, Principle and characteristics, Performance analysis and control strategies of Hysteresis motor, Synchronous Reluctance motor, Switched reluctance motor, Synchronous timing motor, Industrial applications.	9 Hours
Module-3	Transformers: Parallel operation and load sharing, Three-phase transformer connections and vector groups, Equivalent circuit of three-winding transformer, Determination of transformer parameters using OC and SC tests, Unbalanced three phase operation, Switching transient in transformers, Inrush current, Effect of harmonics, Tap-changing transformers.	7 Hours

Cont'd...

Module-#	Topics	Hours
Module-4	Advanced Induction Machines & Performance Analysis: Equivalent circuit and torque-slip characteristics, Double cage induction motor, Linear induction motor, Circle diagram, Induction generators – Grid-connected and standalone operation, Self-excitation mechanism, Capacitance requirement determination, Power factor improvement techniques, Variable-speed operation and performance analysis, Overview of double-field induction generators, Comparison of induction and synchronous generators, Starters and Modelling Concepts – Soft starters and dynamic capacitance, Per-phase modelling of machines.	9 Hours
Module-5	Permanent Magnet Machines: Brushless DC Motors (BLDC): Detailed analysis of magnetic circuits in BLDC motors, EMF and torque derivations for trapezoidal excitation, Role of electronic commutators in switching sequence, Advantages in compact and high-efficiency systems, Implementation of torque/speed control strategies using PWM in embedded controllers; Permanent Magnet Synchronous Motors (PMSM): Calculation of direct and quadrature axis reactance; Development of phasor diagrams for different load conditions; Converter interfaces including voltage-source inverters; Torque-speed characteristics in motoring and regenerative modes; Volt-ampere (V-A) requirement analysis for power electronic converters; Advanced control techniques using vector control and field-oriented control (FOC); Role of microcontroller and DSP-based implementations in precision motion applications.	8 Hours
Total		42 Hours

Text Books:

- T1. P. S. Bimbra, *Generalized Theory of Electrical Machines*, 7th Ed., Khanna Publishers, 2021.
- T2. A. Hughes, *Electric Motors and Drives: Fundamentals, Types and Applications*, 4th Ed., Elsevier, 2013.
- T3. A. E. Fitzgerald, C. Kingsley, and S. D. Umans, *Electric Machinery*, 6th Ed., McGraw-Hill, 2003.

Reference Books:

- R1. R. Krishnan, *Electric Motor Drives: Modeling, Analysis, and Control*, 1st Ed., Pearson Education, 2015.
- R2. T. J. E. Miller, *Brushless Permanent-Magnet and Reluctance Motor Drives*, 1st Ed., Oxford University Press, 1989.
- R3. S. K. Pillai, *A First Course on Electric Drives*, 3rd Ed., New Age International, 2010.

Online Resources:

1. <https://nptel.ac.in/courses/108102146>: by Prof. G. Bhuvaneswari, IIT Delhi
2. <https://nptel.ac.in/courses/108105131>: by Prof. T. K. Bhattacharya, IIT Kharagpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Understand dynamic modelling, excitation control, and load sharing of synchronous generators.
CO2	Explain the operation, stability, and reactive power control of synchronous machines.
CO3	Analyze transformer performance, parallel operation, and transient behavior.
CO4	Evaluate performance and applications of advanced induction machines and induction generators.
CO5	Understand the analysis and control of permanent magnet machines (BLDC and PMSM).

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	1	2	2	2					1	3	2	2
CO2	3	3	2	2	3	2					2	3	3	3
CO3	3	3	1	3	3	2					1	3	2	3
CO4	3	3	2	3	3	2					1	3	3	3
CO5	3	2	2	2	2	2					1	3	2	3

Category	Code	Computer Organization & Architecture	L-T-P	Credits	Marks
MNR	CS2008		3-0-0	3	100

Objectives	The objective of this course is to familiarize students about hardware design including logic design, basic structure and behaviour of the various functional modules of a modern digital computer and how they interact to provide the processing power to fulfil the needs of the user.
Pre-Requisites	Knowledge of basic digital electronics and computer fundamentals is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Basic Structures of Computers: Computer Architecture vs. Computer Organization, Functional units, Operational concepts, Registers, Bus Structure, Performance Consideration, SPEC rating.	8 Hours
Module-2	Memory Location & Addresses: Big-endian and Little-endian representation, Instruction format, Instruction set Architecture, RISC vs. CISC, Addressing modes, Instruction Sequencing, Subroutines.	8 Hours
Module-3	Binary Arithmetic: Addition and subtraction of signed numbers, Design of fast adders, Multiplication of positive numbers, Signed operand multiplication, Fast multiplication, Integer division, Representation of floating point numbers.	8 Hours
Module-4	Memory System: Basic Concepts, Speed, Size and cost, Cache memory concepts, Cache memory mapping techniques, Performance consideration; Virtual memory concepts, Translation look-aside buffer, Replacement techniques, Secondary Storage.	10 Hours
Module-5	Basic Processing Units: Fundamental concepts, Execution cycle, Single-Bus and Multi-Bus Organization, Execution of complete instruction, Hardwired control, Micro programmed control, Accessing I/O devices.	8 Hours
Total		42 Hours

Text Books:

T1. C. Hamacher, Z. Vranesic, and S. Zaky, **Computer Organization**, 5th Ed., McGraw-Hill, 2017.
 T2. W. Stallings, **Computer Organization and Architecture**, 9th Ed., Prentice Hall India, 2012.

Reference Books:

R1. M. M. Mano, **Computer System Architecture**, 3rd Ed., Pearson Education, 2007.
 R2. B. Govindarajalu, **Computer Architecture and Organization**, 5th Ed., Tata McGraw-Hill, 2004.
 R3. N. P. Carter, **Schaum's Outline of Computer Architecture**, McGraw-Hill Education, 2002.

Online Resources:

1. <https://nptel.ac.in/courses/106106166>: by Prof. V. Kamakoti, IIT Madras
2. <https://nptel.ac.in/courses/106104073>: by Prof. B. Raman, IIT Kanpur
3. <https://nptel.ac.in/courses/106103180>: by Prof. J. K. Deka and Prof. A. Sarkar, IIT Guwahati
4. <https://ocw.mit.edu/courses/6-823-computer-system-architecture-fall-2005/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the architecture of a digital computer and the functions of its basic units.
CO2	Interpret instruction formats and apply addressing modes to solve basic problems.
CO3	Perform binary arithmetic operations using techniques for fixed & floating-point arithmetic.
CO4	Analyze memory hierarchy, explain cache & virtual memory mapping & replacement techniques.
CO5	Explain control unit and compare between hardwired & microprogrammed control techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	2	2						1	2	2	2
CO2	3	3	2	2	3						1	3	3	2
CO3	3	3	2	3	3						2	2	3	2
CO4	3	3	2	3	3						2	3	2	1
CO5	2	3	2	2	2						1	2	2	1

Category	Code	Artificial Intelligence	L-T-P	Credits	Marks
MNR	CS2014		3-0-0	3	100

Objectives	The objective of this course is to provide a strong foundation to AI approaches to build intelligent systems with perception, logic, reasoning and learning abilities.
Pre-Requisites	Knowledge of basic mathematics, algorithms & data structures is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Definitions of AI, Four approaches to AI, Turing Test; Intelligent Agents: Agent function & programs, Rationality, Environment types, PEAS description, Structure of Agents, Types of Agent Programs, Problems solving by Searching - Example Problems, State space search; Uninformed Search Strategies: BFS, DFS, Depth Limited, Iterative Deepening DFS, Uniform Cost, Bi-directional Searches.	9 Hours
Module-2	Search Algorithms & Reasoning: Introduction, Evaluation and Heuristic functions, Greedy Best First Search, A* Search, Example Problems; Local Search Algorithms: Hill Climbing Search and Simulated Annealing; Constraint Satisfaction Problems: Introduction & types of CSPs, Backtracking Search for CSPs; Adversarial Search: Introduction, Game playing, Minimax and α - β Pruning; Knowledge & Reasoning: KB-based Agents, The Wumpus World problem.	9 Hours
Module-3	Logic & Reasoning: Logic, Propositional Logic, First-Order Logic (FOPL): Syntax & Semantics of FOPL, Inference in FOPL Forward and Backward Chaining, Knowledge Representation: Ontological Engineering, Categories and Objects, Semantic Nets, Frames.	8 Hours
Module-4	Planning: The Planning Problem, Planning with State-Space Search, Partial Order Planning, Planning Graphs, Hierarchical Planning; Uncertain Knowledge: Acting under Uncertainty, Bayes Rule & its use; Probabilistic Reasoning, Representing Knowledge in an Uncertain Domain, Semantics of Bayesian Networks.	8 Hours
Module-5	Learning & Expert Systems: Introduction to Learning, Learning Agent, Paradigms of learning, Learning from Observations, Inductive Learning, Information Gain, Learning Decision Trees; Statistical Learning, Instance Based Learning, Neural Networks: Introduction, Perceptron, Introduction to Reinforcement Learning; Introduction to Expert Systems: Definition, Architecture, Applications.	8 Hours
Total		42 Hours

Text Books:

- T1. S. Russell and P. Norvig, *Artificial Intelligence - A Modern Approach*, 4th Ed., Pearson Education, 2020.
- T2. D. W. Patterson, *Introduction to Artificial Intelligence & Expert Systems*, 1st Ed., Pearson Education, 2015.

Reference Books:

- R1. E. Rich, K. Knight, and S. B. Nair, *Artificial Intelligence*, 3rd Ed., McGraw Hill Education, 2017.
- R2. M. Negnevitsky, *Artificial Intelligence: A Guide to Intelligent Systems*, 3rd Ed., Addison Wesley, 2011.
- R3. G. F. Luger, *Artificial Intelligence: Structures and Strategies for Complex Problem Solving*, 6th Ed., Pearson Education, 2008.

Online Resources:

1. <https://nptel.ac.in/courses/106102220/>: by Prof. Mausam, IIT Delhi
2. <https://nptel.ac.in/courses/106106140/>: by Prof. D. Khemani, IIT Madras
3. <https://nptel.ac.in/courses/106105079/>: by Prof. P. Dasgupta, IIT Kharagpur
4. <https://nptel.ac.in/courses/106105077/>: by Prof. A. Basu and Prof. S. Sarkar, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explore agents, environments, and search goal state using uninformed techniques.
CO2	Apply search techniques for game playing and solving constraint satisfaction problems.
CO3	Interpret logic, inference rules for decision making, and represent knowledge by semantic nets.
CO4	Apply planning and reasoning to handle uncertainty in real life problems.
CO5	Apply learning to solve complex real-life problems and design expert systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2							3	1		2
CO2	2	3	3	2							2	2	1	2
CO3	3	3	3	2							2	2	1	2
CO4	3	3	2	2		1					2	2	1	2
CO5	3	3	2	2		2					3	2	1	2

Category	Code	CMOS VLSI Design	L-T-P	Credits	Marks
MNR	EC3032		3-0-0	3	100

Objectives	The objective of this course is to study the design, fabrication & testing of devices, circuits & systems using integrated micro fabrication technologies providing a broad coverage of VLSI technology.
Pre-Requisites	Fundamental knowledge of MOSFET, analog and digital electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction & Fabrication of MOSFETs: VLSI Design Methodologies, VLSI Design Flow, Design Hierarchy, Concept of Regularity, Modularity & Locality, VLSI Design Styles; Fabrication of MOSFETs - Introduction, Fabrication Processes Flow - Basic Concepts, The CMOS n-Well Process, Layout Design Rules, Stick Diagrams of complex CMOS Logic Gates (Euler Method).	9 Hours
Module-2	MOS Transistor: The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS Transistor (MOSFET), MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects, MOSFET Capacitance.	8 Hours
Module-3	MOS Inverter Circuits: Introduction, Voltage Transfer Characteristics, Noise Margin Definitions, Resistive Load Devices, CMOS Inverters, Sizing Inverters; Static MOS Gate Circuits: Introduction, CMOS Gate Circuits, Complex CMOS Gates, Calculation of Inverter Equivalent for NAND, NOR and other Complex Logic Circuits.	9 Hours
Module-4	Switching Characteristics & Interconnect Effects: Introduction, Switching Time Analysis, Calculation of Interconnect Parasitics, Calculation of Interconnect Delay (Elmore Delay), Power Dissipation in CMOS Gates, Schematic of sequential circuits.	8 Hours
Module-5	Transfer Gate & Dynamic Logic Design: Introduction, Pass Transistor concepts, CMOS Transmission Gate, Dynamic logic; Basics of Semiconductor Memory - DRAM, SRAM Cell Design & Operation, Memory Architecture.	8 Hours
Total		42 Hours

Text Books:

- T1. S. -M. Kang and Y. Leblebici, *CMOS Digital Integrated Circuits - Analysis and Design*, 3rd Ed., Tata McGraw-Hill, 2002.
- T2. D. A. Hodges, H. G. Jackson, and R. Saleh, *Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology*, 3rd International Ed., McGraw Hill Education, 2004.

Reference Books:

- R1. J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, *Digital Integrated Circuits: A Design Perspective*, 2nd Ed., Pearson Education, 2016.
- R2. N. H. E. Weste, D. Harris, and A. Banerjee, *CMOS VLSI Design - A Circuits and Systems Perspective*, 4th Ed., Pearson Education, 2010.

R3. D. A. Pucknell and K. Eshraghian, **Basic VLSI Design**, 3rd Ed., PHI Learning, 1995.

Online Resources:

1. <https://nptel.ac.in/courses/117101058>: by Prof. A. N. Chandorkar, IIT Bombay
2. <https://nptel.ac.in/courses/108107129>: by Prof. S. Dasgupta, IIT Roorkee
3. <https://nptel.ac.in/courses/117106149>: by Prof. M. Rao, IIIT Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify suitable VLSI design methods using proper design flow and fabrication steps.
CO2	Describe MOSFET structure & operation under bias, including effects of scaling & geometry.
CO3	Design and analyze inverter, combinational & sequential circuits using CMOS technology.
CO4	Analyze inverter switching to estimate delay, interconnect effects and power consumption.
CO5	Design and analyze transmission gates, memory cells and understand testing techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	3	1	1	1			2	1	2		2
CO2	3	3	1	2	2							2	1	
CO3	3	3	3	2	1						1	3	2	3
CO4	2	2	3	3	2							2	1	2
CO5	3	3	3	3	1						1	3	2	2

Category	Code	Sensors & Transducers	L-T-P	Credits	Marks
MNR	EC3034		3-0-0	3	100

Objectives	The objective of this course is to learn the characteristics of different types of measurement systems and industrial applications of various transducers & sensors for design and construction of precise measuring instruments.
Pre-Requisites	Basic knowledge of physics, mathematics, electrical and electronics is required
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	General Measurement Systems: Introduction, Significance of measurement, Functional elements of generalized measurement systems, Static Characteristics - Systematic and statistical characteristics, Calibration; Dynamic characteristics - Transfer functions of typical sensing elements, Step and frequency response of first and second order elements, Dynamic error in measurement systems.	9 Hours
Module-2	Basic Sensing Elements: Resistive Sensing – Potentiometers, Resistance Temperature Detector (RTD), Thermistors & Strain gages; Capacitive Sensing – Variable separation, Area & dielectric piezoelectric transducers; Inductive Sensing – LVDT displacement sensors.	8 Hours
Module-3	Thermoelectric & Elastic Sensing Elements: Laws, Thermocouple characteristics, Installation problems, Cold junction compensation, IC temperature sensor; Elastic sensing elements - Bourdon tube, Bellows & diaphragms for pressure sensing, Force measurement; Miscellaneous Sensors - Optical sensors, Principle, Intensity & phase-modulated sensors, FBG sensor.	9 Hours
Module-4	Signal Conditioning Elements: DC Bridge - Wheatstone Bridge, Calibration of the bridge, AC bridges, Linearization by Bridge circuit, Modulation and demodulation techniques, Signal conditioning system, Signal transmission.	8 Hours
Module-5	Amplifiers: Operational amplifier - Ideal & non-Ideal performances, Inverting, Non-inverting and differential amplifiers, Instrumentation amplifier, Filters, A.C. carrier systems, Phase sensitive demodulators and its applications in instrumentation.	8 Hours
Total		42 Hours

Text Books:

T1. J. P. Bentley, *Principles of Measurement Systems*, 4th Ed., Pearson Education, 2005.
 T2. A. K. Ghosh, *Introduction to Measurement and Instrumentation*, 3rd Ed., PHI Learning, 2009.

Reference Books:

R1. D. Patranabis, *Sensors and Transducers*, 2nd Ed., PHI Learning, 2013.
 R2. D. V. S. Murthy, *Transducers and Instrumentation*, 2nd Ed., PHI Learning, 2008.
 R3. E. O. Doeblin, *Measurement Systems - Applications and Design*, 6th Ed., McGraw Hill, 2007.
 R4. C. Rangan, G. Sarma, and V. S. V. Mani, *Instrumentation : Devices and Systems*, 2nd Ed., McGraw Hill, 2017.

Online Resources:

1. <https://nptel.ac.in/courses/108105088>: by Prof. S. Mukhopadhyay, IIT Kharagpur
2. <https://nptel.ac.in/courses/108105062>: by Prof. Mukhopadhyay and Sen, IIT Kharagpur
3. <https://nptel.ac.in/courses/108105064>: by Prof. A. Barua, IIT Kharagpur
4. <https://nptel.ac.in/courses/108108147>: By Prof. H. J. Pandya, IISc Bangalore

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Explain elements, characteristics and dynamic behavior of general measurement systems.
CO2	Describe resistive, capacitive and inductive sensing elements and their operating principles.
CO3	Explain thermoelectric, elastic and optical sensing elements and their measurement uses.
CO4	Analyze bridge circuits, modulation methods and signal conditioning techniques in measurement.
CO5	Apply operational and instrumentation amplifiers, filters, and demodulators in measurement.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2					2	2	1	1
CO2	3	3	3	2	2	2					2	3	2	3
CO3	3	3	3	3	2	2					3	3	1	2
CO4	2	2	2	2	2	2					2	2	3	2
CO5	3	3	3	2	2	2					2	2	2	3

Category	Code	Human Resource Information Systems	L-T-P	Credits	Marks
MNR	MG3003		3-0-0	3	100

Objectives	This course aims to provide the students with a managerial understanding of Human Resource Information Systems (HRIS) as enterprise platforms supporting workforce operations, talent management, and decision-making. Students will learn how HRIS integrates people data, business processes, and digital technologies to enable efficient HR services, compliance, and analytics in modern organizations.
Pre-Requisites	Basic understanding of organizational concepts and familiarity with information systems, databases, use of online tools & platforms is desirable.
Teaching Scheme	Regular classroom lectures with the use of ICT and advanced tools as and when required; sessions emphasize interactive discussions, real-world case studies, and practical application of human resource information systems concepts.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	HRIS Fundamentals & Enterprise Roles: HRIS, HRMS, HCM concepts and evolution, Overview of HR platforms, Enterprise system of record, Implementation lifecycle (strategy, design, build, test, deploy, support), High-level HRIS architecture, Requirements matrix, Core HR and employee master data, HR data architecture, Stakeholder roles (PM, architects, Security lead, Change manager) and interviews, Governance and ownership HRIS.	8 Hours
Module-2	Organizational Data & Talent Acquisition: Employee data model, Organization and job architectures, Matrix organization, Master and temporal data management, Employment types, Organizational hierarchy & reporting, ERD for core HR, Effective dating, Master data accuracy; Recruiting lifecycle (requisition, sourcing, screening, interviewing, offer, hire), Applicant tracking, Background checks, Assessment tools, Onboarding workflow, Swimlane diagrams, Candidate-to-employee data transition.	9 Hours
Module-3	Workforce Operations, Payroll & Benefits: Time and attendance systems, Workforce scheduling and leave management, Labor rule automation, Business rules engine, Time-to-payroll integration & challenges, Payroll process overview - earnings, deductions, pay cycles, Benefits administration overview - enrollment, life events, HRIS-payroll-benefits data flow, Employee data privacy and sensitivity.	8 Hours
Module-4	Performance, Learning & Rewards Systems: Performance management systems, SMART goal setting, Organization-individual alignment, OKRs, Feedback, Appraisal, Workflows, Performance-compensation linkage; LMS & HRMS integration, Skills & competency tracking, Career development, Succession and internal mobility; Salary structures, Merit and bonus planning, Pay equity, Total rewards.	9 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	HR Service Delivery, Integration & Analytics: HR service delivery and self-service systems, HR case management, Knowledge base usage, Chatbot-enabled support; HRIS security - role-based access, Data privacy, Regulatory awareness, Audit & compliance; Change management, Testing strategies; HRIS integration with enterprise systems, APIs & data exchange fundamentals; Operational reporting vs strategic analytics, HR dashboards, KPIs, Data-driven decision-making.	8 Hours
Total		42 Hours

Text Books:

- T1. M. J. Kavanagh, M. Thite, and R. D. Johnson, *Human Resource Information Systems: Basics, Applications, and Future Directions*, 4th Ed., Sage Publications, 2018.
- T2. S. M. Badgi, *Practical Guide to Human Resource Information Systems (HRIS)*, 1st Ed., PHI Learning, 2014.
- T3. P. M. Gupta, *HR Analytics: The Future of HR*, 1st Ed., BPB Publications, 2019.

Reference Books:

- R1. N. Khan, *Introduction to People Analytics: A Practical Guide to Data-Driven HR*, 1st Ed., Wiley India, 2020.
- R2. S. D. Waters, *The Practical Guide to HR Analytics*, 1st Ed., Society for Human Resource Management (SHRM)/Kogan Page, 2019.
- R3. C. Ostroff and A. Schweyer, *Winning on HR Analytics: Leveraging Data for Competitive Advantage*, 1st Ed., Pearson Education, 2016.

Online Resources:

1. <https://nptel.ac.in/courses/110107492>: By Prof. S. Rangnekar, Prof. A. Singh, IIT Roorkee, XLRI JSP
2. <https://nptel.ac.in/courses/110103626>: By Prof. A. C. Issac, IIT Guwahati
3. <https://nptel.ac.in/courses/110105069>: By Prof. A. Malik, IIT Kharagpur
4. <https://www.coursera.org/learn/wharton-people-analytic>
5. <https://www.coursera.org/learn/human-resources-analytics>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the role of HRIS as an enterprise system for workforce data and managerial decisions.
CO2	Analyze organizational and recruitment data structures used in HRIS for hiring and onboarding.
CO3	Describe workforce operations, payroll, and benefits enabled through integrated HRIS.
CO4	Evaluate performance, learning, and compensation systems using HRIS-based talent data.
CO5	Apply HRIS concepts for service delivery, system integration, security, and people analytics.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).

Cont'd...

PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1		2	2	1	1	2	1	1	1	2	2
CO2	2	3	2	1	2	1			1	1	1		2	2
CO3	2	2	3		2	2	1	1	1	2		1	2	2
CO4	2	2	2	1	2	1	1	1	1	2		1	2	2
CO5	2	2	2		3	3	2	2	3	2	2	2	3	3

Category	Code	Data Analytics with Python	L-T-P	Credits	Marks
MNR	MG3001		3-0-0	3	100

Objectives	The objective of this course is to learn the key aspects of business analytics and using Python as a programming tool for data analytics.
Pre-Requisites	Fundamentals of business analytics and python programming is required.
Teaching Scheme	Regular classroom lectures, power point presentations with use of ICT as required, with examples, real-life case studies, assignments and projects.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Review of Python: Features, variables, input, output, operators; Control flow statements - if, nested if, if-elif-else, Loops - while, for, error and exception handling; Data Structures - List, tuples, dictionary, Modules – Math, random, statistics, array, string.	7 Hours
Module-2	Data Wrangling with Python: Introduction to NumPy arrays and vectorized computation, array creation, indexing, slicing and reshaping; DataFrame operations in Pandas - importing data, handling missing values, merging, grouping, filtering and sorting; Basic data cleaning and transformation for analytical readiness.	9 Hours
Module-3	Visual Analytics with Python: Creating and customizing visualizations — line charts, bar plots, histograms, scatter plots, boxplots, heatmaps and pairplots; Use of Matplotlib for fine-tuned control and Seaborn for statistical visualization, Emphasis on aesthetics, storytelling with data and communicating analytical findings effectively.	8 Hours
Module-4	Exploratory Data Analysis with Python: Understanding data distributions, identifying outliers and detecting correlations; Techniques for data cleaning, normalization, encoding categorical variables and feature scaling; Generating descriptive statistics and correlation matrices; Applying EDA concepts to real-world datasets using Pandas and Seaborn.	9 Hours
Module-5	Applied ML with Scikit-Learn: Overview of supervised learning techniques using Scikit-learn, Splitting datasets, Fitting models, Evaluating simple regression and classification models; Introduction to metrics - Accuracy, MAE, and R ² ; Mini-project with data cleaning, visualization, and basic modeling using Python tools.	9 Hours
Total		42 Hours

Text Books:

T1. J. Rogel-Salazar, *Data Science and Analytics with Python*, 1st Ed., CRC Press, 2017.
 T2. W. McKinney, *Python for Data Analysis*, 3rd Ed., O'Reilly Media, 2022.

Reference Books:

R1. J. Vanderplas, *Python Data Science Handbook*, 1st Ed., O'Reilly Media, 2016.
 R2. J. Grus, *Data Science from Scratch: First Principles with Python*, 2nd Ed., O'Reilly Media, 2019.
 R3. A. Géron, *Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow*, 3rd Ed., O'Reilly Media, 2022.

Online Resources:

1. <https://nptel.ac.in/courses/110107129>: by Prof. G. Dixit, IIT Roorkee
2. <https://nptel.ac.in/courses/106107220>: By Prof. A. Ramesh, IIT Roorkee
3. <https://nptel.ac.in/courses/106106361>: by Prof. S. K. Mathew, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Recall Python fundamentals, control structures and data types and solve analytical problems.
CO2	Apply NumPy and Pandas for data handling, cleaning, and transformation for analysis.
CO3	Design and interpret effective visualizations using Matplotlib and Seaborn to uncover insights.
CO4	Perform EDA with data preprocessing, and correlation analysis to derive meaningful insights.
CO5	Integrate data handling, visualization, and modeling to build and assess predictive workflows.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	2	2						2	2	1	1
CO2	2	2	2	3	2						3	3	2	2
CO3	2	2	3	3	2						3	3	3	2
CO4	2	3	3	3	2						3	3	2	2
CO5	2	3	3	3	3						3	3	3	3

Category	Code	Control Systems Engineering Lab	L-T-P	Credits	Marks
PCR	EE3005		0-0-2	1	100

Objectives	The objective of the course is to model systems using transfer functions and state-space methods, analyze them in time and frequency domains via simulation, implement physical systems, and design controllers and compensators.
Pre-Requisites	Knowledge of Dynamic equations of physical systems, Basic Electrical Engineering, Laplace Transform, and Matrix Theory is required.
Teaching Scheme	Regular laboratory experiments to be conducted using hardware and software tools under the supervision of teachers. Demonstration will be given for each experiment in the pre-lab session.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study of Position control system using DC Servo motor and determination of its transfer function.
2	Study the characteristics of Synchro Transmitter and Receiver.
3	Observe the time response of a second order process with P, PI and PID controller using process control simulator.
4	Analyze a 2nd order system by plotting its step response using simulation and programming.
5	Verify the effect of P, PI, PD and PID Controller of a 2nd order system using simulation and programming.
6	Study of speed-torque and speed-voltage characteristics of two-phase ac servomotor and determination of its transfer function.
7	Determination of controllability and observability of a given system using simulation and programming.
8	Stability analysis of a given system using time domain and frequency domain plots using simulation and programming.
9	Study of frequency response of compensator networks and analysis of system stability with compensator using simulation and programming.
10	Study the frequency response of lead, lag compensator networks.
11	Study and validate the controllers (ON/OFF and PID) for a temperature control system.
12	Obtain reduced order model of a higher order system using simulation and programming.

Text Books:

T1. I. J. Nagrath and M. Gopal, *Control Systems Engineering*, 5th Ed., New Age Intl., 2010.
 T2. K. Ogata, *Modern Control Engineering*, 5th Ed., PHI Learning, 2010.

Reference Books:

R1. B. C. Kuo, *Automatic Control Systems*, 7th Ed., Prentice Hall India, 2010.
 R2. R. C. Dorf and R. H. Bishop, *Modern Control Systems*, 8th Ed., Addison Wesley, 2003.
 R3. U. A. Bakshi and V. U. Bakshi, *Control System Engineering*, 1st Ed., Technical Publications, 2010.

Online Resources:

1. <https://nptel.ac.in/courses/108102043/>: by Prof. M. Gopal, IIT Delhi
2. <https://nptel.ac.in/courses/108106098/>: by Prof. R. Pasumarthy, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze control components' parameters and transfer functions and their real-world use.
CO2	Describe the compensator design and their applications across interdisciplinary systems.
CO3	Classify linear and nonlinear control actions and apply suitable schemes in industry.
CO4	Differentiate between transfer function and state-space models of systems using software.
CO5	Analyze & compare first- & second-order system performance in time domain using software.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2					2	3	1	
CO2	3	3	2	2	3	2					2	3	2	1
CO3	3	3	2	2	3	2					3	3	1	
CO4	2	2	1	2	2	2					2	2	1	
CO5	2	2	1	2	3	2					3	3	2	1

Category	Code	Power Electronics Lab	L-T-P	Credits	Marks
PCR	EE3006		0-0-2	1	100

Objectives	The objective of this course is to provide practical exposure on analysis, design & testing of power electronics converters along with application of semiconductor devices for conversion & control of electrical energy.
Pre-Requisites	Knowledge of electrical components, semiconductor devices, analysis of electrical & magnetic circuits is required. Topics taught in theory classes are essential.
Teaching Scheme	Regular laboratory experiments to be conducted under supervision of teacher including demonstration, associated safety measures explained in pre-lab sessions.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study the V-I characteristics of SCR & to measure the latching & holding current of a SCR.
2	Study of the V-I characteristics of UJT.
3	Study of the V-I characteristics of TRIAC.
4	Study of UJT triggering circuit & cosine controlled triggering circuit.
5	Study of single phase half & full wave (Bridge type) controlled rectifier with R & R-L Load.
6	Study of the single phase full wave controlled rectifier (Mid-point type) & semi-converter with R & R-L Load.
7	Study of 3 phase full wave controlled rectifier (Full and Semi converter) with R & R-L Load.
8	Study of the forward converter & flyback converter.
9	Study of the single-phase voltage source inverter with Sinusoidal pulse width modulation.
10	Study of dual converter in (i) circulating & (ii) non-circulating current modes.
11	Simulate various power electronics converter circuits & study their performance.

Text Books:

- T1. M. H. Rashid, *Power Electronics: Devices, Circuits, and Applications*, 4th Ed., Pearson Education, 2017.
- T2. P. S. Bhimbra, *Power Electronics*, 6th Ed., Khanna Publishers, 2014.

Reference Books:

- R1. M. D. Singh and K. B. Khanchandani, *Power Electronics*, 2nd Ed., McGraw-Hill, 2017.
- R2. P. C. Sen, *Power Electronics*, 1st Ed., McGraw Hill India, 2001.

Online Resources:

1. <https://nptel.ac.in/courses/108102145>: by Prof. G. Bhuvaneshwari, IIT Delhi
2. <https://nptel.ac.in/courses/108101126>: by Dr. L Umanand, IISc Bangalore
3. <https://nptel.ac.in/courses/108105066>: by Prof. D. Kastha, and others, IIT Kharagpur
4. <https://nptel.ac.in/courses/108101038>: by Prof. B. G. Fernandes and Prof. K. Chatterjee, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Interpret characteristics and triggering circuits of SCR, UJT, and TRIAC.
CO2	Analyze various power electronics converters.
CO3	Evaluate the performance of Dual converter and its applications.
CO4	Simulate different power electronic converters.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1					1	3	2	
CO2	3	2	2	3	3	1					1	3	3	2
CO3	3	2	2	2	3	2					1	3	2	2
CO4	3	2	2	2	3	2					1	3	2	1

Category	Code	Electrical & Electronics Measurement Lab	L-T-P	Credits	Marks
PCR	EE3007		0-0-2	1	100

Objectives	The objective of the course is to learn the constructional features, working principle, testing and calibration of measuring instruments and measuring techniques.
Pre-Requisites	Basic knowledge of electrical components, analysis techniques of electrical and magnetic circuits. Topics taught in the theory classes are essential.
Teaching Scheme	Regular laboratory experiments conducted under supervision of the teacher including demonstration of associated safety measures.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Measurement of Low Resistance by Kelvin's Double Bridge Method.
2	Measurement of Self Inductance using Anderson's Bridge.
3	Measurement of unknown capacitance & loss factor using Schering Bridge.
4	Measurement of unknown inductance & capacitance value using Q-meter.
5	Calibration of Voltmeters & Ammeters using Crompton Potentiometer.
6	Measurement of Power in a single-phase circuit by using CTs & PTs.
7	Measurement of energy of single-phase circuit using Smart Energy Meter.
8	Measurement of temperature-voltage characteristics of J-type Thermocouple.
9	To study the temperature vs resistance characteristics of thermistor.
10	To plot the displacement versus voltage characteristic of the given LVDT

Text Books:

- T1. E. W. Golding and F. C. Widdis, *Electrical Measurements and Measuring Instruments*, 5th Ed., Reem Publication, 2015.
- T2. A. K. Sawhney, *A Course in Electrical and Electronics Measurement and Instrumentation*, 19th Ed., 2011.
- T3. R. K. Rajput, *Electrical and Electronic Measurement and Instrumentation*, S Chand & Co, 2016.

Reference Books:

- R1. D. A. Bell, *Electronic Instrumentation and Measurements*, 3rd Ed., Oxford University Press, 2013.
- R2. A. D. Helfrick and W. D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, 1st Ed., Pearson Education, 2015.

Online Resources:

1. <https://nptel.ac.in/courses/108102191>: by Prof. A. Gupta, IIT Delhi

P.T.O

Course Outcomes: At the end of this course, the students will be able to:

CO1	Estimate the values of R, L & C accurately employing suitable bridges.
CO2	Measure power and energy with suitable measuring instruments.
CO3	Select appropriate electronic instruments for various measurements.
CO4	Explore the applications of various electronic instruments, sensors and transducers.
CO5	Utilize the electronic instruments, sensors and transducers in the real world applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	1	2							1	3	2	2
CO2	1	1	1	2							1	3	2	1
CO3	1	1	2	2							2	2	3	2
CO4	1	1	2	3							2	2	3	3
CO5	1		2	3							3	2	3	3

Category	Code	Soft Skills for Professionals	L-T-P	Credits	Marks
SEC	HS3001		0-0-2	1	100

Objectives	The objective of this laboratory course is to make learners understand aspects of soft skills, which are essential for all professionals, by making them participate in mock GD, PI, presentations & verbal ability tests.
Pre-Requisites	Knowledge of Technical Communication in English is required.
Teaching Scheme	Regular laboratory classes with various tasks designed to facilitate communication through pair and/or team activities with regular assessments, presentations, discussions, role plays, audio-visual supplements, writing activities, business writing practices & vocabulary enhancement.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	GD input and discussion
2	Mock GD 1: Content Development
3	Mock GD 2: Group Behaviour
4	GD test
5	Presentation inputs and discussions
6	PPT I
7	PPT II
8	PPT III
9	PPT IV
10	Writing an effective résumé
11	Mock PI I
12	Mock PI II
13	Verbal Ability I
14	Verbal Ability II

Text Books:

T1. B. K. Mitra, *Personality Development and Soft Skills*, 3rd Ed., Oxford University Press, 2024.

Reference Books:

R1. B. K. Das et. al., *An Introduction to Professional English and Soft Skills*, Cambridge University Press, 2009.

R2. B. K. Mitra, *Effective Technical Communication - A Guide for Scientists and Engineers*, 1st Ed., Oxford University Press, 2006.

Online Resources:

1. <https://nptel.ac.in/courses/109107121>: by B. Mishra, IIT Roorkee
2. https://owl.purdue.edu/owl/purdue_owl.html
3. <https://www.usingenglish.com/>
4. <http://www.english-test.net/>

5. <https://www.ef.com/wwen/english-resources/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand and practice vital soft skills for professional success.
CO2	Participate actively in recruitment related group discussions.
CO3	Understand aspects of public speaking and apply them to make impactful multimedia presentations.
CO4	Compose compelling résumés and persuasive cover letters.
CO5	Perform efficiently and effectively in job interviews.

Program Outcomes Relevant to the Course:

PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1						3	2	3	3		2	1	1	1
CO2							2	3	3		2	1	1	1
CO3							2	3	3		2	1	1	1
CO4							2	3	3		2	1	1	1
CO5							3	3	3		2	1	1	1

Category	Code	Fundamentals of MPMC	L-T-P	Credits	Marks
PCR	EC3038		3-0-0	3	100

Objectives	The objective of this course is to analyze various microprocessors & microcontrollers, develop assembly-level programs, and interface with other external devices as per the requirements.
Pre-Requisites	Basic knowledge of digital electronics circuits is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on theory and programming activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Introduction to 8085 microprocessor and its organization, General architecture, Bus organization, Memory concepts, Pins and Signals, Instruction execution, Timing diagram, Instruction Set and Programming, Addressing modes, Interrupts, memory and I/O interfacing.	9 Hours
Module-2	Intel 8086 Microprocessor: Bus interface unit, Execution unit, Register organization, Memory segmentation, Pin architecture, Minimum and Maximum mode system configuration, Physical memory organization, Interrupts, Addressing modes, Instructions.	8 Hours
Module-3	The 8051 Microcontroller: Introduction to Microcontroller, CISC & RISC Processors, MCS-51 Architecture, Registers in MCS-51, 8051 Pin description, Memory organization, 8051 Addressing modes, MCS-51 Instruction set, 8051 Instructions and simple programs, Interrupts in MCS-51, Special function registers, Assembly language programming.	9 Hours
Module-4	Microcontroller Applications: 8051 Timers and Counters, Serial communication, I/O Interfacing using 8255, Light emitting diodes (LEDs), Push buttons, Relays and latch connections.	8 Hours
Module-5	Interfacing with Peripheral ICs: System level interfacing design with various ICs like 8255 Programmable peripheral interface, 8257 DMA Controller, 8259 Programmable interrupt controller, 8251 Programmable communication interface.	8 Hours
Total		42 Hours

Text Books:

- T1. M. Rafiquzzaman, *Microprocessors and Microcomputer based System Design*, 2nd Ed., UBS Publications, 2001.
- T2. K. M. Bhurchandi and A. K. Ray, *Advanced Microprocessors and Peripherals*, 3rd Ed., McGraw-Hill Education, 2012.
- T3. M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, *The 8051 Microcontroller and Embedded Systems : Using Assembly and C*, 2nd Ed., Pearson Education, 2011.

Reference Books:

- R1. R. S. Gaonkar, *Microprocessor Architecture, Programming, and Applications with the 8085*, 6th Ed., Penram International Publishing, 2013.

R2. B. Ram, *Fundamentals of Microprocessors and Microcontrollers*, 9th Ed., Dhanpat Rai Publications, 2019.

R3. K. Ayala, *The 8086 Microprocessor : Programming & Interfacing the PC*, 1st Ed., Delmar Cengage Learning, 2007.

Online Resources:

1. <https://nptel.ac.in/courses/106108100>: by Prof. K. Kumar, IISc Bangalore
2. <https://nptel.ac.in/courses/108107029>: by Dr. P. Agarwal, IIT Roorkee
3. <https://nptel.ac.in/courses/108105102>: by Prof. S. Chattopadhyay, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze 8085 microprocessor architecture, instruction set, addressing, and I/O interfacing.
CO2	Comprehend 8086 microprocessor architecture, memory segmentation, and instruction set.
CO3	Develop assembly programs using 8051 microcontroller, its instruction set, and addressing.
CO4	Apply 8051 timers, serial communication, and I/O interfacing for practical applications.
CO5	Implement system-level interfacing with peripheral ICs like 8255, 8257, 8259, and 8251.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1	1		1				1	2	1	1
CO2	3	3	2	3	2		1				1	3	2	1
CO3	3	3	2	2	2		1				1	3	2	1
CO4	3	3	2	2	2		1				1	3	3	2
CO5	2	2	3	2	2		1				1	2	3	1

Category	Code	Power Systems Operation & Control	L-T-P	Credits	Marks
PCR	EE3008		3-1-0	4	100

Objectives	The objective this course is to learn key aspects of power system operation and control in both single-area and interconnected systems including load flow methods, economic operation of power systems and strategies for maintaining frequency and voltage within acceptable limits.
Pre-Requisites	Basic knowledge of power system transmission and distribution, electrical machines and circuit theory is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with a strong emphasis on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction to Power Systems: Single & Double Subscript Notations, Complex Power, Power Triangle, Direction of Power Flow, Per-Unit System, Single Line Diagram, Impedance and Reactance Diagram, Formation and Modification of YBUS Matrix, Incidence matrix, Y-Bus From Incidence Matrix, Gaussian Elimination, Node Elimination, Triangular Factorization, Sparsity.	12 Hours
Module-2	Power Flow Solution: The Power Flow Problem, Gauss-Seidel Method, Newton-Raphson Method, Decoupled Power Flow, Power Flow Studies in System Design and Operations, Load Flow Analysis With Distributed Sources.	10 Hours
Module-3	Economic Operation of Power System: Load distribution between units within a plant and between plants, transmission loss equation, interpretation of loss coefficients, classical economic dispatch with losses, penalty factors, unit commitment, dynamic programming; Introduction to Hydro-thermal Scheduling.	11 Hours
Module-4	Automatic Load Frequency Control (ALFC): Single-Area Systems - Load-frequency relationship, speed-governing system, Hydraulic valve actuator, Turbine-generator response, Static performance of speed governor, Closing the ALFC loop, Concept of control area, Static & Dynamic response of ALFC loop, Physical interpretation of results, Secondary ALFC loop & Economic dispatch control, Multi-Area Systems - Two-area systems, Block diagram & Mechanical analog of two-area systems, Control of multi-area systems; Automatic Voltage Regulator (AVR): Exciter Types, Exciter & Generator Modelings, Static & Dynamic Performance Of AVR Loop, Effect of Generator Loading.	12 Hours
Module-5	Power System Stability: The stability problem, rotor dynamics and the swing equation, Further considerations of the swing equation, Power angle equation, Synchronizing power coefficient, Equal-area criterion for stability, Additional applications of the equal-area criterion and multi-machine stability studies using the classical representation. Numerical Solution Of Swing Equation (SMIB system).	11 Hours
Total		56 Hours

Text Books:

T1. J. J. Grainger and W. D. Stevenson, **Power System Analysis**, 1st Ed., McGraw-Hill, 2017.
 T2. H. Sadaat, **Power System Analysis**, McGraw-Hill Education, 2002.

Reference Books:

R1. O. I. Elgerd, **Electric Energy Systems Theory - An Introduction**, 2nd Ed., McGraw-Hill, 2017.
 R2. D. P. Kothari and I. J. Nagrath, **Modern Power System Analysis**, 4th Ed., Tata McGraw-Hill, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/108105067>: by Prof. A. K. Sinha, IIT Kharagpur
2. <https://nptel.ac.in/courses/108107127>: by Dr. V. Pant & Dr. B. Das, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Construct admittance matrix and evaluate per-unit representation of power systems.
CO2	Analyze power flow, compute transmission losses, and optimize economic generation.
CO3	Apply economic dispatch and unit commitment techniques for efficient power system operation.
CO4	Examine load frequency and voltage regulation in single and multi-area power control systems.
CO5	Analyze rotor angle stability and estimate critical clearing time for stable power operation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1		2	2					1	2		
CO2	3	3	1		2	2					1	3	1	
CO3	3	3	1		2	2					2	2		
CO4	3	3	2		3	2					2	3	2	2
CO5	3	3	2		2	2					1	2	1	3

Category	Code	Introduction to Digital Signal Processing	L-T-P	Credits	Marks
PCR	EC3009		3-0-0	3	100

Objectives	The objective of this course is to analyze signals and systems in time and frequency domains, apply Z and Fourier transforms and design stable IIR & FIR digital filters for various signal processing applications.
Pre-Requisites	Knowledge of signals & systems, complex numbers and basic calculus is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Signals & Systems: Introduction to signals, Classification, Convolution of two signals (graphical & analytical), Introduction to system, Classification, Continuous-time and Discrete-time LSI system, System representation through differential & difference equations, Response of LSI system, Convolution sum, Correlation of discrete-time signals and its properties.	9 Hours
Module-2	Discrete Time Signals: Z-Transform, Region of convergence, Properties of Z-transform, Inverse Z-transform (power series & partial fraction methods); Analysis of LSI systems - Causality and stability using Z-transform, Pole-Zero concept and pole-zero cancellation, Transient & Steady state response, Unilateral Z-transform and its properties, Solution of difference equations.	9 Hours
Module-3	Discrete Fourier Transform: Basics of discrete time Fourier transform (DTFT), Frequency domain sampling and reconstruction of discrete time signals, Discrete Fourier Transform (DFT) and its properties, Linear filtering (overlap add method and overlap save method), Efficient computation of DFT, Fast Fourier transform (FFT) Algorithm (Radix-2 DIT & Radix-2 DIF).	8 Hours
Module-4	Structure for Realization of Discrete Time Systems: Structure for IIR systems - Direct form I, Direct form II, Cascade & Parallel form, Signal flow graph and transposed structure, Structure for FIR systems, Direct form, cascade form and frequency sampling structure.	8 Hours
Module-5	Design of Digital Filters: Causality and its implication, Design of FIR filters, Symmetric & Anti-symmetric, Design of linear phase FIR filters using windowing technique and frequency sampling technique, Design of IIR filters from analog filters using impulse invariance and bilinear transformation techniques.	8 Hours
Total		42 Hours

Text Books:

- T1. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, *Signals and Systems*, 2nd Ed., Prentice Hall India, 1992.
- T2. B. P. Lathi, *Principles of Signal Processing and Linear Systems*, 2nd Ed., Oxford Univ. Press, 2009.
- T3. J. G. Proakis and D. G. Manolakis, *Digital Signal Processing : Principles, Algorithms and Applications*, 4th Ed., Prentice Hall India, 2007.
- T4. S. K. Mitra, *Digital Signal Processing : A Computer Based Approach*, 4th Ed., McGraw-Hill, 2013.

Reference Books:

- R1. A. Ambardar, *Analog and Digital Signal Processing*, 2nd Ed., Brooks/Cole Publishing Company (an International Thomson Publishing Company), 1999.
- R2. M. J. Roberts, *Signals and Systems - Analysis using Transform Methods and MATLAB*, 2nd Ed., McGraw-Hill, 2003.
- R3. A. N. Kani, *Signals and Systems*, 2nd Ed., McGraw-Hill Education, 2010.
- R4. A. N. Kani, *Digital Signal Processing*, 2nd Ed., McGraw-Hill Education, 2012.
- R5. P. R. Babu, *Digital Signal Processing*, 4th Ed., SciTech Publication, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/117104074>: by Prof. K. S. Venkatesh, IIT Kanpur
2. <https://nptel.ac.in/courses/108105065>: by Prof. T. K. Basu, IIT Kharagpur
3. <https://nptel.ac.in/courses/108104100>: by Prof. A. K. Jagannatham, IIT Kanpur
4. <https://nptel.ac.in/courses/117101055>: by Prof. V. M. Gadre, IIT Bombay

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze and classify signals and systems using convolution, correlation and equations.
CO2	Apply Z-transform to analyze discrete-time systems for stability and system response.
CO3	Analyze discrete signals using DFT, FFT algorithms, and frequency domain methods.
CO4	Design and realize discrete-time systems using various IIR and FIR structures.
CO5	Design FIR and IIR digital filters using windowing, frequency sampling, and transformation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	3	2	2						1	2	2	2
CO2	2	2	2	2	2						2	2	1	1
CO3	2	2	1	2	1						2	1	1	1
CO4	1	3	3	2	2						2	2	1	2
CO5	2	2	2	1	1						1	2	1	2

Category	Code	Flexible AC Transmission Systems	L-T-P	Credits	Marks
PEL	EE3013		3-0-0	3	100

Objectives	The objective of this course is to study the reactive power control techniques, shunt and series compensation, static VAR compensators and their applications, including Thyristor controlled series capacitors, STATCOM devices and FACTS controllers.
Pre-Requisites	Knowledge of Power Electronics and Power Systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: FACTS Concept & General System Considerations, Power Flow and Dynamic Stability, Considerations of a Transmission Interconnection, Relative Importance of Controllable Parameters, Types of FACTS Controllers, Description and Definitions of FACTS Controllers.	6 Hours
Module-2	Static Shunt Compensation: Objectives of Shunt Compensation, Methods of Controllable VAR Generation, Static VAR Compensator (SVC) and Static Compensator (STATCOM).	11 Hours
Module-3	Static Series Compensators: Objective of Series Compensation, Thyristor Switched Series Compensator (TSSC), Thyristor Controlled Series Compensator (TCSC), Variable Impedance Type Series Compensator, Switching Converter Type Series Compensator, Static Synchronous Series Compensator (SSSC).	10 Hours
Module-4	Static Voltage & Phase Angle Regulators: Objectives of Voltage and Phase Angle Regulators, Approaches to Thyristor Controlled Voltage Regulators (TCVR) and Thyristor Controlled Phase Angle Regulators (TCPAR).	10 Hours
Module-5	Combined Compensators: Introduction, Unified Power Flow Controller (UPFC), Interline Power Flow Controller (IPFC).	4 Hours
Total		42 Hours

Text Books:

T1. N. G. Hingorani and L. Gyugyi, *Understanding FACTS: Concepts & Technology of Flexible AC Transmission Systems*, 2nd Ed., IEEE Press, Standard Publishers Distributors, 2004.

Reference Books:

R1. K. R. Padiyar, *Facts Controllers in Power Transmission and Distribution*, 2nd Ed., New Age International, 2016.
 R2. E. Acha, C. F. Esquivel, H. A. Pérez, and C. A. Camacho, *Modelling & Simulation in Power Networks*, 1st Ed., Wiley India, 2012.

Online Resources:

1. <https://nptel.ac.in/courses/108107114>: by Prof. A. Bhattacharya, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe power flow control, dynamic stability, and operation of various FACTS controllers.
CO2	Analyze shunt compensation techniques and performance of SVC and STATCOM controllers.
CO3	Analyze objectives & operating principles of series compensators like TSSC, TCSC, and SSSC.
CO4	Evaluate operation of TCVR and TCPAR for effective voltage and phase angle regulation.
CO5	Explore operation of UPFC & IPFC for effective series and shunt compensation in power systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2						2	2	2	1
CO2	2	2	1	1	1						1	2	3	1
CO3	2	2	1	1	1						1	2	3	1
CO4	2	2	1	1	1						1	2	3	1
CO5	2	1	1	1	1						1	2	3	1

Category	Code	Advanced Power Electronics	L-T-P	Credits	Marks
PEL	EE3018		3-0-0	3	100

Objectives	The objective of this course is to learn the advanced topics in power electronics including rectifiers, inverters, resonant and soft-switching converters, power converters and its industrial applications.
Pre-Requisites	Knowledge of circuit topology, analysis of switching circuits, magnetics, power electronics, semiconductor devices and basic simulation skill is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on advanced topics of power electronics.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Non-isolated DC-DC Converters: Buck, Boost, Buck-boost, Cuk, SEPIC (single-ended primary-inductor converter), Isolated DC-DC converters (Switched Mode Power Supplies (SMPS)): Forward converter, Flyback converter, Half bridge converter, Full bridge converter, Push-pull converter.	12 Hours
Module-2	Resonant Converters: Series resonant converters, Parallel resonant converters, Zero-voltage-switching(ZVS) resonant converters, Zero-current switching(ZCS) resonant converters, Resonant DC-link converters.	7 Hours
Module-3	Switched Mode AC Power Supplies: UPS systems, Resonant AC power supplies, Control techniques (PWM controller & isolation in feedback loop).	5 Hours
Module-4	Inverters: Voltage Source Inverters (VSIs), Pulse width modulation (PWM) techniques - Sine PWM (SPWM), Selected harmonic elimination PWM (SHEPWM), Space vector PWM (SVPWM), Hysteresis band current controlled PWM; Three level inverters, Resonant inverters, Soft switched inverters; Current Source Inverters (CSIs) - Load commutated inverters, Forced commutated inverters.	12 Hours
Module-5	AC Voltage Controllers: AC voltage controllers with PWM control; Applications - HVDC transmission, Active harmonic filter, Grid integration of renewable energy sources with energy storage system.	8 Hours
Total		44 Hours

Text Books:

- T1. M. H. Rashid, **Power Electronics**, 3rd Ed., PHI Learning, 2008.
- T2. N. Mohan, T. M. Undeland, and W. P. Robbin, **Power Electronics : Converters, Applications and Design**, 3rd Ed., Wiley India, 2012.
- T3. B. K. Bose, **Modern Power Electronics and AC Drives**, 1st Ed., Pearson Education, 2005.

Reference Books:

- R1. B. W. Flynn and D. E. Macpherson, **Switched Mode Power Supplies : Design and Construction**, 2nd Ed., Universities Press, 1997.

Online Resources:

1. <https://nptel.ac.in/courses/108102584>: by Prof. B. Singh, IIT Delhi
2. <https://nptel.ac.in/courses/108107128>: by Prof. A. Bhattacharya, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe the working of isolated and non-isolated type DC-DC converter with its analysis.
CO2	Explain operating principles & characteristics of major resonant converters in power systems.
CO3	Design and analyze various AC power supplies with their control techniques.
CO4	Analyze advanced inverter operation and PWM for soft-switching in power electronics.
CO5	Apply AC voltage controllers and power electronics devices in various real world scenarios.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	2						1	3	2	
CO2	3	2	2	3	3						1	3	3	2
CO3	3	1	2	2	3						1	3	2	2
CO4	3	2	2	2	3						2	3	2	1
CO5	3	3	3	3	2						3	2	2	1

Category	Code	Fiber Optic Communications	L-T-P	Credits	Marks
PEL	EC3015		3-0-0	3	100

Objectives	The objective of this course is to study various modes, configurations and transmission characteristics of optical fibers including fiber fabrications, optoelectronic sources, photo detectors, optical modulators, optical amplifiers and various types of optical networks.
Pre-Requisites	Basic knowledge of physics, particularly ray optics, and electromagnetic wave propagation through waveguides is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Fundamentals of fiber optics, Different generations of optical fiber communication systems, Optical fiber structure, Fiber types, Step index fiber, Graded index fiber, Basic optical laws and definitions, Ray propagation, Total internal reflection, Numerical aperture, Acceptance angle, Wave propagation in planar and cylindrical waveguides, Modal concept, V-number, Power flow in step and graded index fibers.	9 Hours
Module-2	Transmission Characteristics: Attenuation (absorption, scattering, and bending) and dispersion (inter and intramodal, chromatic, wave guide and polarization), Dispersion shifted and Dispersion flattened fibers; Optical Fiber Cables and Connections: Fiber fabrication, Double crucible method, Fiber optic cables, Connector and splice, Losses during coupling between source to fiber, fiber to fiber; Schemes for coupling improvement.	9 Hours
Module-3	Optical Sources & Detectors: Sources - Intrinsic and extrinsic materials - direct and indirect band gaps, LED: LED structures, Surface emitting and edge emitting LED, LED quantum efficiency, Modulation response of an LED, Injection LASER Diodes (ILDs) - Threshold conditions, LASER modes, Modulation response of ILDs, Optoelectronic Detectors - PIN AND APD, Responsivity, Band width, Detector noise equivalent circuit and SNR calculation.	8 Hours
Module-4	Opto-electronic Modulators: Basic principles, Electro-optic modulators - Electro-optic effect, Longitudinal modulator, Transverse modulator; Acousto-optic modulators - Raman-Nath modulator, Bragg modulator; Optical Amplifiers: Introduction, General applications of optical amplification, Semiconductor optical amplifier (SOA) - Characteristics, Limitations, Basic principles and Optical gain, Erbium-doped fiber amplifier (EDFA) - Characteristics, Operating principle and Optical gain.	8 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	WDM Components & Optical Switching: WDM concept, Couplers, Isolators, Circulators, Filters, Optical Cross-connect (OXC), Optical Add/Drop Multiplexing (OADM); Optical Networks: Elements of optical Networks - SONET/SDH, Optical interfaces, SONET/SDH Rings, SONET/SDH Networks, Optical Ethernet.	8 Hours
Total		42 Hours

Text Books:

T1. G. Keiser, *Optical Fiber Communications*, 4th Ed., Tata McGraw-Hill, 2013.
 T2. J. M. Senior, *Optical Fiber Communication: Principles and practice*, 3rd Ed., Prentice Hall of India, 2009.

Reference Books:

R1. G. P. Agarwal, *Fiber-Optic Communication Systems*, 4th Ed., John Wiley & Sons, 2011.
 R2. R. P. Khare, *Fiber Optics and Optoelectronics*, Oxford University Press, 2004.

Online Resources:

- <https://nptel.ac.in/courses/117104127>: by Dr. P. Kumar, IIT Kanpur.
- <https://nptel.ac.in/courses/108106167>: by Prof. D. Venkitesh, IIT Madras.

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe fundamentals of fiber optics, modal concepts, and wave propagation in fibers.
CO2	Analyze transmission, connection, and coupling losses in optical fibers and cables.
CO3	Analyze principles, characteristics, and performance of optical sources and detectors.
CO4	Compare performance and characteristics of various optical modulators and amplifiers.
CO5	Apply WDM components and optical network elements for designing specific applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

Cont'd...

PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1		1			1		2	2	1	1
CO2	3	3	3	2		1			1		2	3	1	2
CO3	3	3	3	2		1			1		2	3	1	2
CO4	3	2	3	2		1			1		2	3	1	2
CO5	3	2	3	2		1			2		3	3	2	1

Category	Code	Power System Protection	L-T-P	Credits	Marks
PEL	EE3014		3-0-0	3	100

Objectives	The objective of this course is to learn the key aspects of power system protection, identify symmetrical/unsymmetrical fault conditions, calculation of the fault current, breaking the circuit and limiting the faulted zone.
Pre-Requisites	Basic knowledge of power system transmission and distribution, characteristics of different types of lines, and real and reactive power requirements is necessary.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Faults & Fault Analysis: Introduction, Causes and effects of faults, Zones of protection, Primary and backup protection, Desirable qualities of protective relaying, Connection of trip circuit; Symmetrical & unsymmetrical faults, LLL & LLL-G fault, Positive, Negative and zero sequence components, Fault calculation, LG Fault, LL & LLG Fault, Short circuit analysis.	10 Hours
Module-2	Relaying & Protection: Classification of relays, Relay pick up, Reset or drop out, pick-up/drop-off ratio, Construction & working principles of electromagnetic relays, Theory of induction relay torque, General equation of electromagnetic & comparator relays; Over current, Differential, and Distance protection, Carrier-aided protection of transmission lines.	8 Hours
Module-3	Apparatus Protection: Transformer Protection – Types of faults, Percentage differential protection, Inrush phenomenon, High resistance ground faults, Inter-turn and Incipient faults; Generator Protection – Various faults and abnormal operation conditions, Stator & rotor faults, Transverse differential protection, Unbalanced loading, Over speeding, Loss of excitation, Loss of prime mover; Induction Motor Protection – Various faults and abnormal operation conditions, Starting of induction motor, Protection of small & large induction motor.	8 Hours
Module-4	Circuit Breaking: Fundamentals, Circuit breaker rating, Circuit constants and circuit conditions, Re-striking voltage transients, Characteristics of re-striking Voltage, Interaction between the breaker and circuit, Current chopping, Duties of switchgear; Conventional and Modern Circuit Breakers - Types of circuit breaker – Automatic switch, Air-break, Oil circuit and Air-blast circuit, SF6, Vacuum & DC circuit breakers.	8 Hours
Module-5	Static Relays: Comparators and different relays, Amplitude comparator, Phase comparator, Coincidence type phase comparator, Basic elements of a static relay, O.C. relays, Differential protection, Static distance protection; Numerical Relays – Block diagram, Numerical over-current protection, Numerical transformer differential protection, Numerical distance protection of transmission line.	8 Hours
Total		42 Hours

Text Books:

T1. Y. G. Parithankar and S. R. Bhide, ***Fundamentals Of Power System Protection***, 2nd Ed., PHI Learning, 2010.

T2. B. Ravindranath and M. Chander, ***Power System Protection and Switchgear***, 2nd Ed., New Age International, 2018.

Reference Books:

R1. A. G. Phadke and J. S. Thorp, ***Computer Relaying for Power Systems***, 2nd Ed., Wiley, 2012.

R2. S. S. Rao, ***Switchgear and Protection***, 1st Ed., Khanna Publishers, 2019.

Online Resources:

1. <https://nptel.ac.in/courses/108101039/>: by Prof. S. A. Soman, IIT Bombay

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply symmetrical component to analyze different types of faults in the power system.
CO2	Analyze relay types, principles, and applications for effective power system protection.
CO3	Evaluate protection needs and fault-handling methods for transformers, generators, and motors.
CO4	Explain operation, selection, and rating of various circuit breakers used in power protection.
CO5	Explore static and numerical relays with modern techniques for efficient power protection.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1	3						1	3	2	
CO2	2	2	1	1	2						2	3	2	1
CO3	2	3	1	2	2						2	3	2	2
CO4	3	3	2	2	3						2	2	3	2
CO5	3	2	3	3	2						3	2	3	3

Category	Code	Advanced Control Systems	L-T-P	Credits	Marks
PEL	EE3015		3-0-0	3	100

Objectives	The objective of this course is to study the concepts of discrete-time and non-linear control systems, state-space analysis, design of compensators for control systems and determine the performance using different measures.
Pre-Requisites	Basic knowledge on mathematics, digital signal processing and control system engineering is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Digital Control System: Sample and Hold, A/D & D/A conversion. Z-transform, Inverse Z-transform, Z-Transform method for solving difference equations, Impulse sampling and Data hold, Sampling theorem, Folding, Aliasing, Pulse transfer function, Mapping between s-plane & z-plane, Stability analysis of closed loop systems in the z-plane by use of Bilinear transformation and Routh's stability criterion, Jury stability.	10 Hours
Module-2	State Space Analysis: Concept of state and state variables, State model of linear systems, State space representation using physical, phase and canonical variables, Derivation of Transfer function model from State space Model; Diagonalization - Eigenvalues & Eigenvectors, Solution of State Equations, State Transition Matrix, Cayley-Hamilton Theorem, Controllability and Observability, Pole placement by State feedback, State observer.	8 Hours
Module-3	Phase Plane Analysis: Common Physical Non Linearities - Saturation, Friction, Backlash, Relay and Multivariable Nonlinearity; Phase Plane Method: Basic Concepts, Singular Points, Nodal Point, Saddle Point, Focus Point, Vortex Point; Stability of Non Linear Systems: Limit Cycles, Construction of Phase Trajectories by Analytical Method and Graphical Methods.	10 Hours
Module-4	Describing Function Method: Basic Concepts, Derivation of Describing Functions; Stability Analysis by Describing Function Method: Stability Analysis by Gain-phase Plots, Jump Resonance, And Introduction to Liapunov's Stability Criterion.	6 Hours
Module-5	Advanced Control Design: Realization of compensators - Lag, Lead, and Lag-Lead compensator; Tuning of PID controller, Feedback compensation, Design of robust control system; Advances in control system: Introduction to optimal control, Performance measures like ISE, ITAE; Quadratic indices, Introduction to fuzzy control.	8 Hours
Total		42 Hours

Text Books:

- T1. K. Ogata, *Discrete-Time Control Systems*, 2nd Ed., Pearson Education, 2015.
- T2. I. J. Nagrath and M. Gopal, *Control Systems Engineering*, 5th Ed., New Age Int'l., 2010.

Reference Books:

- R1. R. T. Stefani, B. Shahian, C. J. Savant, and G. H. Hostetter, *Design of Feedback Control Systems*, 4th Ed., Oxford University Press, 2009.
- R2. K. Ogata, *Modern Control Engineering*, 5th Ed., Pearson Education, 2015.
- R3. R. C. Dorf and R. H. Bishop, *Modern Control Systems*, 12th Ed., Pearson Education, 2013.
- R4. M. Gopal, *Control Systems - Principles & Design*, 4th Ed., Tata McGraw-Hill, 2012.
- R5. N. S. Nise, *Control Systems Engineering*, 5th Ed., Wiley India, 2008.

Online Resources:

1. <https://nptel.ac.in/courses/108103007>: by Prof. S. Majhi, IIT Guwahati
2. <https://nptel.ac.in/courses/108106024>: by Prof. A. Mahindrakar, IIT Madras
3. <https://nptel.ac.in/courses/108103008>: by Prof. I. Kar, Prof. S. Majhi, IIT Guwahati
4. <http://web.mit.edu/2.14/www/Handouts/StateSpace.pdf>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply Z-transform methods to model sampled data systems and evaluate their stability.
CO2	Develop & solve state-space models to assess system dynamics & state feedback control.
CO3	Analyze physical nonlinearities and apply phase plane methods for nonlinear system stability.
CO4	Apply describing functions and perform stability analysis using advanced nonlinear techniques.
CO5	Design and tune compensators and PID controllers using optimal, robust, and fuzzy control.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1	2						1	3	1	
CO2	3	3	2	2	3						1	3	2	1
CO3	3	3	3	2	3						1	3	1	
CO4	2	3	2	3	2						1	2	1	
CO5	2	2	2	2	3						1	3	2	1

Category	Code	Introduction to VLSI Design	L-T-P	Credits	Marks
PEL	EC3042		3-0-0	3	100

Objectives	The objective of this course is to study the design, fabrication, and testing of devices, circuits, and systems using integrated micro fabrication technologies, with an in-depth understanding of modern VLSI design and technology.
Pre-Requisites	Fundamental knowledge of MOSFET, analog and digital electronics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Historical perspective, VLSI Design methodologies, VLSI designs flow, Design hierarchy, Concept of regularity, Modularity and locality, VLSI design styles. Fabrication of MOSFETs - Introduction, Fabrication process flow – Basic concepts, The CMOS n-well process, Layout design rules, Stick diagrams and layout of complex CMOS logic gates (Euler method).	8 Hours
Module-2	MOS Transistor: The Metal oxide semiconductor (MOS) structure, The MOS system under external bias, Structure and operation of MOS transistor (MOSFET), MOSFET current-voltage characteristics, MOSFET scaling and small -geometry effects, MOSFET Capacitance.	8 Hours
Module-3	MOS Inverter Circuits: Introduction, Voltage transfer characteristics, Noise margin definitions, CMOS inverter, Sizing of inverters. Static MOS gate circuits - Introduction, CMOS gate circuits, Complex CMOS gates, MUX circuits, Calculation of inverter equivalent for NAND, NOR and other complex logic circuits.	9 Hours
Module-4	Switching Characteristics & Interconnect Effects: Introduction, Switching time analysis of CMOS inverter, Interconnect resistance & capacitance estimation, Calculation of Elmore delay, Power dissipation in CMOS inverter, Power delay product, Sequential MOS logic circuits - Introduction, SR-latch, Clocked-SR latch, Clocked JK latch.	9 Hours
Module-5	Transfer Gate Logic Design: Introduction, Basic concepts of pass transistor, CMOS transmission gate logic, Pseudo NMOS logic, Dynamic logic, Basics of semiconductor memory - DRAM, SRAM cell design & operation, Memory architecture.	8 Hours
Total		42 Hours

Text Books:

- T1. S. -M. Kang and Y. Leblebici, *CMOS Digital Integrated Circuits - Analysis and Design*, 3rd Ed., TMH, 2002.
- T2. D. A. Hodges, H. G. Jackson, and R. Saleh, *Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology*, 3rd International Ed., McGraw Hill Education, 2004.

Reference Books:

- R1. J. P. Rabaey, A. P. Chandrakasan, and B. Nikolić, *Digital Integrated Circuits: A Design Perspective*, 2nd Ed., Pearson Education, 2016.

R2. N. H. E. Weste, D. Harris, and A. Banerjee, *CMOS VLSI Design - A Circuits and Systems Perspective*, 4th Ed., Pearson Education, 2010.

R3. R. J. Baker, *CMOS Circuit Design, Layout, and Simulation*, 3rd Ed., John Wiley & Sons, 2010.

R4. D. A. Pucknell and K. Eshraghian, *Basic VLSI Design*, 3rd Ed., PHI Learning, 1995.

Online Resources:

1. <https://nptel.ac.in/courses/117101058>: by Prof. A.N. Chandorkar, IIT Bombay
2. <https://nptel.ac.in/courses/108107129>: by Prof. Sudeb Dasgupta, IIT Roorkee
3. <https://nptel.ac.in/courses/117106149>: by Prof. Madhav Rao, IIIT Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain VLSI design flow, methodologies, and CMOS fabrication with layout design rules.
CO2	Analyze MOSFET structure, operation, I-V characteristics, scaling, and capacitance.
CO3	Design and analyze CMOS inverters and logic gates with sizing and noise margin evaluation.
CO4	Evaluate CMOS inverter delay, power, interconnect effects, and sequential logic circuits.
CO5	Design transfer gate logic and analyze DRAM, SRAM cells, and memory architectures.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	3	1	1	1				1	2	1	2
CO2	3	3	1	2	2						2	2	2	1
CO3	3	3	3	2	1	1					1	3	2	3
CO4	2	2	3	3	2	2						2	1	2
CO5	3	3	3	3	1						1	3	2	2

Category	Code	Mobile Communication & Networks	L-T-P	Credits	Marks
PEL	EC3026		3-0-0	3	100

Objectives	The objectives of this course is to study the concepts of communication networks, wireless communication with its challenges & developments, wireless application protocols & standards, and Bluetooth technology.
Pre-Requisites	Basic knowledge of computer networking & wireless transmission is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on examples and latest trends.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Communication Networks: LANs, MANs, WANs, Switching techniques, Wireless ATM networks, TCP/IP protocol architecture, OSI protocol Architecture, Internetworking.	7 Hours
Module-2	Wireless Communication Technology: Propagation modes, LOS transmission, Fading in the mobile environment, Free-space attenuation, Attenuation over reflecting surfaces, Radio wave propagation, Okumura-Hata propagation path-loss model.	8 Hours
Module-3	Cellular Wireless Networks: Principles of cellular network, Overview of cellular concept, Cell capacity, Frequency reuse, Introduction to 1G to 3G cellular networks, WCDMA/UMTS, LTE, LTE-A, VoLTE, Handoff; Mobile IP and Wireless access Protocol - Mobile IP, Wireless application protocol, Internet control message protocol (ICMP).	9 Hours
Module-4	Wireless LAN Technology: Overview, Infrared LANs, Spread spectrum LANs; IEEE 802.11 Wireless LAN - IEEE 802 protocol architecture, IEEE 802.11 MAC, IEEE 802.11 physical layer, Wi-MAX standards, Bluetooth low energy (BLE), Zig-bee.	9 Hours
Module-5	5G Networks: Introduction, Policy, Use Cases and Challenges; 5G System concept - Concept overview, Massive machine-type communication, 5G frequency spectrum, 5G RAN architecture; Introduction to 5G-IoT and beyond.	9 Hours
Total		42 Hours

Text Books:

- T1. U. Dalal, *Wireless Communication and Networks*, 1st Ed., Oxford University Press, 2015.
- T2. I. S. Misra, *Wireless Communication and Networks: 3G and Beyond*, 2nd Ed., McGraw-Hill, 2017.
- T3. A. Osseiran, J. F. Monserrat, P. Marsch, *5G Mobile and Wireless Communications Technology*, 1st Ed., Cambridge University Press, 2016.

Reference Books:

- R1. V. K. Garg, *Wireless Communication and Networking: Essential Reading*, Morgan Kaufman, 2008.
- R2. T. S. Rappaport, *Wireless Communications*, 2nd Ed., Pearson Education, 2010.
- R3. D. Tse and P. Viswanath, *Fundamentals of Wireless Communication*, Cambridge University Press, 2005.
- R4. S. Z. Asif, *5G Mobile Communications Concepts and Technologies*, —edn1, CRC Press, 2018.

Online Resources:

1. <https://nptel.ac.in/courses/106106167>: by Prof. D. K. Pillai, IIT Madras
2. <https://nptel.ac.in/courses/108105134>: by Prof. S. S. Das, IIT Kharagpur
3. <https://nptel.ac.in/courses/106105183>: by Prof. Ghosh and Chakraborty, IIT Kharagpur
4. <https://nptel.ac.in/courses/108108098>: by Prof. T. V. Prabhakar, IISc Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain fundamentals of mobile communication networks, switching, and protocols.
CO2	Analyze radio wave propagation, fading, attenuation, path loss, and channel modeling effects.
CO3	Explain and compare wireless protocols, Mobile IP, and standards like WiMAX, BLE, Zigbee.
CO4	Describe technical features, architecture, and standards of IEEE 802.11 wireless LANs.
CO5	Analyze 5G network concepts, architecture, use cases, spectrum, and 5G-IoT applications.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	3	2		1				2	2	2	2
CO2	3	3	2	3	2		1				2	2	2	2
CO3	3	3	2	3	2		1				2	2	2	2
CO4	3	3	2	3	2		1				2	2	2	2
CO5	3	3	2	3	2		1				2	2	2	2

Category	Code	Power Quality	L-T-P	Credits	Marks
PEL	EE3016		3-0-0	3	100

Objectives	The objective of this course is to learn the power quality problems in a power system, their causes, and methods to improve the quality of electrical power.
Pre-Requisites	Basic knowledge of power electronics and power systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Power Quality & Voltage Sags: Introduction, Terms and definitions, Overloading - Under voltage, Over voltage, Transients - Short duration, Long duration, Sags & swells - Voltage sag, Swell, Imbalance, Fluctuation, Frequency variations; International standards of power quality, CBEMA curve; Voltage Sags and Interruptions - Sources, Estimating voltage sag performance, Thevenin's equivalent source, Analysis & calculation of various faulted conditions, Voltages sag due to induction motor starting, Estimation of sag severity, Mitigation of voltage sags, Active series compensators, Static & fast transfer switches.	10 Hours
Module-2	Overvoltages: Sources - Capacitor switching, Lightning, Ferro-resonance, Mitigation of voltage swells - Surge arresters, Low pass filters, Power conditioners, Lightning protection – Shielding, Line arresters, Protection of transformers & cables; Computer analysis of transients, PSCAD & EMTP.	7 Hours
Module-3	Harmonics & Power System Response: Harmonic sources from commercial and industrial loads, Locating harmonic sources, Power system response characteristics - Harmonics vs. transients, Effect of harmonics – Harmonic distortion, Voltage and current distortion, Harmonic indices, Inter-harmonics resonance, Harmonic distortion evaluation - Devices for controlling harmonic distortion, Passive & active filters, IEEE and IEC standards.	7 Hours
Module-4	Power Quality Monitoring: Monitoring considerations, Monitoring and diagnostic techniques for various power quality problems, Modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools, Power line disturbance analyzer, Quality measurement equipment, Harmonic/spectrum analyzer, Flicker meters, Disturbance analyzer, Applications of expert systems for power quality monitoring.	8 Hours
Module-5	DSTATCOM & UPQC: Reactive Power Compensation, Harmonics and unbalance mitigation in distribution systems using DSTATCOM and shunt active filters, Synchronous reference frame extraction of reference currents, Current control techniques for DSTATCOM; Voltage Sag/Swell Mitigation - Dynamic voltage restorer, Working principle and control strategies; Series Active Filtering; Unified Power Quality Conditioner (UPQC) - Working principle, capabilities and control strategies.	10 Hours
Total		42 Hours

Text Books:

- T1. R. C. Dugan, M. F. McGranaghan, S. Santoso, and H. W. Beaty, *Electrical Power Systems Quality*, 3rd Ed., McGraw-Hill, 2017.
- T2. J. Arrillaga, N. R. Watson, and S. Chen, *Power Systems Quality Assessment*, 1st Ed., John Wiley & Sons, 2011.
- T3. C. Sankaran, *Power Quality*, 1st Ed., CRC Press, 2001.

Reference Books:

- R1. G. T. Heydt, *Electric Power Quality*, 2nd Ed., West Lafayette, 1994.
- R2. G. J. Wakileh, *Power Systems Harmonics – Fundamentals, Analysis and Filter Design*, 1st Ed., Springer, 2007.
- R3. E. Aeha and M. Madrigal, *Power System Harmonics: Computer Modelling and Analysis*, 1st Ed., Wiley India, 2012.
- R4. R. S. Vedam and M. S. Sarma, *Power Quality: VAR Compensation in Power Systems*, 1st Ed., CRC Press, 2013.

Online Resources:

1. <https://nptel.ac.in/courses/108107157>: by Prof. A. Bhattacharya, IIT Roorkee
2. <https://nptel.ac.in/courses/108102179>: by Prof. Bhim Singh, IIT Delhi

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Identify and analyze power quality issues, voltage sags, and disturbances in electrical systems.
CO2	Assess overvoltage causes and apply mitigation techniques to protect power system equipment.
CO3	Analyze effects of harmonics on power quality and control distortion in power systems.
CO4	Apply various techniques and tools for monitoring and diagnosing power quality issues.
CO5	Design DSTATCOM and UPQC systems to mitigate harmonics, voltage sags, and power issues.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

Cont'd...

PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)
------	---

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	3					2	2	2	1
CO2	3	3	2	2	3	3					2	2	2	1
CO3	3	3	2	2	3	3					2	2	3	2
CO4	3	3	2	2	2	3					2	3	3	2
CO5	3	2	2	2	2	3					2	3	3	2

Category	Code	High Voltage Engineering	L-T-P	Credits	Marks
PEL	EE3017		3-0-0	3	100

Objectives	The objective of the course is to learn the key concepts and recent trends in the field of high voltage engineering, high voltage testing of various insulators and determination of their dielectric strengths.
Pre-Requisites	Knowledge of physics, chemistry, material science & power systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Conduction & Breakdown in Gases: Gases as insulating media, Ionization and decay processes, Townsend's first & second ionization coefficients, Secondary electron emission by photon impact; Transition from non-self-sustained discharges to breakdown, Streamer mechanism of spark, Sparking voltage, Paschen's law, Breakdown in non-uniform fields - Partial breakdown, Corona discharges; Post breakdown phenomena and applications, Practical considerations in using gases for insulation purposes.	10 Hours
Module-2	Conduction & Breakdown in Dielectrics: Liquid dielectrics – Pure liquids and commercial liquids, Conduction and breakdown in pure liquids; Solid dielectrics – Intrinsic breakdown, Electromechanical breakdown, Thermal breakdown, Breakdown of solid dielectrics in practice.	8 Hours
Module-3	Generation of High Voltages: Direct voltages, Half & full wave rectifier circuits, Voltage multiplier circuits, Van de Graff generators, Electrostatic generators, Alternating voltages, Impulse voltages, Standard lightning and switching surge, Design and construction of impulse generator circuits, Marx circuit operation.	8 Hours
Module-4	Measurement of High Voltages & Currents: Measurement of high DC and Impulse voltages, Measurement of high DC, AC and Impulse currents, Cathode ray oscilloscopes for impulse voltage and current measurement.	8 Hours
Module-5	High Voltage Testing: Non-destructive testing of materials and electrical apparatus – Introduction, Measurement of DC resistivity, Measurement of dielectric constant and Loss factor, Partial discharge measurements; High voltage testing of electrical apparatus – Testing of insulators and bushings, Testing of isolators and circuit breakers, Cables, Testing of transformers, Surge Diverter Radio interference measurements.	8 Hours
Total		42 Hours

Text Books:

T1. M. S. Naidu and V. Kamaraju, **High Voltage Engineering**, 5th Ed., McGraw-Hill Education, 2017.

Reference Books:

R1. E. Kuffel. W. S Zaengel, and J. Kuffel, **High Voltage Engineering Fundamentals**, Newnes (Elsevier), 2008.

R2. C. L. Wadhwa, **High Voltage Engineering**, 3rd Ed., New Age International, 2015.

Online Resources:

1. <https://nptel.ac.in/courses/108/104/108104048/>: Prof. R. Arora, IIT Kanpur

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Analyze the concepts of breakdown phenomena in gas as a dielectric.
CO2	Provide deep insight on the breakdown phenomena in solid and liquid as dielectrics.
CO3	Design and analyse various circuits for generation of high voltage and currents.
CO4	Analyze various measurement methods of high voltages and high currents.
CO5	Perform testing of high voltage circuits using various high voltage electrical apparatus.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	1	2						2	3	2	
CO2	2	2	1	1	2						2	3	2	1
CO3	3	3	2	3	2						2	3	2	2
CO4	2	2	2	2	2						2	2	3	2
CO5	2	2	3	3	2						2	3	3	3

Category	Code	Digital Image Processing	L-T-P	Credits	Marks
PEL	EC3022		3-0-0	3	100

Objectives	The objective of this course is to learn the fundamentals, transformation, filtering, restoration, compression and segmentation of images and their applications in various real life problems.
Pre-Requisites	Basics of matrices, 1-D convolution and filters, DSP, DFT & DCT are required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Image Fundamentals: Fundamental steps in digital image processing, Image sensing and acquisition, Image formation model. Image sampling and quantization, Spatial and intensity resolution, Relationship between pixels, Distance measure, Basic intensity transformation functions, Image negative, Log transformation, Power-law transformations, Piece-wise linear transformation functions, Contrast stretching, Intensity-level slicing, Bit-plane slicing, Histogram Processing, Histogram equalization.	8 Hours
Module-2	Spatial & Frequency Domain Filters: Mechanics of spatial filtering, Spatial correlation and convolution, Smoothing spatial filters, Sharpening spatial filters, Unsharp masking and high-boost filtering, Filtering in frequency domain, Image smoothing and sharpening in frequency domain using ideal, Butterworth, Gaussian, and Homomorphic filters.	8 Hours
Module-3	Image Restoration: A model of image degradation/ restoration process, Noise models, Restoration in the presence of noise, Order statistics filters, Linear position invariant degradations, Estimating the degradation function, inverse filtering; Color Image Processing: Color fundamentals, Color models, Color conversions, Pseudo-color processing, Basics of full color image processing.	8 Hours
Module-4	Image Segmentation: Point, Line and edge detection, Edge linking and boundary detection, Thresholding, Global, Adaptive and region-based segmentation; Image Compression: Fundamentals, Redundancy, Entropy, Some basic compression methods, Huffman coding, Arithmetic coding, LZW coding, Block transform coding, Predictive coding, Lossy predictive coding.	9 Hours
Module-5	Image Feature Extraction & Classification: Dimensional Reduction - Principal Component Analysis, Morphological Operations - Dilation, Erosion, Opening, Closing, Boundary descriptors - Fourier descriptors, Statistical moments, Recognition based on decision theoretic methods: Minimum distance Classifier.	9 Hours
Total		42 Hours

Text Books:

T1. R. C. Gonzalez and R. E. Woods, *Digital Image Processing*, 3rd Ed., Pearson Education, 2008.
 T2. A. K. Jain, *Fundamentals of Digital Image Processing*, 2nd Ed., Prentice Hall of India, 2004.

Reference Books:

- R1. S. Sridhar, **Digital Image Processing**, 2nd Ed., Oxford University Press, 2014.
- R2. S. Jayaraman, S. Esakkirajan, and T. Veerakumar, **Digital Image Processing**, 2nd Ed., McGraw-Hill Education, 2013.

Online Resources:

1. <https://nptel.ac.in/courses/117105079>: by Prof. P. K. Biswas, IIT Kharagpur
2. <https://nptel.ac.in/courses/117105135>: by Prof. P. K. Biswas, IIT Kharagpur
3. <https://nptel.ac.in/courses/106105032>: by Dr. G. Harit, IIT Kharagpur
4. <https://nptel.ac.in/courses/117104069>: by Prof. S. Gupta, IIT Kanpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe fundamental concepts of image processing, its scope and applications.
CO2	Explain 2D convolution and filtering in spatial and frequency domains.
CO3	Apply restoration techniques and process images using color models and conversions.
CO4	Segment and compress images using suitable techniques for various applications.
CO5	Extract image features, apply morphology, and perform classification techniques.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1	2		1				1	2	2	1
CO2	3	3	2	2	2		1				1	2	2	1
CO3	2	2	1	2	2		1				2	2	2	1
CO4	2	2	1	1	2		1				1	2	2	1
CO5	1	1	2	2	2		1				2	2	2	1

Category	Code	PLC & SCADA	L-T-P	Credits	Marks
PEL	EE3023		3-0-0	3	100

Objectives	The objective of this course is to learn programming and applications of Programmable Logic Controllers (PLC), data acquisition systems, SCADA systems, and their applications in power systems.
Pre-Requisites	Knowledge of programming, electronics, power and control systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Programmable Logic Controllers (PLCs): Introduction, Block diagram, PLC operations, Comparison with relays circuit, Basic instructions, Examples, Level control application, Latch instructions, Counters, Timers, Shift registers; PLC Hardware Components - The I/O section, Discrete, Analog, and Special I/O modules, I/O specifications, The CPU, Memory design, Memory types, Programming devices, Selection of wire types and size.	8 Hours
Module-2	Fundamentals of Logic: Hardwired logic vs. programmed logic, Ladder diagram, Functional block diagram, Instruction list, Structured text, Common elements of programming languages, Variables and data types, Functions, Function blocks, Timers - ON, OFF, PULSE, Counters - increment, decrement; Introduction to Ladder logic; Programming word level logic instructions; Converting relay schematics and Boolean equation into PLC ladder programs.	8 Hours
Module-3	I/O Devices & Interfacing with PLC: Types of input devices, Switches - Push button switches, Toggle Switches, Proximity switches, Temperature switch, Pressure switch, Level switch, Flow switches, Motor starters, Transducers and sensors, Transmitters etc. Types of output devices - Electromagnetic control relays, Latching relays, Contactors, Motors, Pumps, Solenoid valves.	9 Hours
Module-4	SCADA: Need of SCADA system, Distributed control Systems (DCS), General definition and SCADA components; Hardware architecture, Software architecture, Protocol detail, Discrete and analog control; Interfacing PLC with SCADA; PLCs vs. RTUs, RTU block diagram, MTU communication interface, Future trends, Internet based SCADA display system, Components of control systems in SCADA.	9 Hours
Module-5	SCADA in Power Systems: Main task in power systems - Planning, Operation, Accounting, Tasks of National & Regional control centers, Generating station control room, AGC-SCADA, SCADA in generation, Power distribution and Power grid.	6 Hours
Total		42 Hours

Text Books:

- T1. S. Bhanot, **Process Control: Principles and Applications**, 1st Ed., Oxford University Press, 2011.
- T2. M. Mitra and S. S. Gupta, **PLC and Industrial Application**, 2nd Ed., Penram International, 2017.
- T3. S. A. Boyer, **SCADA - Supervisory Control and Data Acquisition**, Instrument Society of America, 2004.

Reference Books:

R1. F. D. Petrusella, *Programmable Logic Controller*, 4th Ed., Tata McGraw-Hill, 2017.
 R2. M. S. Thomas and J. D. McDonald, *Power System - SCADA and Smart Grids*, 1st Ed., CRC Press, 2015.
 R3. J. W. Webb and R. A. Reis, *Programmable Logic Controllers: Principles and Applications*, 5th Ed., PHI Learning, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/108105062/>: by Prof. S. Sen & Prof. S. Mukhopadhyay, IIT Kharagpur
2. <https://nptel.ac.in/courses/108106022/>: by Dr. K. S. Swarup, IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain PLC fundamentals, operations & hardware components including I/O modules & CPU.
CO2	Apply programming concepts and logical instructions of PLC in industrial applications.
CO3	Interface various input and output devices with PLC based on specific application needs.
CO4	Integrate SCADA with PLC with proper interfacing for creating industrial control systems.
CO5	Apply SCADA for automation & control in power generation, grid, and distribution.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1					1	3	2	
CO2	3	2	2	3	3	1					1	3	3	2
CO3	3	1	2	2	3	2					1	3	2	2
CO4	3	2	2	2	3	2					1	3	2	1
CO5	3	3	3	3	2	2					1	2	2	1

Category	Code	Advanced Power Transmission & Distribution	L-T-P	Credits	Marks
HNS	EE3020		3-1-0	4	100

Objectives	The objective of this course is to provide an in-depth understanding of Extra High Voltage (EHV) AC transmission systems, modern power distribution system, and the modernization of power infrastructure along with regulation governing it.
Pre-Requisites	Knowledge of electric power transmission and distribution systems is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with a strong emphasis on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	AC Transmission System: Layout design of substation, Busbar Schemes, Components of a grid substation, Grid stability; Voltage Control of Grid: Power circle diagram and its use, Voltage control using synchronous condensers, Cascade connection of shunt and series compensation, Sub-synchronous resonance in series capacitor, Compensated lines, Static VAR compensating systems.	11 Hours
Module-2	High Voltage Transmission: Major Components of HV transmission systems, Types of conductor configurations, Conductor accessories/clamps etc., Up-gradation of existing transmission lines, Design consideration of UHV substations, Comparison of AIS, Hybrid-AIS and GIS, Electric and magnetic fields, Insulation coordination for UHV systems.	12 Hours
Module-3	Distribution Systems: Load Modeling & Characteristics, Coincidence, Contribution & Loss Factor - Relationship between Load & Loss Factor, Classification of Loads, Load Management, Load forecasting, Distributed generation in distribution system, Design of Roof Top Solar System, Customer Billing, Backward Sweep Method for Distribution Power Flow, Optimal Capacitor Placement to Minimize Energy Costs & System Losses.	12 Hours
Module-4	Distribution System Protection: Types of Common Faults & Procedure for Fault Calculations, Protective Devices - Principle of Operation of Fuses, Circuit Reclosures, Line Sectionalizers & Circuit Breakers, Coordination of Protective Devices, General Coordination Procedure.	13 Hours
Module-5	Regulations in T&D: The Electricity Act 2003, Implementation, Role of Regulatory Mechanisms, Power Purchase Agreements, Green Energy Open Access Rules, Electricity (Amendment) Bill, 2025.	8 Hours
Total		56 Hours

Text Books:

- T1. T. Gonen, *Electric Power Distribution System Engineering*, 3rd Ed., Taylor & Francis, 2014.
- T2. S. S. Rao, *Electrical Substation Engineering & Practice: EHV-AC, HVDC AND SF6-GIS*, 3rd Ed., Khanna Publishers, 1992.

Reference Books:

- R1. M. K. Khedkar and Dr. G. M. Dhole, *Electric Power Distribution Automation*, 1st Ed., Laxmi Publications, 2017.

R2. V. Kamaraju, *Electrical Power Distribution Systems*, 1st Ed., McGraw-Hill, 2009.

R3. R. D. Begamudre, *Extra High Voltage AC Transmission Engineering*, 5th Ed., New Age International, 2023.

R4. A. S. Pabla, *Electric Power Distribution*, 4th Ed., Tata McGraw-Hill, 1997.

R5. S. Bhat, *Energy Law and Policy in India*, 2nd Ed., National Law School of India, University Press, 2016.

Online Resources:

1. <https://nptel.ac.in/courses/108107112>: by Prof. N. P. Padhy, and Prof. G Kumbhar, IIT Roorkee
2. <https://nptel.ac.in/courses/108107112>: by Prof. N P Padhy, Late. Prof. G. B. Kumbhar
3. <https://nptel.ac.in/courses/108108099>: by Prof. S. Reddy B, IISc, Bangalore

Course Outcomes: At the end of this course, the students will be able to:

CO1	Analyze the mechanisms of voltage regulation and structural stability within AC power transmission systems.
CO2	Evaluate the contemporary design standards for Ultra-High Voltage (UHV) transmission networks.
CO3	Understand the frameworks of electrical distribution systems and evaluate diverse load profiles using power-flow methodologies.
CO4	Compare complex power system faults, implement coordinated protection strategies.
CO5	Interpret the legal frameworks and technical standards regulating the electrical power sector.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2				2						2		
CO2	3	3	1		1	1					1	3	1	
CO3	3	3			2	2				1	2	2		
CO4	3	3			3					1	2	3	2	2
CO5	3	2	2		2	1				1		2	1	3

Category	Code	Design & Analysis of Algorithms	L-T-P	Credits	Marks
MNR	CS2002		3-1-0	4	100

Objectives	The objectives of this course is to introduce the techniques for designing efficient algorithms, apply them to solve problems, and analyze their complexities for application in different domains of computer science.
Pre-Requisites	Knowledge of Discrete Mathematics and Data Structures is essential.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction, Definition, Characteristics of algorithm, Growth of functions, Asymptotic analysis, Standard asymptotic notations and common functions, Recurrences, Solution of recurrences by iterative, Recursion tree, Substitution and Master method; Algorithm design techniques, Divide and conquer strategy for designing algorithms, Obtaining best, average, and worst-case running time of merge sort, quick sort and randomized quick sort.	12 Hours
Module-2	Heaps, Building a Heap, The heap sort algorithm, Priority Queue with their analysis; Lower bound of sorting algorithms; Dynamic Programming, Elements of dynamic programming, Matrix chain multiplication, Longest Common Subsequence, String matching algorithms (Naive, Rabin-Karp, Knuth Morris-Pratt algorithm).	10 Hours
Module-3	Greedy algorithms, Elements of Greedy strategy, Activity selection problem, Fractional Knapsack problem along with correctness proof, Huffman codes; Backtracking and Branch & Bound techniques (n-Queen, Knapsack, and Travelling Salesman problem); Data structure for disjoint sets, Disjoint set operations, Linked list representation, Path compression, Disjoint set forest.	12 Hours
Module-4	Graph algorithms and their characteristics, Breadth-first and Depth-first search, Minimum spanning trees, Kruskal and Prim's algorithms, Single source shortest path algorithms(Bellman-Ford, Dijkstra), All-pair shortest path algorithm (Floyd-Warshall) with their analysis.	10 Hours
Module-5	Maximum flow problem, Ford-Fulkerson algorithm and its analysis; NP completeness (Polynomial time, Polynomial time verification, NP completeness and reducibility), Cook's Theorem (without proof), Examples of NP complete problems (without proof)- Circuit satisfiability, 3-CNF satisfiability, Clique, Vertex cover, Ham-cycle, TSP (without proof); Approximation algorithm characteristics, Travelling Salesman Problem, Randomized algorithms (Max 3-CNF satisfiability).	12 Hours
Total		56 Hours

Text Books:

- T1. T. H.Cormen, C.E.Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, 4th Ed., PHI Learning, 2021.
- T2. E. Horowitz, S.Sahni, and S. Rajasekaran, *Fundamentals of Computer Algorithms*, 2nd Ed., University Press, 2015.

T3. J. Kleinberg and É. Tardos, *Algorithm Design*, 1st Ed., Pearson Education, 2013.

Reference Books:

- R1. M. T. Goodrich and R. Tamassia, *Algorithm Design: Foundations, Analysis, and Internet Examples*, 1st Ed., John Wiley & Sons, 2001.
- R2. U. Manber, *Introduction to Algorithms: A Creative Approach*, 1st Ed., Addison-Wesley, 1989.
- R3. S. Sridhar, *Design and Analysis of Algorithms*, 1st Ed., Oxford University Press, 2014.
- R4. G. Sharma, *Design & Analysis of Algorithms*, 4th Ed., Khanna Publishers, 2019.

Online Resources:

1. <https://nptel.ac.in/courses/106106131>: by Prof. M. Mukund, Chennai Mathematical Institute
2. <https://nptel.ac.in/courses/106101060>: by Prof. Ranade, Diwan, and Viswanathan, IIT Bombay
3. <https://nptel.ac.in/courses/106105164>: by Prof. S. Mukhopadhyay, IIT Kharagpur
4. <https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/>
5. <https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design algorithms, analyze their running time for best, worst, and average-cases, and understand divide & conquer strategy considering quick sort and merge sort as examples.
CO2	Compare Heapsort with other comparison based sorting algorithms and develop dynamic programming algorithms.
CO3	Apply disjoint-set data structure and various algorithm design techniques such as greedy, backtracking, and branch-and-bound in real life problems.
CO4	Model a given engineering problem using graphs and design the corresponding algorithms to solve the problem.
CO5	Compare various pattern matching algorithms, understand NP-Completeness and the need of approximation & randomized algorithms.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).

Cont'd...

PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)
------	---

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	2					2	3	3	3
CO2	3	3	2	2	3	2					2	3		
CO3	3	3	3	3	3	2					3	3		3
CO4	3	3	3	3	3	2					3	3		1
CO5	3	3	1	2	2	1					2	2		2

Category	Code	Machine Learning	L-T-P	Credits	Marks
MNR	CS3002		3-1-0	4	100

Objectives	The objective of the course is to learn the fundamental concepts behind supervised, unsupervised and reinforcement learning, assess and select appropriate model and use cross validation to tune their parameters.
Pre-Requisites	Basic knowledge of engineering mathematics, linear algebra, probability and statistics is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Supervised Learning Techniques: Overview of supervised learning, K-nearest neighbour, Multiple linear regression, Shrinkage methods (Ridge & Lasso regressions), Logistic regression, Linear Discriminant Analysis, Feature selection.	11 Hours
Module-2	Model Evaluation & Performance Metrics: Bias, Variance and model complexity, Bias-variance trade off, Bayesian approach and BIC, Cross-validation, Performance of Classification algorithms (Confusion matrix, Precision, Recall and ROC Curve).	11 Hours
Module-3	Advanced Classification Techniques: Generative model for discrete data (Bayesian concept learning and Naïve Bayes classifier), SVM for classification and regression, Reproducing Kernels, Regression and classification trees, Random Forest.	11 Hours
Module-4	Clustering & Feature Extraction: Clustering (K-means, Spectral clustering), Feature Extraction (Principal Component Analysis (PCA), kernel based PCA, Independent Component Analysis (ICA), Non-negative matrix factorization and Collaborative filtering), Mixture of Gaussians, Expectation Maximization (EM) algorithm.	12 Hours
Module-5	Ensemble Approaches & Reinforcement learning: Bootstrap methods, Boosting methods - exponential loss and AdaBoost, Numerical Optimization via Gradient boosting; Introduction to Reinforcement learning, Elements of Reinforcement learning, Single state case: K-Armed Bandit, Model-based learning (Value and Policy Iterations).	11 Hours
Total		56 Hours

Text Books:

- T1. T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning - Data Mining, Inference, and Prediction*, 9th Ed., Springer, 2017.
- T2. S. Haykin, *Neural Networks and Learning Machines*, 3rd Ed., Pearson Education, 2009.
- T3. E. Alpaydin, *Introduction to Machine Learning*, 2nd Ed., Prentice Hall of India, 2010.

Reference Books:

- R1. Y. G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction to Statistical Learning with Applications in R*, 2nd Ed., Springer, 2013.

R2. T. M. Mitchell, *Machine Learning*, 1st Ed., McGraw-Hill Education, 2013.
 R3. C. M. Bishop, *Pattern Recognition and Machine Learning*, 1st Ed., Springer, 2006.

Online Resources:

1. <https://nptel.ac.in/courses/106105152/>: by Prof. S. Sarkar, IIT Kharagpur
2. <https://nptel.ac.in/courses/106106139/>: by Dr. B. Ravindran, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Apply the concepts of supervised machine learning and its functionalities.
CO2	Determine most appropriate model in a specific context using model selection techniques.
CO3	Perform classification using Bayes classifier, SVM, Decision Tree, and Random Forest.
CO4	Reduce dimensionality using feature selection and apply unsupervised machine learning for different problems and use cases.
CO5	Apply the basic concepts of boosting methods and reinforcement learning to real life problems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2					2	3	3	3
CO2	3	3	3	2	2	3					2	3	2	3
CO3	3	3	3	2	2	3					2	3	3	3
CO4	3	2	2	2	2	2					2	3	3	3
CO5	3	3	2	2	2	3					2	3	3	3

Category	Code	VLSI Fabrication Technology	L-T-P	Credits	Marks
MNR	EC3033		3-1-0	4	100

Objectives	The objective of this course is to learn the fabrication flow and chip integration process of semiconductor devices and semiconductor integrated circuits in VLSI.
Pre-Requisites	Basic knowledge of semiconductor devices such as NMOS, PMOS, CMOS, BJT and digital VLSI design is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Introduction: Moore's Law and material processing, Defects in crystals, Eutectic phase diagram, Solid solubility, Homogeneous nucleation, Heterogeneous nucleation; Growth Processes - Crystal Growth – Necking and dislocation free CZ crystal growth, Segregation of impurities along length and diameter, Defects in CZ crystals, FZ Crystal growth; Epitaxy - Vapor phase epitaxy, LPE, MBE, CVD deposition of poly-silicon, SILOX process.	12 Hours
Module-2	Diffusion: Constant and limited source diffusion, Concentration dependent diffusion, Field assisted diffusion, Junction depth, Diffusion sources; Ion Implantation: Basic process, Ion implantation systems, Ion penetration and profile, Ion implantation damage.	10 Hours
Module-3	Annealing Oxidation: Purpose, Dry and wet oxidation, Deal-Grove model, Oxidation system, Properties of oxides – Masking and charges in oxides; Deposition processes - Fundamentals of vacuum systems, Vacuum evaporation of thin films, DC and RF sputtering of thin films, Interconnects, Contacts and dielectrics in IC fabrication, Deposition of silicon nitride.	12 Hours
Module-4	Lithography: Pattern generation and mask making, Optical lithography – Contact, Proximity and projection printing, Photoresists – Negative, Positive, Lift-off process, Electron beam and X-ray lithographic techniques. Etching - Wet etching, Isotropic and anisotropic etching, Plasma etching, Reactive ion beam etching.	12 Hours
Module-5	IC Process Integration: Bipolar transistor fabrication, Isolation techniques, P-MOS, N-MOS and C-MOS processes.	10 Hours
Total		56 Hours

Text Books:

- T1. S. M. Sze, *VLSI Technology*, 2nd Ed., Tata McGraw Hill, 2003.
- T2. S. K. Gandhi, *VLSI Fabrication Principles: Silicon and Gallium Arsenide*, 2nd Ed., Wiley India, 1994.

Reference Books:

- R1. J. Plummer, M. Deal, and P. Griffin, *Silicon VLSI Technology: Fundamentals, Practice, and Modeling*, Prentice Hall, 2000.
- R2. M. J. Madou, *Fundamentals of Micro Fabrication: The Science of Miniaturization*, 2nd Ed., CRC Press, 2002.
- R3. S. Mahajan, *Principles of Growth and Processing of Semiconductors*, McGraw-Hill Education, 1999.

R4. S. A. Campbell, *The Science & Engineering of Microelectronics Fabrication*, 2nd Ed., Oxford University Press, 2001.

Online Resources:

1. <https://nptel.ac.in/courses/108101089>: by Prof. A. N. Chandorkar, IIT Bombay
2. <https://nptel.ac.in/courses/113106062>: by Prof. P. Swaminathan, IIT Madras
3. <https://nptel.ac.in/courses/103106075>: by Dr. S. Ramanathan, IIT Madras
4. <https://nptel.ac.in/courses/117106093>: by Dr. N. Dasgupta, IIT Madras
5. <https://ocw.mit.edu/courses/6-780-semiconductor-manufacturing-spring-2003/>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain fundamental concepts of IC fabrication including crystal growth, epitaxy and deposition.
CO2	Describe diffusion and ion implantation techniques and their role in IC fabrication processes.
CO3	Explain annealing oxidation and various material deposition techniques used in IC fabrication.
CO4	Analyze and explain lithography techniques and various etching processes in IC fabrication.
CO5	Analyze and explain the integration of bipolar, MOS and CMOS processes in IC fabrication.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	2	1		1					1	3	1	3
CO2	2	2	2	1		1					1	3	2	3
CO3	2	2	2	1							3	3	2	3
CO4	2	3	3	3		1					3	3	2	3
CO5	2	2	3	3		1					3	3	2	3

Category	Code	Embedded Systems & Microcontrollers	L-T-P	Credits	Marks
MNR	EC3035		3-1-0	4	100

Objectives	The objective of this course is to provide a fundamental understanding of embedded systems and their design principles along with programming and interfacing with 8051 and ARM controllers to develop embedded systems.
Pre-Requisites	Knowledge of digital electronics, computer organization, and programming is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on design and programming activities.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Embedded Systems: Introduction, Embedded Systems vs General-Purpose Computing Systems, History, Classification, Applications and Domain Areas, Purpose, Wearable Devices, Embedded Technologies & Lifestyle, Core Components (Microprocessors, Microcontrollers, DSPs, ASICs, FPGAs), Memory (RAM, ROM, types, testing), Sensors and Actuators, Communication Interface (Serial, Parallel, Network, Wireless), Embedded Firmware, Other System Components (Timers, Watchdog Timers, Power Supply), PCB and Passive Components.	11 Hours
Module-2	Embedded Architectures & Design: Characteristics of Embedded Systems, Quality Attributes of Embedded Systems, Application-Specific Embedded System, Domain-Specific Examples of Embedded System, Designing Embedded System with Microcontrollers, Factors to be Considered in Selecting a Controller, FPGA and other Architectures.	10 Hours
Module-3	8051 Architecture & Programming: Performance Metrics, Comparison of Microprocessors and Microcontrollers, 8051 Microcontroller - Intel MCS-51 family features, 8051 Organization and Architecture, Registers, Addressing Modes, Instruction Set, Conditional Instructions.	12 Hours
Module-4	ARM Architecture & Programming: ARM and Microcontrollers, The ARM Family, ARM Architecture and Assembly Language Programming, General Purpose Registers, ARM Memory Map, Load and Store Instructions, ARM CPSR (Current Program Status Register), ARM Data Format and Directives, ARM Assembly Programming, Assembling an ARM Program, Program Counter and Program ROM Space, ARM Addressing Modes, RISC Architecture in ARM.	12 Hours
Module-5	Advanced ARM Programming: Arithmetic & Logic Instructions, Branch, Call and Looping, Memory Access and Stack, ARM Pipeline and CPU Evolution, Other CPU Enhancements, Design Case Studies, Embedded System Trends and Careers.	11 Hours
Total		56 Hours

Text Books:

- T1. S. Chattopadhyay, *Embedded Systems Design*, 3rd Ed., PHI Learning, 2023.
- T2. K. V. Shibu, *Introduction to Embedded Systems*, 2nd Ed., Tata McGraw-Hill, 2017.

T3. R. Kamal, *Embedded Systems – Architecture, Programming and Design*, 12th Ed., McGraw-Hill, 2007.

T4. M. A. Mazidi *et al.*, *ARM Assembly Language Programming & Architecture*, 2nd Ed., Microdigitaled.com, 2016.

Reference Books:

R1. D. E. Simon, *An Embedded Software Primer*, 1st Ed., Addison Wesley, 1999.

R2. J. Ganssle, *The Art of Designing Embedded Systems*, 2nd Ed., Elsevier, 2008.

R3. K. Short, *Embedded Microprocessor System Design*, 1st Ed., Prentice Hall, 1998.

R4. C. Baron, J. Geffroy, and G. Motet (Eds), *Embedded System Applications*, Springer, 1997.

R5. D. Gajski, *Embedded System Design: Modeling, Synthesis and Verification*, Springer, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/117105234>: by Prof. S. Chattopadhyay, IIT Kharagpur
2. <https://nptel.ac.in/courses/108106176>: by Prof. L. S. Jayashree , IIT Madras

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe embedded systems, their classification, core components, interfaces, and applications
CO2	Explain embedded system design principles, quality attributes, and controller/FPGA selection.
CO3	Explain microcontrollers and the 8051 architecture, instruction set, and programming concepts.
CO4	Realize ARM architecture and develop basic assembly programs using RISC principles.
CO5	Apply advanced ARM features to analyze system design and understand industry trends.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	1				2		2	3	1	2
CO2	3	2	2	1	3				2		2	3	2	2
CO3	3	3	2	2	2				2		3	2	2	1
CO4	3	2	2	3	3				2		2	3	2	2
CO5	3	3	2	2	3				3		2	3	2	1

Category	Code	E-Commerce & Supply Chain Management	L-T-P	Credits	Marks
MNR	MG3004		3-1-0	4	100

Objectives	The objective of this course is to enable students to understand e-commerce systems & supply chain operations and apply analytical, data-driven approaches for product validation, customer acquisition, and scalable e-commerce growth.
Pre-Requisites	Basic understanding of internet technologies, databases, and introductory concepts of management and operations. Familiarity with data analysis fundamentals and web-based applications will be beneficial.
Teaching Scheme	Regular classroom lectures with the use of ICT tools as and when required; sessions emphasize interactive discussions, real-world case studies, and practical application of e-commerce and supply chain concepts.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	E-Commerce Foundations & Industry Roles: Overview of digital commerce, Traditional and emerging e-commerce roles - Hiring trends, Skill requirements, Hybrid technical-business skill development, Website traffic acquisition, Payment gateways, Loyalty management, Customer retention; E-commerce marketplaces and quick commerce models: D2C, B2B, Supply Chain Management (SCM), Business development, Unit economics, Profitability drivers, Merchandising strategies, ROAS basics, Customer feedback analysis using NPS and loyalty metrics.	12 Hours
Module-2	D2C Channels & Operations: Genesis and evolution of D2C channels, D2C manufacturing, Fulfillment, Delivery optimization, Brand loyalty and customer intimacy, Case studies of D2C brands, White space identification, product opportunity analysis, Product design aligned to brand positioning, Accelerated product development and time-to-market, Early-stage D2C growth, Scaling, ROAS optimization, Channel mix strategies.	11 Hours
Module-3	Product-Market Fit (PMF) & Minimum Viable Product (MVP): PMF and MVP concepts, PMF discovery and optimization, MVP-based pricing to reduce cost and risk, Customer acquisition, Iterative testing frameworks, Feature prioritization, Competitive positioning, Market research for validation, Customer feedback loops, Faster time-to-market through streamlined development processes.	10 Hours
Module-4	Scaling & Performance Marketing: Scaling from zero to one; Marketplace vs. owned-website strategy; Channel mix decisions across product categories; Spend management & attribution models; ROAS optimization techniques; Commerce media and retail advertising ecosystems; Vertical and B2B marketplaces; Data-driven scaling decisions.	11 Hours

Cont'd...

Module-#	Topics	Hours
Module-5	Customer Acquisition & Growth Management: Early-stage customer acquisition, Organic vs Paid growth, Scaling E-commerce operations from startup to large scale, Growth scaling through operational excellence and process optimization, Quality maintenance during growth, Customer feedback management, Bottlenecks and risk mitigations, SCM and fulfilment scaling, Operational challenges, Ethical, Legal, and Sustainability aspects of E-commerce growth.	12 Hours
Total		56 Hours

Text Books:

- T1. K. C. Laudon and C. G. Traver, *E-Commerce: Business, Technology, Society*, 17th Ed., Pearson Education, 2023.
- T2. M. H. Hugos, *Essentials of Supply Chain Management*, 4th Ed., Wiley India, 2018.
- T3. S. Chopra and P. Meindl, *Supply Chain Management: Strategy, Planning, and Operation*, 7th Ed., Pearson Education, 2021.

Reference Books:

- R1. Harvard Business Review, *HBR's 10 Must Reads on Platforms and Ecosystems*, 1st Ed., Harvard Business Review Press, 2021.
- R2. J. B. Ayers and M. A. Odegaard, *Retail Supply Chain Management*, 2nd Ed., McGraw-Hill Education, 2019.
- R3. M. Christopher, *Logistics and Supply Chain Management*, 6th Ed., Pearson Education, 2016.

Online Resources:

1. <https://nptel.ac.in/courses/110106045>: By Prof. G. Srinivasan, IIT Madras
2. <https://nptel.ac.in/courses/110108056>: By Prof. N. Viswanadham, IISc Bangalore
3. <https://nptel.ac.in/courses/110105083>: Prof. M. Jenamani, IIT Kharagpur
4. <https://www.hubspot.com/resources/courses/ecommerce>
5. <https://www.futurelearn.com/courses/digital-transformation-e-commerce>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain e-commerce systems, business models, industry roles, and core operational metrics.
CO2	Analyze D2C channel architectures, operational workflows, and data-driven design decisions.
CO3	Apply PMF and MVP validation frameworks using analytical and feedback-based methods.
CO4	Evaluate scaling, channel selection, and performance optimization using ROAS and analytics.
CO5	Analyze customer acquisition, growth control, and supply chain scaling in e-commerce systems.

Program Outcomes Relevant to the Course:

PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).

Cont'd...

PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1		1	1	1	1	1	1	1	1	2	2	1	1	2
CO2		2	1	2	2	1	1	2	1	3	3	1	2	2
CO3		1	2	1	2	1	2	2	2	3	3	2	3	3
CO4		1	2	1	2	2	1	2	2	3	3	2	3	3
CO5		2	1	2	2	2	1	1	2	2	3	2	2	3

Category	Code	Business Statistics & Predictive Modelling	L-T-P	Credits	Marks
MNR	MG3002		3-1-0	4	100

Objectives	The aim of this course is to learn the statistical and analytical skills required to interpret business data and make data-driven decisions applying statistical models and predictive techniques.
Pre-Requisites	Knowledge of mathematics, statistics and worksheet operations, and Python programming is required.
Teaching Scheme	Regular classroom lectures, power point presentations with use of ICT as required, with examples, real-life case studies, assignments and projects.

Evaluation Scheme

Attendance	Teacher's Assessment	Mid-Term	End-Term	Total
10	20	20	50	100

Detailed Syllabus

Module-#	Topics	Hours
Module-1	Foundations of Business Statistics: Descriptive statistics, data types, data visualization, central tendency and dispersion, probability distributions (normal, binomial, Poisson), sampling and sampling distributions. Use of Excel or Python (Pandas, NumPy) to compute mean, variance, skewness, and kurtosis. visualize frequency distributions.	10 Hours
Module-2	Hypothesis Testing & Confidence Intervals: Null and alternative hypotheses, Type I & II errors, one & two-tailed tests, t-test, z-test, chi-square test, ANOVA and confidence intervals for mean and proportion. Hypothesis testing on sample datasets (sales performance, A/B testing).	9 Hours
Module-3	Regression Analysis: Simple and multiple linear regression, correlation, multicollinearity, model fit (R^2 , adjusted R^2), residual analysis, logistic regression for classification problems; Building regression models for revenue forecasting or demand estimation; Applying logistic regression for churn prediction using Python statsmodels and scikit-learn.	10 Hours
Module-4	Time Series Forecasting: Components of time series (trend, seasonality, irregularity), moving averages, exponential smoothing, ARIMA models and model evaluation metrics (RMSE, MAPE); Forecasting monthly sales or price trends using spreadsheets or Python (statsmodels ARIMA); Visualizing trends and residual patterns.	9 Hours
Module-5	Clustering & Classification: Unsupervised learning concepts, K-means clustering, hierarchical clustering, decision trees, random forests and model evaluation (confusion matrix, ROC curve, AUC); Customer segmentation using K-means; Credit risk classification using decision trees.	9 Hours
Module-6	Predictive Analytics: Integrating statistical and predictive models, business problem formulation, model interpretation and communication of results; Case studies - Churn prediction, inventory management, sales forecasting and credit scoring; End-to-end mini project combining regression, classification and forecasting.	9 Hours
Total		56 Hours

Text Books:

T1. J. Rogel-Salazar, *Data Science and Analytics with Python*, 1st Ed., CRC Press, 2017.
 T2. W. McKinney, *Python for Data Analysis*, 3rd Ed., O'Reilly Media, 2022.

Reference Books:

R1. G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction to Statistical Learning with Applications in Python*, Springer, 2021.
 R2. D. R. Anderson, D. J. Sweeney, T. A. Williams, *et al.*, *Statistics for Business and Economics*, Cengage Learning, 2020.
 R3. S. C. Albright and W. L. Winston, *Business Analytics: Data Analysis and Decision Making*, Cengage Learning, 2023.

Online Resources:

1. <https://nptel.ac.in/courses/111106164>: by Prof. S. Das, CMI
2. <https://nptel.ac.in/courses/110107129>: by Prof. G. Dixit, IIT Roorkee
3. <https://nptel.ac.in/courses/106107220>: By Prof. A. Ramesh, IIT Roorkee
4. <https://nptel.ac.in/courses/106106361>: by Prof. S. K. Mathew, IIT Madras

Course Outcomes: *At the end of this course, the students will be able to:*

CO1	Describe and summarize business data using descriptive statistics and visual tools.
CO2	Apply hypothesis testing and confidence intervals to draw inferences from data.
CO3	Develop and interpret regression and logistic regression models for prediction.
CO4	Build and evaluate time series forecasting models for business applications.
CO5	Apply clustering and classification models to segment and predict business outcomes.
CO6	Integrate statistical and predictive methods for end-to-end business analytics solutions.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

P.T.O

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2						2	2	1	1
CO2	3	2	3	3	2						3	3	2	2
CO3	3	3	3	3	3						3	3	3	2
CO4	3	3	3	3	3						3	3	3	3
CO5	3	3	3	3	3						3	3	3	3
CO6	3	3	3	3	3						3	3	3	3

Category	Code	Fundamentals of MPMC Lab	L-T-P	Credits	Marks
PCR	EC3039		0-0-2	1	100

Objectives	The objective of the course is to provide hands-on practice on programming of different microprocessors and microcontrollers and their interfacing with external devices.
Pre-Requisites	Basic analytical and logical understanding including knowledge and usage of digital electronics is required.
Teaching Scheme	Regular laboratory experiments to be conducted using hardware and software tools under the supervision of the teacher; the experiments shall consist of programming assignments.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Program for arithmetic operations using 8085 microprocessors.
2	Program for finding the largest and smallest from a set of numbers using 8085.
3	Program for arranging numbers in ascending and descending order using 8085.
4	Programs for 16 bit arithmetic operations using 8086.
5	Programs for Sorting and Searching of Data (using 8086).
6	Programs for String manipulation operations (using 8086).
7	Interfacing ADC & DAC.
8	Parallel Communication between two MP Kits using Mode-1 & Mode-2 of 8255 PPI..
9	Programming using arithmetic, Logical and bit manipulation instructions of 8051 microcontroller.
10	Programming and verifying timer, interrupts and UART operations in 8051 microcontroller.
11	Interfacing and programming of Stepper motor and DC motor speed control.
12	Communication between 8051 microcontroller kit and PC.
13	A design problem using 8051 (such as multi-parameter data acquisition system, voltmeter, power meter, frequency counter, traffic simulation, digital clock).

Text Books:

- T1. R. S. Gaonkar, *Microprocessor Architecture, Programming, and Applications with the 8085*, 6th Ed., Penram International Publishing, 2013.
- T2. D. A. Patterson and J. H. Hennessy, *Computer Organization and Design: The Hardware/Software Interface*, 5th Ed., Morgan Kaufman, 2013.

Reference Books:

- R1. D. Hall, *Microprocessors and Interfacing*, 3rd Ed., McGraw Hill Education, 2017.
- R2. K. J. Ayala, *The 8051 Microcontroller*, 3rd Ed., Cengage Learning, 2007.
- R3. K. Kant, *Microprocessors and Microcontrollers: Architecture, Programming and System Design 8085, 8086, 8051, 8096*, 2nd Ed., Prentice Hall India, 2013.

Online Resources:

1. <https://nptel.ac.in/courses/106108100>: by Prof. K. Kumar, IISc Bangalore
2. <https://nptel.ac.in/courses/108107029>: by Prof. P. Agarwal, IIT Roorkee
3. <https://nptel.ac.in/courses/108105102>: by Prof. S. Chattopadhyay, IIT Kharagpur

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop assembly programs for arithmetic and logical operations using 8085/8086.
CO2	Implement data handling, sorting, and string operations on microprocessors.
CO3	Interface ADC, DAC, and I/O devices with microprocessors and microcontrollers.
CO4	Program 8051 microcontroller for timers, interrupts, UART, and motor control.
CO5	Design and test embedded applications using 8051 for real-time control systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	1	1	1							2	1	1
CO2	3	2	3	2	2						1	2	1	1
CO3	3	2	3	2	3						1	2	2	
CO4	3	2	3	3	3						1	3	1	1
CO5	3	2	2	2	2						1	2	1	1

Category	Code	Power Systems Lab	L-T-P	Credits	Marks
PCR	EE3021		0-0-2	1	100

Objectives	The objective of this course is to practically learn of the operating principles, calculation of various equipment components, line flows and utilize software analysis for power system problem-solving.
Pre-Requisites	Basic knowledge of power system transmission & distribution, characteristics of different types of lines, real and reactive power requirements is required.
Teaching Scheme	Regular laboratory experiments will be conducted under the supervision of the teacher; demonstrations and necessary safety measures will be explained during the pre-lab sessions.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Study of the Ferranti Effect and voltage profile in overhead transmission lines.
2	Determination of A, B, C & D parameters of long transmission lines.
3	Study of different types of compensation in transmission lines.
4	Determination of positive, negative & zero sequence synchronous reactance of an alternator.
5	Formation of the YBUS matrix from line data.
6 – 7	Load flow analysis using the Gauss-Seidel Method.
8	Determination of transient & sub-transient direct-axis & quadrature-axis reactance of an alternator.
9	Study of characteristics of over current and three-phase differential relays.
10	Determination of string efficiency of a chain insulator.
11	Determination of breakdown strength of transformer oil.
12	Determination of earth resistance.
13	Design of an automatic power factor correction unit with a fixed capacitor.
14	Study of the corona effect in high voltage overhead transmission lines.

Text Books:

T1. J. J. Grainger and W. D. Stevenson, *Power System Analysis*, 1st Ed., McGraw-Hill, 2017.
 T2. H. Sadaat, *Power System Analysis*, McGraw-Hill Education, 2002.

Reference Books:

R1. O. I. Elgerd, *Electric Energy Systems Theory - An Introduction*, 2nd Ed., McGraw-Hill, 2017.
 R2. D. P. Kothari and I. J. Nagrath, *Power System Analysis*, 4th Ed., McGraw-Hill, 2011.

Online Resources:

1. <https://nptel.ac.in/courses/108105067>: by Prof. A. K. Sinha, IIT Kharagpur
2. <https://nptel.ac.in/courses/108107127>: by Dr. V. Pant & Dr. B. Das, IIT Roorkee

Course Outcomes: At the end of this course, the students will be able to:

CO1	Explain the characteristics of long, short and medium transmission lines.
CO2	Analyze power flow through any transmission line under steady-state conditions.
CO3	Determine the optimal utilization of resources distributed throughout the power system.
CO4	Simulate different types of frequency control mechanisms.
CO5	Analyze various components of equipment and line flows in power systems.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	1					2	3	1	
CO2	3	3	2	2	3	2					2	3	2	1
CO3	3	3	2	2	3	2					3	3	1	
CO4	2	2	1	2	2	1					2	2	1	
CO5	2	2	1	2	3	2					3	3	2	1

Category	Code	Emerging Technologies Lab	L-T-P	Credits	Marks
SEC	IP3005		0-0-4	2	100

Objectives	The objective of this course is to introduce advanced concepts and recent trends in Electrical & Electronics Engineering. The course will prepare the students to design electrical machines, power electronics converters using latest technologies and analyze power systems through modern software tools.
Pre-Requisites	Knowledge of Network Theory, Electrical Machine, Power Electronics, Power Systems Analysis, and Engineering Mathematics is required.
Teaching Scheme	Regular laboratory experiments executed by the students under supervision of the teacher. Demonstration as required shall be given for each experiment.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1 – 6	Computer aided design of electrical machines using AutoCAD/Ansys/MATLAB.
7 – 12	Design (using PSIM/MATLAB etc.), implementation and control of power electronic converters.
13 – 18	Design (using MiPower/PSCAD/MATLAB etc.), installation and integration of distributed renewable energy sources in distribution systems with IoT based monitoring and control.
19 – 23	Static and dynamic analysis of interconnected power systems using classical machine models using programming.
24 – 26	Performance analysis of DSP based electric drive systems
27 – 28	Mini Project.

Reference Books:

- R1. M. A. Pai, *Computer Techniques in Power System Analysis*, 3rd Ed., McGraw-Hill, 2017.
- R2. M. H. Rashid, *Power Electronics: Devices, Circuits and Applications*, 4th Ed., Pearson Education, 2017.
- R3. R. K. Chauhan and K. Chauhan, *Distributed Energy Resources in Microgrids*, 1st Ed., Elsevier, 2019.
- R4. D. K. Tyagi, *Design, Installation, and Operation of Solar PV Plants*, 1st Ed., Magnolia Publication, 2019.
- R5. V. Rajini and V. S. Nagarajan, *Electrical Machine Design*, 1st Ed., Pearson Education, 2018.
- R6. B. K. Bose, *Modern Power Electronics and AC Drives*, 1st Ed., Pearson Education, 2005.
- R7. P. Kundur, *Power System Stability and Control*, 1st Ed., McGraw-Hill Education, 2006.
- R8. M. V. Deshpande, *Design and Testing of Electrical Machines*, 3rd Ed., Prentice Hall India, 2009.

Online Resources:

1. <https://nptel.ac.in/courses/108106023>: by Prof. K. Vasudevan, IIT Madras
2. <https://nptel.ac.in/courses/103103206>: by Prof. V. V. Goud, IIT Guwahati
3. <https://nptel.ac.in/courses/108102157>: by Prof. A. Das, IIT Delhi

P.T.O

Course Outcomes: At the end of this course, the students will be able to:

CO1	Design electrical machines and create machine drawings using computer aided tools.
CO2	Design, develop, and implement power electronics converters.
CO3	Design and integrate renewable energy sources in distributed systems.
CO4	Analyze the static and dynamic characteristics of power systems.
CO5	Analyze the performance of electric drives through simulation.

Program Outcomes Relevant to the Course:

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization to develop to the solution of complex engineering problems (WK1 to WK4).
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development (WK1 to WK4).
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required (WK5).
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems (WK2 and WK6).
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment (WK1, WK5, and WK7).
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1		1	1						1	3	1	
CO2	3	1	3	1	3						2	3	1	
CO3	3	2	3	2	1	1					1	2	3	2
CO4	3	1	1	2	2						2	3	2	
CO5	3	3	3		1	1					1	2	2	3

Category	Code	Technical & Research Writing	L-T-P	Credits	Marks
SEC	HS3002		0-0-2	1	100

Objectives	The objective of this course is to hone the professional writing skills of the learners, especially pertaining to technical reports, proposals and research writing.
Pre-Requisites	Knowledge of Technical Communication in English is required.
Teaching Scheme	Regular laboratory classes with tasks designed to facilitate communication through pair and/or team activities with regular assessment of writing activities.

Evaluation Scheme

Attendance	Daily Performance	Lab Record	Lab Test / Mini Project	Viva-voce	Total
10	30	15	30	15	100

Detailed Syllabus

Experiment-#	Assignment/Experiment
1	Introduction to technical writing
2	Reports: importance, types, report language
3	Writing an informational report: parts, format
4	Writing an analytical report: parts, executive summary
5	Proposals: importance, format, writing a short proposal.
6	Writing proposal for grants: format
7	What is research? Elements of academic research writing.
8	Ethics in research.
9	Review of Literature.
10	Writing an abstract.
11	Writing a research article - I.
12	Writing a research article - II.
13	Preparing works cited list as per MLA/APA format.
14	Dealing with plagiarism: paraphrasing.

Text Books:

- T1. K. Samantray, *Academic and Research Writing*, 1st Ed., Orient Black Swan, 2011.
- T2. R. Chaturvedi, S. Pandey, and P. K. Pandey, *Research Methodology & Scientific Writing*, 1st Ed., Book Rivers, 2023.
- T3. Modern Language Association of America, *MLA Handbook*, 9th Ed., MLA, 2021.
- T4. American Psychological Association, *Publication Manual of the American Psychological Association*, 7th Ed., APA, 2019.

Reference Books:

- R1. W. Zinsser, *On Writing Well: The Classic Guide to Writing Nonfiction*, 1st Ed., Harper Perennial, 2020.
- R2. W. Strunk Jr, *The Elements of Style*, 1st Ed., Fingerprint Publishing, 2020.

Online Resources:

1. <https://nptel.ac.in/courses/110105091>: Prof. A. Malik, IIT Kharagpur
2. <https://library.leeds.ac.uk/info/14011/writing/114/report-writing>
3. <https://www.anu.edu.au/students/academic-skills/research-writing>

4. <https://initiatives.iitgn.ac.in/scientificwriting/thesis-dissertation-writing/>
5. <https://www.babson.edu/media/babson/assets/teaching-research/writing-a-successful-proposal.pdf>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop analytical and informational reports with proper structure, tone and language.
CO2	Compose executive summaries, proposals and abstracts for technical or research work.
CO3	Apply citation styles, paraphrasing and ethical writing practices to avoid plagiarism.

Program Outcomes Relevant to the Course:

PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual & Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Mapping of COs to POs and PSOs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1							2	2	3		3	1	1	1
CO2							2	2	3		3	1	1	1
CO3							3	2	3		3	1	1	1

**Department of Electrical & Electronics Engineering
SiliconTech, Bhubaneswar**